石墨烯纳米带能带结构调控的理论研究

合集下载

石墨烯纳米片的制备及性质研究

石墨烯纳米片的制备及性质研究

石墨烯纳米片的制备及性质研究石墨烯是石墨的一种单层结构,它是一种新型的二维纳米材料,具有优异的物理、化学和机械性质。

石墨烯具有高的电导率、高的热导率、高强度、高的化学稳定性、透明和柔韧等特性,因此被广泛应用于化学、生物、电子、材料等领域。

本文将重点探讨石墨烯纳米片的制备及性质研究。

一、石墨烯纳米片的制备方法目前石墨烯制备的方法主要包括机械剥离法、化学气相沉积法、化学还原法和化学氧化法等。

下面我们分别介绍一下这几种方法。

1. 机械剥离法机械剥离法是一种制备石墨烯的最早方法,主要是利用图形石墨材料的机械剥离来获得单层石墨烯。

这种方法的原理是在嵌入一层胶带后,将其撕下,这样可以将石墨材料的一层单晶体剥离下来。

但是这种方法具有高成本、低产率和不利于规模化生产等缺点,因此不适用于大规模生产。

2. 化学气相沉积法化学气相沉积法是一种较为成功的石墨烯制备方法,主要是通过将化学气源转化成石墨烯,在衬底上生长单层石墨烯。

这种方法的原理是在高温下将烷烃分子或其他含氢气体转化成碳源,从而生长出原子尺寸大小的石墨烯膜层。

这种方法具有成本低、量大、效率高等优点,可以用于规模化生产。

3. 化学还原法化学还原法是一种将氧化石墨烯还原成石墨烯的方法。

这种方法的原理是将氧化石墨烯在还原剂作用下还原成石墨烯,实现从红外吸收的金属氧化物到金属氧化物的转变。

4. 化学氧化法化学氧化法是一种将石墨材料在含有强氧化剂的酸性溶液中氧化成氧化石墨烯的方法。

这种方法的原理是氧化剂可以将石墨材料中的碳原子中心的轨道变成氧原子的轨道而转化成氧化石墨烯,在水溶液中形成分散的纳米片。

二、石墨烯纳米片的性质研究石墨烯具有许多优异的物理、化学和机械性质,具体如下:1. 电导率高石墨烯具有高达 1 × 10^5 S/cm 的电导率,这是金属的 100 倍以上。

这是因为石墨烯的电子能带结构与传统的半导体和金属材料有很大不同,其导带和价带相接,并呈现线性带结构,电子具有质量接近于零的状态。

纳米材料设计及电荷极化调控

纳米材料设计及电荷极化调控

纳米材料设计及电荷极化调控材料创新是人类文明进步的重要动力,也是新兴产业发展的基础。

近年来不断涌现出来的新型纳米材料表现出很多卓越性质,如高比表面积、多尺度的尺寸效应、界面效应、表面效应和量子限域效应等等,因而被广泛应用于能源、环境和半导体工业等重大领域中。

然而,纳米材料结构的复杂性为实验和表征带来了困难,很多复杂过程都难以被实验捕捉,这限制了对构效关系及工作机理的理解,制约着新型纳米材料的理性设计。

随着近年来高性能计算的飞速发展和计算理论的不断完善,第一性原理理论计算从原子尺度和电子结构层次为材料解析提供了有力工具。

它能够帮助人们更好地进行理性设计并检验设计的可行性,且具有研发周期短、成本低廉、环境友好等优势。

因此,理论计算结合实验表征已经成为新材料设计和研发的新潮流。

调控纳米材料的成分、尺寸和表界面形貌等都能有效调控材料的性质;此外,基于对构效关系的理解,理性设计材料复合也能达到协同增效的目的。

这些设计思路,归根结底都是基于对电子的控制,以电子态为载体,通过电子激发、转移形成电荷极化,从而驱动相应的物理和化学过程。

本文基于第一性原理理论计算研究了一系列复杂体系的电子态结构和布居行为,从电荷极化形成与演变的角度阐述了复杂体系中的构效关系和协同机理(第三到五章)。

此外,我们还探索性地提出了偶极矩可以作为复杂体系中电荷极化的描述子,用来研究电荷极化对材料表面化学反应的影响(第六章)。

本文共六章,各章简介如下:首章中,基于后面工作所涉及的领域及希望解决的问题,我们主要介绍了两方面的背景知识和研究现状。

首先是纳米材料导电性调控,我们分别以钒的氧化物家族和石墨烯为例,介绍了强关联体系和二维材料导电性调控的研究进展。

在钒的氧化物家族中,几何结构在导电性调控中扮演着重要角色,使得通过精确控制几何结构来调控电子结构成为可能。

石墨烯可控带隙一直以来都是其在半导体领域应用的难点,尽管研究取得了很多进展,但在原子尺度下的精确调控还存在很多挑战。

石墨烯纳米结构的光热转换机理与界面能质传输特性及太阳能热局域化应用

石墨烯纳米结构的光热转换机理与界面能质传输特性及太阳能热局域化应用

石墨烯纳米结构的光热转换机理与界面能质传输特性及太阳能热局域化应用石墨烯纳米结构的光热转换机理与界面能质传输特性及太阳能热局域化应用一、引言随着能源危机的日益严峻和环境污染问题的日益加剧,寻求可替代传统能源的新型能源技术成为全球研究的热点。

