石墨烯纳米带能带结构调控的理论研究

合集下载

固体物理前沿研究与应用

固体物理前沿研究与应用

1.固体物理的前沿研究1.1石墨烯纳米结构和纳米器件研究石墨烯由于其独特的狄拉克费米子、极高的载流子迁移率以及超强的力学性能,已成为凝聚态物理及材料科学等领域最近几年来的一个有趣结构。

在石墨烯的二维结构基础上,进一步降低维度,形成例如量子点,纳米带等纳米结构,从而可以导致一系列新的物理现象。

在石墨烯纳米结构中,边缘态是石墨烯的一个重要结构参数,大量的物理现象与边缘态相关。

本报告报道我组最近两年在石墨烯纳米结构边缘态控制、物性研究、以及原型器件探索方面的工作。

报告主要内容包括:石墨烯的低温外延生长、石墨烯纳米结构的加工与物性、石墨烯电子学器件等。

1.2 高温超导体的隧道谱研究铜氧化物高温超导体从被发现至今,已经过去了二十多年,但是对于它的机理却没有取得共识,一个核心的问题就是它具有非常奇异的正常态(多数情况下在欠掺杂区比较明显)。

由于赝能隙的存在,这个正常态很难被朗道费米液体理论所理解,被认为跟电子的强关联特性相关。

2008年,另一类高温超导体——铁基超导体被发现了,这个新的体系与铜氧化物高温超导体在物理性质上有一定程度的相似性,人们期望通过对它的研究来促进对高温超导电性的统一理解。

然而,随着实验数据的大量积累和人们认识的不断深入,铁基超导体1的机理又面临着巡游电子图像和强关联图像的矛盾。

这个报告将介绍高温超导体的隧道谱方面的结果,对高温超导机理的研究提出一些设想。

1.3 地震前兆信息的传播、分布和探测用颗粒物理原理,提出了地震前兆信息传播和分布新模型:地壳岩石层由板块、断层及其间断层泥构成,应作为大尺度二维颗粒体系处理,孕震作用力使岩石层块逐次发生滞滑(stick-slip)移动,以力链形式分布和传递。

给出了模型的依据和观测例证,分析了与传统连续介质观念的本质区别及其物理实质。

此模型可解释若干以前无法理解的地学现象和岩石中难以探测到地震前兆应力的原因。

介绍了有前景的地震前兆探测方法和原理。

1.4 低维氧化物的结构设计与光电物理研究由于掺杂钙钛矿氧化物半导体的结构复杂性和电子关联体系中的多耦合性,以及人工设计的氧化物低维结构由于界面效应、尺寸效应、量子效应等重要作用,使得该体系显现出了许多优于块材的新型物理性质。

石墨烯电子能带结构的计算

石墨烯电子能带结构的计算

石墨烯电子能带结构的计算摘要:本文简要阐述了石墨烯的结构和主要特性,采用碳原子的SP2 杂化理论和能带理论,运用紧束缚近似方法计算了石墨的能带结构。

关键词:石墨烯,结构和性质,紧束缚近似,能带结构一、引言石墨烯是一种由碳原子构成的单层片状结构的新材料。

是一种由碳原子以SP2杂化轨道组成六角型呈蜂巢晶格的平面薄膜,只有一个碳原子厚度的二维材料。

石墨烯目前是世上最薄,最坚硬,电阻率最小的材料。

而且电子迁移的速度极快,因此被期待可用来发展出更薄、导电速度更快的新一代电子元件或晶体管。

由于石墨烯实质上是一种透明、良好的导体,也适合用来制造透明触控屏幕、光板、甚至是太阳能电池。

二、石墨烯结构石墨烯是由碳六元环组成的两维(2D)周期蜂窝状点阵结构, 它可以翘曲成零维(0D)的富勒烯(fullerene),卷成一维(1D)的碳纳米管(carbon nano-tube, CNT)或者堆垛成三维(3D)的石墨(graphite), 因此石墨烯是构成其他石墨材料的基本单元。

