CALCULATING THE HIGH FREQUENCY RESISTANCE OF SINGLE AND DOUBLE LAYER TOROIDAL WINDINGS
bonding线阻抗计算

在计算邦定线的阻抗时,通常需要考虑电阻R、电感L和电容C三个参数。
其中,电阻R与频率的平方根成正比,电容C与频率的平方根成反比。
根据所提供的资料,如果已知邦定线的长度和直径,可以通过《信号完整性分析》中的近似公式来计算电感L。
具体来说,以直径为18um(0.0008 inch),长度为1mm(0.03937 inch)的邦定线为例,其电感L与长度和直径的关系大致趋势如下:
1.电感L与长度成正比,与直径的平方成反比。
2.电阻R与直径成反比,与频率的平方根成正比。
3.电容C与直径成正比,与频率的平方根成反比。
4.电导G与频率成正比。
同时,需要注意的是,在交流信号下,电阻R会随着频率的上升而变大。
另外,熔断电流也是一个需要考虑的重要参数,以直径18um为例,熔断电流还是很大的,超过340mA。
综上所述,要计算邦定线的阻抗,需要综合考虑其长度、直径、频率等多个因素。
如需更多信息,建议咨询电子工程专家或查阅电子工程领域相关书籍文献。
单棒电阻简谐运动

单棒电阻简谐运动(一)单棒模型1. 基本结构- 在电磁感应的单棒模型中,通常有一根导体棒在磁场中运动。
这根导体棒一般放置在导轨上,导轨可能是光滑的或者存在摩擦力等情况。
- 例如,在水平放置的平行导轨间有一垂直导轨平面的匀强磁场,导体棒垂直于导轨放置。
2. 涉及的力- 安培力:当导体棒中有电流通过时,在磁场中会受到安培力的作用。
安培力的大小F = BIL,其中B是磁场的磁感应强度,I是电流强度,L是导体棒在磁场中的有效长度。
- 重力:如果导轨不是水平放置,导体棒还会受到重力的作用。
重力G = mg,m为导体棒的质量,g为重力加速度。
- 支持力和摩擦力(如果存在):当导轨存在时,导体棒会受到导轨对它的支持力N,如果导轨不光滑,还会受到摩擦力f=μ N,μ为摩擦因数。
(二)电阻在电路中的作用1. 欧姆定律- 根据欧姆定律I = (U)/(R),在单棒电阻模型中,导体棒运动切割磁感线产生感应电动势E,如果电路中只有导体棒的电阻R(忽略导轨等其他电阻),则电路中的电流I=(E)/(R)。
2. 能量转化- 当导体棒在磁场中运动时,由于有电阻的存在,会有电能转化为热能。
根据焦耳定律Q = I^2Rt,其中Q为产生的热量,t为时间。
这部分热量的产生是由于电流通过电阻时,电阻对电流的阻碍作用导致电能的损耗。
(三)简谐运动1. 定义与特征- 简谐运动是一种最简单、最基本的机械振动。
物体在跟偏离平衡位置的位移大小成正比,并且总是指向平衡位置的回复力的作用下的振动,叫做简谐运动。
- 回复力F=-kx,其中k为比例系数,x为偏离平衡位置的位移。
例如,弹簧振子在光滑水平面上的振动就是简谐运动,弹簧的弹力提供回复力。
2. 运动方程与能量- 简谐运动的运动方程为x = Asin(ω t+φ),其中A为振幅,ω为角频率,t为时间,φ为初相位。
- 在简谐运动中,系统的机械能守恒,动能和势能相互转化。
动能E_{k}=(1)/(2)mv^2,势能对于弹簧振子是弹性势能E_{p}=(1)/(2)kx^2。
正弦与非正弦激励下高频变压器磁心损耗计算与验证

第40卷第2期 2021年2月电工电能新技术Advanced Technology of Electrical Engineering and EnergyV〇1.40,N o.2Feb. 2021正弦与非正弦激励下高频变压器磁心损耗计算与验证刘福贵赵琳蒋嘉诚u(1.省部共建电工装备可靠性与智能化国家重点实验室,河北工业大学,天津300130;2.河北省电磁场与电器可靠性重点实验室,河北工业大学,天津300130)摘要:提高正弦和非正弦激励下的磁心损耗模型的计算精度,对高频变压器的设计与研究有重要 意义。
本文首先在经典正弦损耗分离模型的基础上引入涡流和剩余损耗修正系数,推导出在方波 与三角波电压激励下修正的损耗分离计算模型,并通过实验室搭建的磁特性测量系统测量出非晶 与纳米晶磁心的损耗数据。
其次,依据损耗系数随磁通变化的特性,提出一种改进的损耗分离模型 的方法,与经典模型相比有更高的准确性,并得出非正弦激励下改进的计算模型。
最后,对比分析 方波与三角波电压激励下的计算结果与测量值,验证了本文提出的改进损耗分离模型的有效性与 可行性。
关键词:非正弦激励;损耗分离理论;磁心损耗;高频变压器DOI:10. 12067/ATEEE2010005 文章编号:1003-3076(2021)02-0025-08 中图分类号:TM4011引言近年来,随着电力电子技术的快速发展,电力电 子变压器广泛应用在电网中。
国内外学者为设计出 更加高效,更易控制的电力电子变压器不断地进行 探索[1,2]。
随着电力电子变压器的持续发展,在其 中起到电气隔离与电压等级变换的高频变压器的应 用越来越广泛。
由于工作频率的提升,高频变压器 磁心的损耗相应增高,导致磁心内部温度增高,降低 了高频变压器的使用寿命以及系统的稳定性,因此 研究高频变压器的磁心损耗具有重要意义[3-5]。
目前,磁心损耗主要计算方法分为两类,一类为 磁滞模型法,另一类为损耗数学模型法。
一种高速时钟分配电路单粒子效应测试系统设计