太阳能作为一种清洁可再生的能源,具有极大的潜力。

然而,太阳能的利用效率低和成本高一直是太阳能技术发展的瓶颈。

石墨烯作为一种新兴的二维纳米材料,具有极高的导电性和热传导性,因而被广泛应用于太阳能的光热转换领域。

二、石墨烯纳米结构的光热转换机理石墨烯的光热转换机理主要包括光吸收、载流子输运和热传输三个过程。

光吸收是石墨烯光热转换的起点,石墨烯具有极高的吸收系数和宽广的吸收波长范围,可以高效地吸收太阳光。

一旦吸收光能,石墨烯中的载流子会被激发,载流子的输运过程将决定光电转换的效率。

由于石墨烯的导电性好,载流子的迁移速率很快,因此载流子捕获能力强,利于光电转换。

最后,石墨烯中的光热能转化为热能,热能的传输受到界面能质的影响。

三、界面能质传输特性石墨烯作为一种二维材料,其表面积巨大,与周围环境的相互作用至关重要。

界面能质传输特性是石墨烯纳米结构光热转换效率的重要因素。

石墨烯与吸附分子、基底以及与其它杂质之间的相互作用对界面能质传输起着重要作用。

石墨烯与基底之间的界面能质传输主要包括热传导和电子转移两个方面,其效率受到界面接触模式、屏蔽效应、振动耦合等因素的影响。

四、太阳能热局域化应用石墨烯纳米结构的太阳能热局域化应用是一种有效提高太阳能转换效率的方法。

通过设计合理的结构和调控界面能质传输特性,可以将太阳能光热能量局域在石墨烯纳米结构中,进而提高能量的转换效率。

石墨烯的高导热性和导电性使其具有良好的热能传播和电能输送能力,因此可以有效地将局域的光热能量转化为可利用的能量。

五、结论石墨烯纳米结构作为一种新型的光热转换材料,具有很大的潜力应用于太阳能技术中。

石墨烯纳米结构的光热转换机理主要包括光吸收、载流子输运和热传输三个过程。

我国揭示锯齿形边缘石墨烯纳米带中的电声子耦合效应

我国揭示锯齿形边缘石墨烯纳米带中的电声子耦合效应

^ A
l、 _ _
2 1 年 第 8 第6 ( 第 4 期 ) 0 1 )
_


_ ’ 。-

l ≤l

(o) V c和光 电转 换 效率(1相 比前者 分 别提 高 了 r )
96 .%和4 . 42 %,表 面 钝 化使 得 短 波长 和 长 波 长 光 的 响 应 明 显 提 高 。为 了使A , 化 效 果 充 I 钝 O
离 子 刻 蚀 技 术 , 首 次 实 现 了可 控 的石 墨烯 面 内各 向异 性 刻 蚀 技 术 ; 并 结 合 人 工 缺 陷 工 程 ,首 次 实现 了对 石 墨 烯 纳 米 结构 的精 确 加 工 和 剪 裁 ,制 备 出 了尺 寸 可 控 ( 小 线 宽达 最 5 米 以下 )、边 缘 可 控 ( 有 原 子级 平 整 的 纳 具 锯 齿 形边 缘 结构 )的石 墨烯 纳米 结构 。 最近 ,张广 宇研 究组 的杨 蓉博 士等在 先前 的 工 作 基 础 上 ,利 用 拉 曼 散 射 光 谱 技 术 ,研 究 了具 有 锯 齿 形 边 缘 结 构 的石 墨 烯 纳 米 带 的 电声 子 耦 合 特 性 。他 们 首 次 在 这 种 结构 中观 察 到 了G 的 劈裂 ( 一1 8 软化 的E g 式 ; 峰 G 53 2模 G+ 1 9 本 征 的E g 式 ) 。这 种 非 应 力 效 应 一5 4 2模 导致 的G 劈 裂可 归因于 锯 齿 形边 缘 结构 独特 峰
1 扁置 场 。
’ ■ 《 I ●
纳 米 尺 度 的Al 膜 ,并 在 一 定 的气 氛和 温 ,薄 O
度 下 进 行激 活 处 理 ,形 成 良好 的 复合 钝 化 薄 膜 结构 。 系 统 实验 表 明 ,不 使 用A , 使 用 1 和 O A , 电池 差 别 十 分 明 显 , 后 者 的 开 路 电 压 l 的 O