石墨烯的基本结构单元为有机材料中最稳定的苯六元环, 是目前最理想的二维纳米材料。

理想的石墨烯结构是平面六边形点阵,可以看作是一层被剥离的石墨分子,每个碳原子均为sp2杂化,并贡献剩余一个p轨道上的电子形成大π键,π电子可以自由移动,赋予石墨烯良好的导电性。

二维石墨烯结构可以看是形成所有sp2杂化碳质材料的基本组成单元。

三、石墨烯特性1、电子运输石墨烯表现出了异常的整数量子霍尔行为。

其霍尔电导为量子电导的奇数倍,且可以在室温下观测到。

这个行为已被科学家解释为“电子在石墨烯里遵守相对论量子力学,没有静质量”。

2、导电性石墨烯结构非常稳定。

石墨烯中各碳原子之间的连接非常柔韧,当施加外部机械力时,碳原子面就弯曲变形,从而使碳原子不必重新排列来适应外力,也就保持了结构稳定。

这种稳定的晶格结构使碳原子具有优秀的导电性。

石墨烯中的电子在轨道中移动时,不会因晶格缺陷或引入外来原子而发生散射。

锯齿形石墨烯纳米带特性的理论研究

锯齿形石墨烯纳米带特性的理论研究

锯齿形石墨烯纳米带特性的理论研究陈芡;胡冬生;徐江【摘要】对具有一定宽度的锯齿形石墨烯纳米带用对角化其哈密顿的方法自洽地计算了电子在半填满的情况下石墨烯的性质,结果发现:锯齿形石墨烯带在相同条件下两边之间是铁磁耦合还是反铁磁耦合是随机的.两边之间呈现反铁磁序时,石墨烯带是半导体,其带隙具有量子限制效应;呈现铁磁序时,石墨烯带是导体.无论哪一种情况,石墨烯带边缘原子的磁序都是一个定值,并不随系统大小而变化,这就为石墨烯作为自旋电子学的材料提供了一个无比优越的条件.【期刊名称】《西安文理学院学报(自然科学版)》【年(卷),期】2016(019)005【总页数】6页(P1-6)【关键词】石墨烯;磁序;自洽计算【作者】陈芡;胡冬生;徐江【作者单位】南京航空航天大学理学院,南京211106;南京航空航天大学理学院,南京211106;南京航空航天大学材料学院,南京211106【正文语种】中文【中图分类】TB383因石墨烯在微电子和光电子器件领域有着非常广阔的应用前景,近年来石墨烯奇特的物理性质和化学性质吸引了科学研究者的关注.其结构是由碳原子组成的蜂窝状的二维系统,碳碳之间通过sp2轨道杂化.2004年,石墨烯在实验室首次被分离出来[1].在此之前,已有研究表明石墨烯纳米带晶体边缘的取向对电子结构有重要的影响[2].按晶格的取向,经裁剪得到的石墨烯纳米带有两种边界:锯齿形和扶手形.不同边界的石墨烯所具有的电和磁的特性差异很大.扶手形边界的石墨烯纳米带的能带具有量子限制效应,是半导体材料,其本身不具有磁性,但是如果碳纳米管或者石墨烯表面吸附了某些原子团,如钛原子链,就会产生磁性[3].锯齿形边界的石墨烯纳米带表现出金属性,其边缘态变化较平缓,边缘具有磁序[3-5].理想的石墨烯本身并没有磁性,其磁性主要来自于缺陷、杂质、边界[6].密度泛函理论研究表明:锯齿形的石墨烯纳米带出现磁性是由费米能附近局域电子态的自旋极化产生的[7].这样的自旋极化在同一边界呈现铁磁耦合,两边界之间呈现反铁磁耦合[8].锯齿形石墨烯纳米带的边缘态效应所产生的磁性和与之有关的帯隙一直受到关注,人们用各种方法来研究这一问题,如第一性原理密度泛函理论[4],基于哈伯德模型的平均场方法[9],量子蒙特卡罗方法等等[10].这些研究表明:锯齿形的石墨烯纳米带边界的磁性是较稳定的.实验也证明在低温下(7K)石墨烯纳米带存在磁性[11].2014年,Magda G Z等人在纳米尺度上制造出晶体边缘取向很好的锯齿形石墨烯纳米带和扶手形石墨烯纳米带[12].通过测量发现:锯齿形石墨烯纳米带在小于7纳米的时候会有0.2~0.3电子伏特的能带间隙,具有半导体的特性,纳米带两边呈现反铁磁序;当纳米带宽度大于8纳米时表现为金属的特性,两边呈现铁磁序.这就意味着锯齿形纳米带随着宽度的增加,会有从半导体到金属的转变.然而要得到完整边界的石墨烯并不容易,但用氟单原子链耦合到边缘就可以得到完整边界的锯齿形石墨烯[13].锯齿形石墨烯纳米带的结构如图1所示.在X方向上具有平移对称性,Y方向是有边界的.该系统可用哈伯德模型来描述,其哈密顿为:表示自旋为σ(自旋向上或向下)的电子在编号i格点的产生算符,tij为跳跃积分,〈i,j〉表示最近邻的两个格点,计算中只取最近邻跳跃积分t0,U是同一格点不同自旋电子的库伦排斥势,第三项是化学能,其中的N为粒子总数,μ为化学势.式(1)第二项中库伦作用利用平均场近似:因此石墨烯带的哈密顿可写为:σ表示某一方向的自旋,则表示相反方向的自旋.石墨烯纳米带在X方向是周期性结构,可以把X方向的算符由实空间转化到动量空间(k空间),而在Y方向上的保持为原来的实空间.由于石墨烯由两套子格构成,分别用A,B表示,有S条链的石墨烯带在Y方向的实空间中就有2S个格点.考虑电子的自旋,石墨烯带的哈密顿可以写成4S×4S的矩阵:其中,Hσ(σ=↑,↓)是2S×2S的矩阵,HAσ′,HBσ′,HF′和HF′*都是S×S的方阵;HF′*是HF′的厄米矩阵.其中为水平方向的波矢量,L为石墨烯纳米带的长度.我们设石墨烯纳米带的电子处于半填满状态,且各个格点的电子数为1,初始时各格点自旋状态独自随机产生,如果向上的概率为η∈(0,1),则自旋向下的概率为1-η.对角化哈密顿式(4),可以得到4S个能量本征值(2S个格点,每个格点上的电子有两种自旋),每个本征值对应一个费米分布函数是玻尔兹曼常数是波矢kx取一定值时系统的费米能.每个格点具有特定自旋的电子数目为:其中nj,σ′为第j个格点自旋为σ′的电子数为能量本征值对应的本征矢中相应于(j,σ′)的元素.在波矢kx取某一定值时,把每次计算的电子数再作为初始值代入哈密顿,并调节化学势,使费米面以下的电子数处于半填满状态,对角化哈密顿,得到在kx取值的情况下每个格点具有特定自旋的电子数,这样经过自洽计算,直到每个格点相应自旋的电子数保持不变;再对波矢取所有可能值求各格点特定自旋的电子数的平均值,则对应格点的磁序为:在计算中t0取值为1,U取值为2,粒子数为半满,温度T为300K.调节化学势μ,经过自洽计算,求出不同宽度石墨烯纳米带各格点的磁序.通过对锯齿形石墨烯带的条数S=10,20,30,35,40,50,60,70,80,90,100的自洽计算,且每种宽度都独立计算了100次,发现即使石墨烯纳米带宽度相同,计算的参量也相同,石墨烯纳米带两边之间不是出现铁磁序就是出现反铁磁序,并且是随机的.图2是相同参数条件下宽度为30条和100条时的两种情形,其中i是原子从纳米带一边到另一边的编号,(a)、(b)图为宽度30条时各格点的磁序M随格点位置i 变化的两种情况,(a)图呈现反铁磁序,(b)图呈现铁磁序.(c)、(d)图是宽度为100条时的情形.当锯齿形石墨烯带两边之间分别为反铁磁和铁磁时,其能带结构如图3,(a)、(b)图分别为10条时反铁磁和铁磁的能带图,(c)、(d)图分别为30条时反铁磁和铁磁能带图.