纳米金刚石、碳纳米管、石墨烯性能的第一原理研究

纳米金刚石、碳纳米管、石墨烯性能的第一原理研究

纳米金刚石、碳纳米管、石墨烯性能的第一原理研究纳米金刚石、碳纳米管、石墨烯是当今材料科学领域备受关注的研究热点。

这些材料具有独特的结构和特性,广泛应用于电子器件、能源储存、催化剂等领域。

本文将以第一原理计算的方法探究纳米金刚石、碳纳米管和石墨烯的特殊性能。

首先,我们来介绍纳米金刚石。

纳米金刚石是由碳原子通过化学气相沉积等方法制备而成的一种材料。

它具有极高的硬度和优异的导热性能。

通过第一原理计算,我们可以得到纳米金刚石的电子结构和声子谱。

研究发现,纳米金刚石比传统金刚石更加稳定,表面能也更低,这使得它在催化剂和传感器等领域有着广阔的应用前景。

接下来,我们转向碳纳米管。

碳纳米管是由石墨烯卷曲而成的一维结构材料。

它具有良好的导电性、导热性和力学性能。

在第一原理计算中,我们可以研究碳纳米管的带隙和能带结构,揭示其导电性质的来源。

碳纳米管的直径和卷曲方式对其电子结构和机械性质有着重要影响。

研究发现,碳纳米管可以用作场效应晶体管、纳米电子器件和传感器等多种应用。

最后,我们来讨论石墨烯。

石墨烯是由单层碳原子构成的二维晶体材料。

它具有出色的电子传导性、光学透明性和强度。

通过第一原理计算,我们可以研究石墨烯的结构、能带和振动谱。

研究发现,石墨烯具有线性色散关系的能带结构,这赋予了它独特的电子输运性质。

石墨烯可以用于柔性电子器件、储能器件和光电器件等多个领域。

纳米金刚石、碳纳米管和石墨烯的研究不仅局限于理论计算,也需要与实验相结合。

实验可以验证理论预测的性质,并探索这些材料的合成和应用。

此外,通过材料设计和工程的手段,还可以调控和优化纳米金刚石、碳纳米管和石墨烯的特性,进一步提高其性能和应用潜力。

总结来说,纳米金刚石、碳纳米管和石墨烯具有独特的结构和特性,通过第一原理计算可以深入研究它们的性质。

这些材料在电子器件、能源储存和催化剂等领域有着广泛的应用潜力。

随着材料科学的不断进步,相信纳米金刚石、碳纳米管和石墨烯的研究将会取得更多重要的突破和应用综上所述,纳米金刚石、碳纳米管和石墨烯是具有独特结构和特性的新兴材料。

石墨烯电子能带结构的计算

石墨烯电子能带结构的计算

石墨烯电子能带结构的计算摘要:本文简要阐述了石墨烯的结构和主要特性,采用碳原子的SP2 杂化理论和能带理论,运用紧束缚近似方法计算了石墨的能带结构。

关键词:石墨烯,结构和性质,紧束缚近似,能带结构一、引言石墨烯是一种由碳原子构成的单层片状结构的新材料。

是一种由碳原子以SP2杂化轨道组成六角型呈蜂巢晶格的平面薄膜,只有一个碳原子厚度的二维材料。

石墨烯目前是世上最薄,最坚硬,电阻率最小的材料。

而且电子迁移的速度极快,因此被期待可用来发展出更薄、导电速度更快的新一代电子元件或晶体管。

由于石墨烯实质上是一种透明、良好的导体,也适合用来制造透明触控屏幕、光板、甚至是太阳能电池。

二、石墨烯结构石墨烯是由碳六元环组成的两维(2D)周期蜂窝状点阵结构, 它可以翘曲成零维(0D)的富勒烯(fullerene),卷成一维(1D)的碳纳米管(carbon nano-tube, CNT)或者堆垛成三维(3D)的石墨(graphite), 因此石墨烯是构成其他石墨材料的基本单元。

石墨烯的基本结构单元为有机材料中最稳定的苯六元环, 是目前最理想的二维纳米材料。

理想的石墨烯结构是平面六边形点阵,可以看作是一层被剥离的石墨分子,每个碳原子均为sp2杂化,并贡献剩余一个p轨道上的电子形成大π键,π电子可以自由移动,赋予石墨烯良好的导电性。