从图中可以看到当锯齿形石墨烯带的两边之间是反铁磁序时,能带图呈现半导体的性质,而当两边之间是铁磁序时呈现的是导体的性质,此时能带图中导带和价带之间出现了交叉,是石墨烯带两边之间呈现铁磁序时的边缘态.当不考虑电子与电子相互作用,呈现铁磁序时,其边缘态是简并的平态[2],因考虑了电子-电子相互作用,其简并的平态分裂形成交叉,交叉的两个态分别对应于石墨烯带一边缘的自旋向上态和另一边缘的自旋向下态.石墨烯带两边呈现反铁磁序时是半导体,其带隙与宽度之间的关系如图4所示.从图中可以看出带隙随宽度增加而减小.通过对计算的理论值进行曲线拟合,我们发现带隙随宽度的变化关系为ΔE=3.8272·S-1.034,说明石墨烯条两边是反铁磁序时存在量子限制效应.我们通过计算发现无论什么宽度的石墨烯带边缘原子的磁序都是一个定值,并不随宽度变化,如图5所示.这个性质为石墨烯作为磁性材料提供了无比优越的条件.我们对不同宽度的石墨烯纳米带的磁序各计算了100次.图6是对100次计算结果进行的统计,表示了两边之间出现铁磁耦合和反铁磁耦合的概率与宽度之间的关系.从图6可以看出,当锯齿形石墨烯带的条数小于35条时,出现反铁磁磁序的概率比出现铁磁序的概率大;当锯齿形石墨烯带的条数大于35条时,反铁磁磁序和铁磁磁序出现的概率没有规律.实验中观察到锯齿形石墨烯的宽度在小于7纳米时,两边界呈反铁磁耦合,大于7纳米时呈铁磁耦合[12].宽度为35的石墨烯纳米带实际宽度大约为7.313纳米,我们的计算结果显示常温下石墨烯纳米带不是呈现反铁磁就是呈现铁磁,且在小于此值时,出现反铁磁的概率总比出现铁磁的概率大. 为了进一步说明锯齿形石墨烯纳米带一定带宽时,其两边出现铁磁序还是反铁磁序,我们计算了不同宽度石墨烯纳米带的自由能F.从图7中可以看出反铁磁的自由能总是比铁磁的小,它们的差值随宽度的增加迅速减小.当宽度增加到35之后,可以看成两者几乎相等了.石墨烯处于铁磁状态还是处于反铁磁状态并不能由自由能确定,因为铁磁态和反铁磁态是两个孤立的状态,并不能说自由能低就一定处于该状态,自由能高的态也应该是一个亚稳态,所以只能说自由能低的态出现的概率应该大些.当然我们的计算是基于每个位置的电子是半填满,且是完美的石墨烯带,而实验得到的石墨烯带有可能不是完美的,电子占有数也不一定半填满,可能还有其他很多因素.我们用平均场的方法自洽的计算了电子占有数在半满的情况下,存在电子-电子相互作用的锯齿形石墨烯纳米带的特性.结果表明:锯齿形石墨烯带在相同条件下两边之间是铁磁耦合还是反铁磁耦合是随机的.两边之间呈现反铁磁序时,石墨烯带是半导体,其带隙具有量子限制效应;呈现铁磁序时,石墨烯带是导体.无论哪一种情况,石墨烯带边缘原子的磁序都是一个定值,并不随石墨烯宽度而变化,这一特性为石墨烯作为自旋电子学的材料提供了一个无比优越的条件.【相关文献】[1] NOVOSELOV K S,GEIM A K,MOROZOV S V,et al.Electric field effect in atomically thin carbon films[J].Science,2004,306(5696):666-669.[2] FUJITA M,WAKABAYASHI K,NAKADA K,et al.Peculiar localized state at zigzag graphite edge[J].Journal of the Physical Society of Japan,1996,65(7):1920-1923.