二维石墨烯结构可以看是形成所有sp2杂化碳质材料的基本组成单元。

三、石墨烯特性1、电子运输石墨烯表现出了异常的整数量子霍尔行为。

其霍尔电导为量子电导的奇数倍,且可以在室温下观测到。

这个行为已被科学家解释为“电子在石墨烯里遵守相对论量子力学,没有静质量”。

2、导电性石墨烯结构非常稳定。

石墨烯中各碳原子之间的连接非常柔韧,当施加外部机械力时,碳原子面就弯曲变形,从而使碳原子不必重新排列来适应外力,也就保持了结构稳定。

这种稳定的晶格结构使碳原子具有优秀的导电性。

石墨烯中的电子在轨道中移动时,不会因晶格缺陷或引入外来原子而发生散射。

锯齿形石墨烯纳米带特性的理论研究

锯齿形石墨烯纳米带特性的理论研究

锯齿形石墨烯纳米带特性的理论研究陈芡;胡冬生;徐江【摘要】对具有一定宽度的锯齿形石墨烯纳米带用对角化其哈密顿的方法自洽地计算了电子在半填满的情况下石墨烯的性质,结果发现:锯齿形石墨烯带在相同条件下两边之间是铁磁耦合还是反铁磁耦合是随机的.两边之间呈现反铁磁序时,石墨烯带是半导体,其带隙具有量子限制效应;呈现铁磁序时,石墨烯带是导体.无论哪一种情况,石墨烯带边缘原子的磁序都是一个定值,并不随系统大小而变化,这就为石墨烯作为自旋电子学的材料提供了一个无比优越的条件.【期刊名称】《西安文理学院学报(自然科学版)》【年(卷),期】2016(019)005【总页数】6页(P1-6)【关键词】石墨烯;磁序;自洽计算【作者】陈芡;胡冬生;徐江【作者单位】南京航空航天大学理学院,南京211106;南京航空航天大学理学院,南京211106;南京航空航天大学材料学院,南京211106【正文语种】中文【中图分类】TB383因石墨烯在微电子和光电子器件领域有着非常广阔的应用前景,近年来石墨烯奇特的物理性质和化学性质吸引了科学研究者的关注.其结构是由碳原子组成的蜂窝状的二维系统,碳碳之间通过sp2轨道杂化.2004年,石墨烯在实验室首次被分离出来[1].在此之前,已有研究表明石墨烯纳米带晶体边缘的取向对电子结构有重要的影响[2].按晶格的取向,经裁剪得到的石墨烯纳米带有两种边界:锯齿形和扶手形.不同边界的石墨烯所具有的电和磁的特性差异很大.扶手形边界的石墨烯纳米带的能带具有量子限制效应,是半导体材料,其本身不具有磁性,但是如果碳纳米管或者石墨烯表面吸附了某些原子团,如钛原子链,就会产生磁性[3].锯齿形边界的石墨烯纳米带表现出金属性,其边缘态变化较平缓,边缘具有磁序[3-5].理想的石墨烯本身并没有磁性,其磁性主要来自于缺陷、杂质、边界[6].密度泛函理论研究表明:锯齿形的石墨烯纳米带出现磁性是由费米能附近局域电子态的自旋极化产生的[7].这样的自旋极化在同一边界呈现铁磁耦合,两边界之间呈现反铁磁耦合[8].锯齿形石墨烯纳米带的边缘态效应所产生的磁性和与之有关的帯隙一直受到关注,人们用各种方法来研究这一问题,如第一性原理密度泛函理论[4],基于哈伯德模型的平均场方法[9],量子蒙特卡罗方法等等[10].这些研究表明:锯齿形的石墨烯纳米带边界的磁性是较稳定的.实验也证明在低温下(7K)石墨烯纳米带存在磁性[11].2014年,Magda G Z等人在纳米尺度上制造出晶体边缘取向很好的锯齿形石墨烯纳米带和扶手形石墨烯纳米带[12].通过测量发现:锯齿形石墨烯纳米带在小于7纳米的时候会有0.2~0.3电子伏特的能带间隙,具有半导体的特性,纳米带两边呈现反铁磁序;当纳米带宽度大于8纳米时表现为金属的特性,两边呈现铁磁序.这就意味着锯齿形纳米带随着宽度的增加,会有从半导体到金属的转变.然而要得到完整边界的石墨烯并不容易,但用氟单原子链耦合到边缘就可以得到完整边界的锯齿形石墨烯[13].锯齿形石墨烯纳米带的结构如图1所示.在X方向上具有平移对称性,Y方向是有边界的.该系统可用哈伯德模型来描述,其哈密顿为:表示自旋为σ(自旋向上或向下)的电子在编号i格点的产生算符,tij为跳跃积分,〈i,j〉表示最近邻的两个格点,计算中只取最近邻跳跃积分t0,U是同一格点不同自旋电子的库伦排斥势,第三项是化学能,其中的N为粒子总数,μ为化学势.式(1)第二项中库伦作用利用平均场近似:因此石墨烯带的哈密顿可写为:σ表示某一方向的自旋,则表示相反方向的自旋.石墨烯纳米带在X方向是周期性结构,可以把X方向的算符由实空间转化到动量空间(k空间),而在Y方向上的保持为原来的实空间.由于石墨烯由两套子格构成,分别用A,B表示,有S条链的石墨烯带在Y方向的实空间中就有2S个格点.