[3] KAN E J,XIANG H J,YANG J,et al.Electronic structure of atomic Ti chains on semiconductinggraphene nanoribbons:a first-principles study[J].The Journal of Chemical Physics,2007,127(16):164706.[4] SON Y W,COHEN M L,LOUIE S G.Energy gaps ingraphene nanoribbons[J].Physical Review Letters,2006,97(21):216803.[5] NAKADA K,FUJITA M,DRESSELHAUS G,et al.Edge state in graphene ribbons:Nanometer size effect and edge shape dependence[J].Physical Review B,1996,54(24):17954-17961.[6] KAN E,LI Z,YANG J.Magnetism ingraphene systems[J].Nano,2008,3(6):433-442.[7] ENOKI T,TAKAI K.The edge state of nanographene and the magnetism of the edge-state spins[J].Solid State Communications,2009,149(27):1144-1150.[8] SON Y W,COHEN M L,LOUIE S G.Half-metallicgraphenenanoribbons[J].Nature,2006,444(7117):347-349.[9] JUNG J,MACDONALD A H.Carrier density and magnetism ingraphene zigzag nanoribbons[J].Physical Review B,2009,79(23):235433.[10]GOLOR M,LANG T C,WESSEL S.Quantum Monte Carlo studies of edge magnetism in chiral graphene nanoribbons[J].Physical Review B,2013,87(15):155441.[11]TAO C,JIAO L,YAZYEV O V,et al.Spatially resolving edge states of chiral graphene nanoribbons[J].Nature Physics,2011,7(8):616-620.[12]MAGDA G Z,JIN X,HAGYMSI I,et al.Room-temperature magnetic order on zigzag edges of narrow graphene nanoribbons[J].Nature,2014,514(7524):608-611.[13]MAKAROVA T L,SHELANKOV A L,ZYRIANOVA A A,et al.Edge state magnetism in zigzag-interfaced graphene via spin susceptibility measurements[J].Scientific Reports,2015,5:13382.。