考虑电子的自旋,石墨烯带的哈密顿可以写成4S×4S的矩阵:其中,Hσ(σ=↑,↓)是2S×2S的矩阵,HAσ′,HBσ′,HF′和HF′*都是S×S的方阵;HF′*是HF′的厄米矩阵.其中为水平方向的波矢量,L为石墨烯纳米带的长度.我们设石墨烯纳米带的电子处于半填满状态,且各个格点的电子数为1,初始时各格点自旋状态独自随机产生,如果向上的概率为η∈(0,1),则自旋向下的概率为1-η.对角化哈密顿式(4),可以得到4S个能量本征值(2S个格点,每个格点上的电子有两种自旋),每个本征值对应一个费米分布函数是玻尔兹曼常数是波矢kx取一定值时系统的费米能.每个格点具有特定自旋的电子数目为:其中nj,σ′为第j个格点自旋为σ′的电子数为能量本征值对应的本征矢中相应于(j,σ′)的元素.在波矢kx取某一定值时,把每次计算的电子数再作为初始值代入哈密顿,并调节化学势,使费米面以下的电子数处于半填满状态,对角化哈密顿,得到在kx取值的情况下每个格点具有特定自旋的电子数,这样经过自洽计算,直到每个格点相应自旋的电子数保持不变;再对波矢取所有可能值求各格点特定自旋的电子数的平均值,则对应格点的磁序为:在计算中t0取值为1,U取值为2,粒子数为半满,温度T为300K.调节化学势μ,经过自洽计算,求出不同宽度石墨烯纳米带各格点的磁序.通过对锯齿形石墨烯带的条数S=10,20,30,35,40,50,60,70,80,90,100的自洽计算,且每种宽度都独立计算了100次,发现即使石墨烯纳米带宽度相同,计算的参量也相同,石墨烯纳米带两边之间不是出现铁磁序就是出现反铁磁序,并且是随机的.图2是相同参数条件下宽度为30条和100条时的两种情形,其中i是原子从纳米带一边到另一边的编号,(a)、(b)图为宽度30条时各格点的磁序M随格点位置i 变化的两种情况,(a)图呈现反铁磁序,(b)图呈现铁磁序.(c)、(d)图是宽度为100条时的情形.当锯齿形石墨烯带两边之间分别为反铁磁和铁磁时,其能带结构如图3,(a)、(b)图分别为10条时反铁磁和铁磁的能带图,(c)、(d)图分别为30条时反铁磁和铁磁能带图.从图中可以看到当锯齿形石墨烯带的两边之间是反铁磁序时,能带图呈现半导体的性质,而当两边之间是铁磁序时呈现的是导体的性质,此时能带图中导带和价带之间出现了交叉,是石墨烯带两边之间呈现铁磁序时的边缘态.当不考虑电子与电子相互作用,呈现铁磁序时,其边缘态是简并的平态[2],因考虑了电子-电子相互作用,其简并的平态分裂形成交叉,交叉的两个态分别对应于石墨烯带一边缘的自旋向上态和另一边缘的自旋向下态.石墨烯带两边呈现反铁磁序时是半导体,其带隙与宽度之间的关系如图4所示.从图中可以看出带隙随宽度增加而减小.通过对计算的理论值进行曲线拟合,我们发现带隙随宽度的变化关系为ΔE=3.8272·S-1.034,说明石墨烯条两边是反铁磁序时存在量子限制效应.我们通过计算发现无论什么宽度的石墨烯带边缘原子的磁序都是一个定值,并不随宽度变化,如图5所示.这个性质为石墨烯作为磁性材料提供了无比优越的条件.我们对不同宽度的石墨烯纳米带的磁序各计算了100次.图6是对100次计算结果进行的统计,表示了两边之间出现铁磁耦合和反铁磁耦合的概率与宽度之间的关系.从图6可以看出,当锯齿形石墨烯带的条数小于35条时,出现反铁磁磁序的概率比出现铁磁序的概率大;当锯齿形石墨烯带的条数大于35条时,反铁磁磁序和铁磁磁序出现的概率没有规律.实验中观察到锯齿形石墨烯的宽度在小于7纳米时,两边界呈反铁磁耦合,大于7纳米时呈铁磁耦合[12].宽度为35的石墨烯纳米带实际宽度大约为7.313纳米,我们的计算结果显示常温下石墨烯纳米带不是呈现反铁磁就是呈现铁磁,且在小于此值时,出现反铁磁的概率总比出现铁磁的概率大. 为了进一步说明锯齿形石墨烯纳米带一定带宽时,其两边出现铁磁序还是反铁磁序,我们计算了不同宽度石墨烯纳米带的自由能F.从图7中可以看出反铁磁的自由能总是比铁磁的小,它们的差值随宽度的增加迅速减小.当宽度增加到35之后,可以看成两者几乎相等了.石墨烯处于铁磁状态还是处于反铁磁状态并不能由自由能确定,因为铁磁态和反铁磁态是两个孤立的状态,并不能说自由能低就一定处于该状态,自由能高的态也应该是一个亚稳态,所以只能说自由能低的态出现的概率应该大些.当然我们的计算是基于每个位置的电子是半填满,且是完美的石墨烯带,而实验得到的石墨烯带有可能不是完美的,电子占有数也不一定半填满,可能还有其他很多因素.我们用平均场的方法自洽的计算了电子占有数在半满的情况下,存在电子-电子相互作用的锯齿形石墨烯纳米带的特性.结果表明:锯齿形石墨烯带在相同条件下两边之间是铁磁耦合还是反铁磁耦合是随机的.两边之间呈现反铁磁序时,石墨烯带是半导体,其带隙具有量子限制效应;呈现铁磁序时,石墨烯带是导体.无论哪一种情况,石墨烯带边缘原子的磁序都是一个定值,并不随石墨烯宽度而变化,这一特性为石墨烯作为自旋电子学的材料提供了一个无比优越的条件.【相关文献】[1] NOVOSELOV K S,GEIM A K,MOROZOV S V,et al.Electric field effect in atomically thin carbon films[J].Science,2004,306(5696):666-669.[2] FUJITA M,WAKABAYASHI K,NAKADA K,et al.Peculiar localized state at zigzag graphite edge[J].Journal of the Physical Society of Japan,1996,65(7):1920-1923.[3] KAN E J,XIANG H J,YANG J,et al.Electronic structure of atomic Ti chains on semiconductinggraphene nanoribbons:a first-principles study[J].The Journal of Chemical Physics,2007,127(16):164706.[4] SON Y W,COHEN M L,LOUIE S G.Energy gaps ingraphene nanoribbons[J].Physical Review Letters,2006,97(21):216803.[5] NAKADA K,FUJITA M,DRESSELHAUS G,et al.Edge state in graphene ribbons:Nanometer size effect and edge shape dependence[J].Physical Review B,1996,54(24):17954-17961.[6] KAN E,LI Z,YANG J.Magnetism ingraphene systems[J].Nano,2008,3(6):433-442.[7] ENOKI T,TAKAI K.The edge state of nanographene and the magnetism of the edge-state spins[J].Solid State Communications,2009,149(27):1144-1150.[8] SON Y W,COHEN M L,LOUIE S G.Half-metallicgraphenenanoribbons[J].Nature,2006,444(7117):347-349.[9] JUNG J,MACDONALD A H.Carrier density and magnetism ingraphene zigzag nanoribbons[J].Physical Review B,2009,79(23):235433.[10]GOLOR M,LANG T C,WESSEL S.Quantum Monte Carlo studies of edge magnetism in chiral graphene nanoribbons[J].Physical Review B,2013,87(15):155441.[11]TAO C,JIAO L,YAZYEV O V,et al.Spatially resolving edge states of chiral graphene nanoribbons[J].Nature Physics,2011,7(8):616-620.[12]MAGDA G Z,JIN X,HAGYMSI I,et al.Room-temperature magnetic order on zigzag edges of narrow graphene nanoribbons[J].Nature,2014,514(7524):608-611.[13]MAKAROVA T L,SHELANKOV A L,ZYRIANOVA A A,et al.Edge state magnetism in zigzag-interfaced graphene via spin susceptibility measurements[J].Scientific Reports,2015,5:13382.。