石墨烯纳米复合材料的微观结构与性能研究

石墨烯纳米复合材料的微观结构与性能研究

石墨烯纳米复合材料的微观结构与性能研究摘要:近年来,石墨烯作为一种新颖的碳基材料,其独特的结构和优异的性能引起了广泛关注。

石墨烯纳米复合材料,是将石墨烯与其他纳米材料相结合的复合材料,可以在综合性能上进一步提升。

本文主要探讨了石墨烯纳米复合材料的微观结构与性能之间的关系,并介绍了目前在此领域进行的研究。

1. 引言石墨烯是一种由碳原子单层构成的二维材料,具有高导电性、高热导性和高机械强度等优秀特性。

然而,石墨烯的应用受限于其脆性和难处理性。

为了克服石墨烯的这些缺点,研究者开始将其与其他纳米材料相结合,形成石墨烯纳米复合材料。

这些复合材料不仅可以发挥石墨烯本身的特性,还可以利用其他纳米材料的功能增强其综合性能。

2. 石墨烯纳米复合材料的微观结构研究石墨烯纳米复合材料的微观结构是其性能的基础。

一种常用的制备方法是通过化学还原石墨烯氧化物,将其还原成石墨烯,并与其他纳米材料进行混合。

这种方法可以有效地将石墨烯和其他纳米材料紧密地结合在一起。

此外,还可以利用层状材料(如石墨烯和二硫化钼)之间的范德华相互作用力实现石墨烯的层间叠加。

这种方法可以灵活地控制石墨烯的层数和纳米材料之间的相互作用,从而实现对石墨烯纳米复合材料微观结构的调控。

3. 石墨烯纳米复合材料的性能研究石墨烯纳米复合材料的性能主要取决于其微观结构和组成。

一方面,石墨烯在复合材料中可以作为导电层或衬底,提供高导电性和高热导性,从而改善复合材料的导电性能和导热性能。

另一方面,其他纳米材料的添加可以增强复合材料的力学性能和化学稳定性。

例如,将石墨烯与高分子材料相结合可以提高复合材料的柔韧性和可塑性。

同时,与金属纳米颗粒的结合可以提高复合材料的抗氧化性能。

此外,石墨烯纳米复合材料还具有其他特殊的性能。

例如,通过控制石墨烯的层数和添加纳米颗粒的种类和浓度,可以实现对复合材料的光学性能的调控。

石墨烯纳米复合材料还具有优异的吸附性能和催化性能。

这些特殊的性能使得石墨烯纳米复合材料在能源存储、传感器、催化剂和电子器件等领域具有广阔的应用前景。

超强磁场下的石墨烯物理性质研究

超强磁场下的石墨烯物理性质研究

超强磁场下的石墨烯物理性质研究石墨烯是一种具有特殊结构和物性的材料。

其由碳原子按照二维的六角形晶格排列而成,具有高度的导电性、热导率,在可见光范围内有极高的透光率等优异的性能。

由于这些特性,石墨烯在能源、电子、生物医学等许多领域都有着广泛的应用和研究。

而超强磁场作为一种可以调控石墨烯性质的手段,也得到了越来越多的关注和研究。

超强磁场在石墨烯中的作用会导致一些有趣的现象。

首先,它会使得石墨烯的带隙变化,即将能量带分裂成多个小带,形成所谓的Landau能级。

这种能级结构的出现,会使得石墨烯的电子行为变得非常不同于常见情况下的电子行为,例如在低温下会出现整体量子霍尔效应,这是经典情况下不会出现的。

此外,在超强磁场下,石墨烯的电阻率和热导率也会发生奇怪的变化,这些现象都与磁场对电子的影响有关。

石墨烯和超强磁场的研究已经进行了许多年,而且在金属离子核磁共振(NMR)、扫描隧道显微镜(STM)等实验手段的不断进步下,取得了许多进展。

例如,利用STM可以观察到在很小的磁场下石墨烯电子结构的量子输运行为,展示了石墨烯非常丰富的电子行为,包括整体量子霍尔效应、半整体量子霍尔效应、母子结构等。

并且,STM还可以直接观察到石墨烯的Landau能级结构及其调控过程。

而在NMR实验中,通过核自旋共振和核磁共振可以发现,石墨烯在超强磁场下的电子和核自旋的耦合也有很多有趣的现象,例如近些年发现的反常量子霍尔效应、自旋极化等现象。

除了实验研究外,理论模拟也是了解超强磁场下石墨烯性质的重要手段之一。

在理论模拟中,人们可以通过密度泛函理论(DFT)、紧束缚模型、有效哈密顿量等方法,建立石墨烯在超强磁场下的体系模型,并利用量子场论、数值计算等工具,探讨石墨烯的电子、光学、传输等性质。