石墨烯纳米复合材料的微观结构与性能研究

石墨烯纳米复合材料的微观结构与性能研究

石墨烯纳米复合材料的微观结构与性能研究摘要:近年来,石墨烯作为一种新颖的碳基材料,其独特的结构和优异的性能引起了广泛关注。

石墨烯纳米复合材料,是将石墨烯与其他纳米材料相结合的复合材料,可以在综合性能上进一步提升。

本文主要探讨了石墨烯纳米复合材料的微观结构与性能之间的关系,并介绍了目前在此领域进行的研究。

1. 引言石墨烯是一种由碳原子单层构成的二维材料,具有高导电性、高热导性和高机械强度等优秀特性。

然而,石墨烯的应用受限于其脆性和难处理性。

为了克服石墨烯的这些缺点,研究者开始将其与其他纳米材料相结合,形成石墨烯纳米复合材料。

这些复合材料不仅可以发挥石墨烯本身的特性,还可以利用其他纳米材料的功能增强其综合性能。

2. 石墨烯纳米复合材料的微观结构研究石墨烯纳米复合材料的微观结构是其性能的基础。

一种常用的制备方法是通过化学还原石墨烯氧化物,将其还原成石墨烯,并与其他纳米材料进行混合。

这种方法可以有效地将石墨烯和其他纳米材料紧密地结合在一起。

此外,还可以利用层状材料(如石墨烯和二硫化钼)之间的范德华相互作用力实现石墨烯的层间叠加。

这种方法可以灵活地控制石墨烯的层数和纳米材料之间的相互作用,从而实现对石墨烯纳米复合材料微观结构的调控。

3. 石墨烯纳米复合材料的性能研究石墨烯纳米复合材料的性能主要取决于其微观结构和组成。

一方面,石墨烯在复合材料中可以作为导电层或衬底,提供高导电性和高热导性,从而改善复合材料的导电性能和导热性能。

另一方面,其他纳米材料的添加可以增强复合材料的力学性能和化学稳定性。

例如,将石墨烯与高分子材料相结合可以提高复合材料的柔韧性和可塑性。

同时,与金属纳米颗粒的结合可以提高复合材料的抗氧化性能。

此外,石墨烯纳米复合材料还具有其他特殊的性能。

例如,通过控制石墨烯的层数和添加纳米颗粒的种类和浓度,可以实现对复合材料的光学性能的调控。

石墨烯纳米复合材料还具有优异的吸附性能和催化性能。

这些特殊的性能使得石墨烯纳米复合材料在能源存储、传感器、催化剂和电子器件等领域具有广阔的应用前景。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

学位论文诚信声明书本人郑重声明:所呈交的学位论文(设计)是我个人在导师指导下进行的研究(设计)工作及取得的研究(设计)成果。

除了文中加以标注和致谢的地方外,论文(设计)中不包含其他人或集体已经公开发表或撰写过的研究(设计)成果,也不包含本人或其他人在其它单位已申请学位或为其他用途使用过的成果。

与我一同工作的同志对本研究(设计)所做的任何贡献均已在论文中做了明确的说明并表示了致谢。

申请学位论文(设计)与资料若有不实之处,本人愿承担一切相关责任。

学位论文(设计)作者签名:日期:学位论文知识产权声明书本人完全了解学校有关保护知识产权的规定,即:在校期间所做论文(设计)工作的知识产权属西安科技大学所有。

学校有权保留并向国家有关部门或机构送交论文的复印件和电子版。

本人允许论文(设计)被查阅和借阅;学校可以公布本学位论文(设计)的全部或部分内容并将有关内容编入有关数据库进行检索,可以采用影印、缩印或其它复制手段保存和汇编本学位论文。

保密论文待解密后适用本声明。

学位论文(设计)作者签名:指导教师签名:年月日论文题目:石墨烯纳米带能带结构调控的理论研究专业:微电子学本科生:朱善旭(签名)___________指导教师:徐大庆(签名)___________摘要随着集成电路技术的快速发展,集成密度,速度和存储器容量等集成电路性能指标的进一步发展必须要减小设备的尺寸。

但是随着器件尺寸不断减小,硅材料较小的载流子迁移率,较低的热传导率,较差的稳定性成为了集成电路行业进一步发展的障碍,因此寻找新的材料来代替硅成为了科学研究的热点。

石墨烯具有极高的电子迁移率(15000cm2·V- 1·S - 1)和优良的热传导率(3-5KW·m- 1·K- 1),因此,石墨烯被认为是可以取代单晶硅或者与单晶硅相结合,进而保持集成电路继续沿着摩尔定律提高性能的一种重要的新材料。

众所周知,本征石墨烯是一种带隙为零的半金属材料。

如何打开石墨烯纳米带的带隙,使之具有半导体的基本性质,是研制石墨烯基半导体电子器件的重要条件之一。

本研究基于密度泛函理论的第一性原理,利用Materials Studio程序及其CASTEP 模块研究如何改变石墨烯纳米带的能带结构。

首先通过建立扶手椅型和锯齿型石墨烯纳米带模型计算分析不同形状的石墨烯纳米带的能带结构,并改变石墨烯纳米带的长度和宽度以及纳米带的层数研究结构变化对石墨烯纳米带带隙的影响,然后通过建立掺杂、吸附模型研究其各自对石墨烯纳米带带隙的影响,最后研究应力下的石墨烯纳米带的能带结构。

研究表明,不同长宽的石墨烯纳米带能带结构有变化。

在长度较小,宽度适中时扶手椅型石墨烯纳米带带隙较大,长宽均较小时锯齿型石墨烯纳米带带隙较大,双层结构的石墨烯纳米带的带隙相对单层也会发生变化。

另外,掺杂和吸附均可实现石墨烯纳米带能带结构的调控,但吸附对石墨烯优越的电学特性改变较小。

最后,研究发现应力的存在使石墨烯纳米带的带隙减小。

关键词:石墨烯纳米带,能带结构,带隙,掺杂,吸附Subject: Theoretical Research on the Regulation of Band Structure of Graphene nanoribbonsSpecialty: Science and Engineering of MicroelectronicsName: Zhu Shanxu (Signature) ___________ InStructor: Xu Daqing (Signature) ___________ABSTRACTWith the rapid development of integrated circuit technology, the further development of integrated circuit performance indicators such as density, speed and memory capacity ,depends on reducing the size of the device. But as device dimensions continue to decrease, less carrier mobility, low heat conduction rate, poor stability of silicon have become an obstacle to the further development of the integrated circuit industry, so looking for new materials to replace silicon has become a hot spot of scientific research. Graphene is a Semi-metallic with a band gap of zero, with extremely high electron mobility (15000cm2·V- 1·S - 1) and thermal conductivity (3-5KW·m- 1·K- 1). Therefore, graphene may be a good candidate to replace the silicon to maintain the rapid development of microelectronics technology in the future.It is well known,as a semi metal, the band gap of graphene is zero,it is one of the important conditions for the development of graphene based semiconductor electronic devices that opening the band gap of graphene and make it have the basic properties of semiconductors.Based on the first principles of density functional theory, the energy band structure of graphene is studied by using the Materials Studio program and its CASTEP module. Firstly calculating and analyzing the energy band structure of graphene with the different shapes by building armchair and zigzag graphene model, and we change length,width and the number of layers of graphene nanoribbons to study the change of the energy band structure of graphene by changing structure of graphene. And then through the establishment of doping, the adsorption model to study their respective effect to graphene band gap . At the end of the study should be the energy band structure of the graphene under stress.Study shows that the band structure of graphene with different length and width can be changed. When the length is small, the armchair graphene band gap is larger,and when the length and width are small bang gap of zigzag is larger than those of the bigger, and the band gap of the double layer structure will also change. In addition, the doping and adsorption can control the energy band structure of graphene, but the adsorption of graphene has a better electrical characteristics. Finally, it is found that the presence of stress decreases the band gap of graphene.KEY WORDS: graphene nanoribbons , energy band structure, band gap, doping, adsorption目录第1章绪论 (1)1.1 石墨烯能带结构调控的研究背景及意义 (1)1.1.1石墨烯的结构 (1)1.1.2石墨烯能带结构调控的研究意义 (2)1.2 石墨烯能带结构的研究现状及发展趋势 (3)1.3课题的主要研究内容 (4)第2章理论计算方法简介 (5)2.1第一性原理方法 (5)2.2 Materials Studio软件介绍 (5)2.2.1 Materials Studio软件 (5)2.2.2 CASTEP模块简介 (6)2.3 本征石墨烯的电子性质和能带结构 (7)2.3.1 建立模型 (7)2.3.2 计算分析 (8)2.4 加氢边缘修饰对石墨烯能带结构的影响 (8)2.5 本章小结 (10)第3章扶手椅型和锯齿型石墨烯的能带结构 (11)3.1 建立模型 (11)3.2 扶手椅型和锯齿型石墨烯纳米带的能带结构 (11)3.3 宽度和长度对石墨烯纳米带能带结构的影响 (12)3.3.1 宽度对扶手椅型石墨烯纳米带能带结构的影响 (12)3.3.2 长度对扶手椅型石墨烯纳米带能带结构的影响 (15)3.3.3 宽度对锯齿型石墨烯纳米带能带结构的影响 (17)3.3.4 长度对锯齿型石墨烯纳米带能带结构的影响 (20)3.4 本章小结 (23)第4章掺杂对石墨烯纳米带能带结构的影响 (24)4.1 点缺陷对石墨烯纳米带能带结构的影响 (24)4.2 掺杂对扶手椅型石墨烯纳米带能带结构的影响 (25)4.2.1 B掺杂对扶手椅型石墨烯纳米带能带结构的影响 (25)4.2.2 N掺杂对扶手椅型石墨烯纳米带能带结构的影响 (26)4.2.3 As掺杂对扶手椅型石墨烯纳米带能带结构的影响 (27)4.3 掺杂对锯齿型石墨烯纳米带能带结构的影响 (29)。

相关文档
最新文档