例如,通过紧束缚模型可以分析在不同的磁场下,石墨烯的能带结构,并研究Landau能级结构、量子输运现象等。

而在DFT计算中,可以模拟出石墨烯在纳米级、亚纳米级尺度下的电子行为,了解不同磁场下的电子行为的变化。

锯齿型石墨烯纳米带的第一原理研究

锯齿型石墨烯纳米带的第一原理研究

不同宽度锯齿型石墨烯纳米带的第一原理研究摘要:本文采用第一原理密度泛函理论,研究了不同宽度边缘饱和(氢原子)一维石墨片纳米带的电学性质。

研究表明:对于所有宽度锯齿型纳米带,其几何结构和电子结构与碳纳米带的宽度密切相关。

这为揭示纳米带尺寸效应提供了一条切实可行的道路。

关键词:密度泛函理论;石墨烯纳米带;电子结构一引言自2004年英国曼彻斯特大学的Geim等人成功制备出石墨烯以来。

人们才获得了真正意义上的二维形式的碳(graphene),石墨烯的研究热潮由此宣告开始,成为目前材料研究领域最前沿课题之一[1,6]。

石墨烯是指单层碳原子密堆排列成二维(2D)正六边形蜂窝状点阵所形成的材料,它是构成石墨的基本单元。

GNR在微电子器件的实际制造过程中更具有使用价值和研究意义。

英国Geim小组制作成由GNR组成的电路系统,发现GNR显示出很强的双极电场效应;日本Tada和Watanabe采用含时密度泛函计算了GNR的场发射,发现场发射电流的主要贡献来自于清洁的GNR边缘悬挂键。

清华大学的Huang等人[7]就通过在锯齿型石墨烯纳米带边界掺杂N或B原子的研究,发现通过在锯齿型石墨烯纳米带边界进行有选择的掺杂,可以构建出包含从金属到半导体再到金属转变同质结的场效应晶体管。

虽然从严格意义上来讲,石墨烯应该是二维无限大的,但在具体应用中材料尺寸是有限大小的。

当石墨烯的尺寸被裁剪至100nm以下时,由于限域效应,石墨烯将呈现半导体性。

因此,石墨烯的剪裁产物(如:石墨烯纳米带)及其他变体在微电子技术与器件等领域将更具有实际意义[8,9]。

本文利用第一原理密度泛函理论,研究了氢原子饱和下不同宽度锯齿型GNRs 的几何结构和电子结构,探讨了宽度对氢饱和锯齿型石墨烯纳米带几何结构和电子结构的影响。

二理论方法本文采用第一原理密度泛函软件DMOL3,首先建立两种碳纳米尖锥结构,对模型进行几何优化,得到稳定的几何构型。

结构优化过程中,采用局域密度近似(LDA),以确定能量最低的几何构型。

石墨烯的晶格和能带结构

石墨烯的晶格和能带结构

石墨烯的晶格和能带结构石墨烯(Graphene)是一种由碳原子以sp杂化轨道组成六角型呈蜂巢晶格的二维碳纳米材料。

石墨烯具有优异的光学、电学、力学特性,在材料学、微纳加工、能源、生物医学和药物传递等方面具有重要的应用前景,被认为是一种未来革命性的材料。

英国曼彻斯特大学物理学家安德烈盖姆和康斯坦丁诺沃肖洛夫,用微机械剥离法成功从石墨中分离出石墨烯,因此共同获得2010年诺贝尔物理学奖。

石墨烯常见的粉体生产的方法为机械剥离法、氧化还原法、SiC外延生长法,薄膜生产方法为化学气相沉积法(CVD)。

石墨烯的结构石墨烯是由碳六元环组成的两维(2D)周期蜂窝状点阵结构,它可以翘曲成零维(0D)的富勒烯(fullerene),卷成一维(1D)的碳纳米管(carbon nano-tube,CNT)或者堆垛成三维(3D)的石墨(graphite),因此石墨烯是构成其他石墨材料的基本单元。

石墨烯的基本结构单元为有机材料中最稳定的苯六元环,是最理想的二维纳米材料。

理想的石墨烯结构是平面六边形点阵,可以看做是一层被剥离的石墨分子,每个碳原子均为sp2杂化,并贡献剩余一个p轨道上的电子形成大键,电子可以自由移动,赋予石墨烯良好的导电性。

二维石墨烯结构可以看做是形成所有sp2杂化碳质材料的基本组成单元。

石墨烯的结构非常稳定,碳碳键(carbon-carbon bond)仅为1.42。

石墨烯内部的碳原子之间的连接很柔韧,当施加外力于石墨烯时,碳原子面会弯曲变形,使得碳原子不必重新排列来适应外力,从而保持结构稳定。

这种稳定的晶格结构使石墨烯具有优秀的导热性。

科学家首次拍到单个分子的清晰照片,同时可看见把分子结构紧密连在一起的原子键。

美国国际商用机器公司(IBM)设在瑞士苏黎世的研究实验室用一种名为非接触式原子力显微术的技术探索一个分子的内部情况,把分子和原子的研究推向最小。

这项研究可能对石墨烯设备的研究具有重要意义。

当绝对零度下,半导体的价带是满带(完全被电子占据)。

石墨烯的带隙

石墨烯的带隙

石墨烯的带隙石墨烯是一种由碳原子组成的二维晶体结构,具有许多独特的物理和化学特性。

它被广泛研究,并被认为是下一代材料科学的前沿领域之一。

然而,石墨烯中的一个重要问题是其零能隙,这在一些应用中限制了其使用。

本文将对石墨烯的带隙进行深入探讨,同时分享我对这个主题的观点和理解。

1. 什么是带隙?带隙是指固体材料中能级间的能量间隔。

在导体中,能带之间的能级是连续的,而在绝缘体和半导体中,能带之间存在一个带隙,这导致了电荷载流子的出现和禁止电荷传导。

石墨烯由单层碳原子构成,因此在理论上应该是零能隙材料。

2. 石墨烯的零能隙由于石墨烯的结构,其能带结构非常特殊。

碳原子的sp2杂化导致了π和π*能带的形成,它们相互重叠而形成了零能隙。

这意味着石墨烯在常温下不能禁止电荷传导,因此无法被用作传统的半导体材料。

这限制了石墨烯在电子学和光电子学等领域的应用。

3. 带隙调控与石墨烯应用尽管石墨烯本身具有零能隙,但科学家们已经提出了一些方法来调控其带隙,并使其在半导体设备中具有应用潜力。

这些方法包括掺杂、应变和纳米尺度的结构工程。

通过引入外部杂原子或分子,可以改变石墨烯的电子结构,从而引入带隙。

应变也被发现可以改变石墨烯的带隙,通过在表面施加机械应变或在其基底上引入应变。

通过制备石墨烯的纳米结构,也可以实现带隙的调控。

4. 石墨烯带隙的应用前景在石墨烯带隙调控的基础上,石墨烯在电子学和光电子学领域的应用前景变得更加广阔。

具有可调控带隙的石墨烯可以被用于制备高性能的半导体器件,如晶体管和光电探测器。

石墨烯光伏器件、光电转换器以及传感器等领域也可以受益于石墨烯带隙的调控。

带隙的引入使得石墨烯能够在不同能级和电子结构的材料之间实现能级匹配,从而提高了其在电子器件中的应用潜力。

总结:石墨烯作为一种具有独特物性的二维材料,具有零能隙的特点。

然而,科学家们通过掺杂、应变和结构工程等方法,成功地调控了石墨烯的带隙,使其具备了更广阔的应用前景。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。

如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。

㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。

(2 列出开发利用方案编制所依据的主要基础性资料的名称。

如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。

对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。

二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。

2、国内近、远期的需求量及主要销向预测。

㈡产品价格分析
1、国内矿产品价格现状。

2、矿产品价格稳定性及变化趋势。

三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。

2、矿区矿产资源概况。

3、该设计与矿区总体开发的关系。

㈡该设计项目的资源概况
1、矿床地质及构造特征。

2、矿床开采技术条件及水文地质条件。

相关文档
最新文档