现代电子技术Modern Electronics TechniqueMay 2024Vol. 47 No. 102024年5月15日第47卷第10期0 引 言空间带电粒子中有许多成分[1⁃2],主要包含来自外空间射向地球的银河宇宙射线、太阳高能粒子和地球磁场捕获的高能粒子。
其中银河宇宙射线来自于太阳系以外的宇宙射线,是被星际磁场加速到达地球空间的高能带电粒子,包含质子、α粒子、重离子等[3];太阳上发生耀斑时会发射出高能带电粒子,主要成分是质子、少量的重离子[4];地球磁场俘获大量的高能粒子,在地球周围形成6~7个地球半径的粒子辐射区,称为Van Allen 带,包含质子、电子、重离子等[5⁃7]。
在这些带电粒子中,单粒子效应首要关注的是重离子引起的电离[8⁃9],本文所开展的试验就是模拟宇航空间环境。
单粒子效应是指单个高能粒子穿过集成电路灵敏区时,造成电路状态非正常改变的一种辐射效应,常见的单粒子效应包括单粒子锁定(Single⁃Event Latch up, SEL )、单粒子翻转(Single⁃Event Upset, SEU )、单粒子功能中断(Single⁃Event Functional Interrupt, SEFI )等。
其中单粒子锁定是高能粒子入射到电路,导致电路产生异常突变电流,主要发生于CMOS 电路中[10];单粒子翻转是高能粒子作用于集成电路,使得电路逻辑状态发生异常变化,一般发生在数据存储或指令相关电路中;单粒DOI :10.16652/j.issn.1004⁃373x.2024.10.011引用格式:魏亚峰,蒋伟,陈启明,等.一种高速时钟分配电路单粒子效应测试系统设计[J].现代电子技术,2024,47(10):57⁃63.一种高速时钟分配电路单粒子效应测试系统设计魏亚峰1, 蒋 伟1, 陈启明2, 孙 毅3, 刘 杰4, 李 曦1, 张 磊1(1.重庆吉芯科技有限公司, 重庆 400060; 2.中国原子能科学研究院, 北京 102400;3.北京卫星环境工程研究所, 北京 102400;4.中国科学院兰州近代物理研究所, 甘肃 兰州 730000)摘 要: 时钟分配电路是电子系统中信号处理单元参考时钟及多路时钟分配的关键元器件,其跟随系统在宇宙空间中容易受宇宙射线辐照发生单粒子效应,进而影响系统性能指标甚至基本功能。
X电容与Y电容容量的计算

120
PI-1622-111695
120
AN-15
Safety is a vital issue which determines EMI filter component selection, the transformer reinforced insulation system, and PC board primary to secondary spacing. In fact, safety is an integral part of the power supply/EMI filter design and is difficult to discuss as a separate issue. Throughout this application note, design guidance will also be presented for meeting safety requirements in TOPSwitch power supplies.
YEuBCO高温超导单晶微波表面阻抗的测量

重 庆科技 学 院学报 ( 自然科 学 版 )
21 0 0年 l 2月
Y uC E B O高温超导 单晶微波表面 阻抗 的测量
王 全 武 陈恒 杰 唐 海 燕 张 国华
(. 庆科技 学 院, 1 重 重庆 4 1 3 ; . 0 3 1 2北京科技 大学 , 北京 10 8 ) 003
的 范 围 内 S 线 移 动 明 显 , 曲 线 下 移 的 过 程 ,曲
为 细 致 的研 究 , 关 于掺 杂 对 Y C 单 晶微 波 特 性 但 BO 影 响 的研 究 却 很 少 。本 文 用 中空 介 质 谐 振 器 和 空
腔微 扰 技 术 ,通 过测 量 加 入 样 品前 后 介 质 谐 振 器
考温 度 的 谐 振 频
( o的 变 化 量 , 以表 示 为 T) 可
摘
要 : 用 中 空介 质谐 振 技术 测 量 了4 3 H TY u a u 单 晶微 波 表 面阻 抗 与 温度 的依 赖 关 系 。在 1 0 9 K 利 . G z o 。 2 4 E B C O 3 -0
时Y u B uO一 品的表面电阻及电抗随着温度的降低 而下降 , 0 。 a , 样 E C 在转变温度附近样品的表面电阻及 电抗 随温度 急剧下降。与文献值相 比较 , 实验所测Y u aC 样品的正常态表面电阻数值在合理的范围内 , 0E B zuO 说明E 掺杂对 u
验 中通 网络 分 析 仪 测 量 出
收 稿 日期 :0 0 0 — 6 2 1— 4 2
作者 简 介 : 王全 武 (9 2 ) 男 , 庆 市 人 , 验 师 , 士 , 17 一 , 重 实 硕 主要 从 事 高 温 超 导 体微 波 非 线 性 研 究 。
变压器阻抗计算
--2.9.1单相分裂变压器电抗计算SB1-007.5第13页2.9.2 三相径向分裂变压器电抗计算SB1-007.5 第14页2.9.3三相轴向分裂变压器电抗计算SB1-007.5 第15页2.10单相旁轭有载调压自耦变压器(低压励磁)电抗计算SB1-007.5第16页3电阻分量计算SB1-007.5第17页4短路阻抗计算SB1-007.5第17页表示为该对绕组中同一绕组的参考阻抗Zref=U2/P r的分数值(标么值)或百分数表示,则有:Z% =100Z/ ZrefZ ref = U2/Pr式中:U—Z和Z ref所属的绕组的电压(额定电压或分接电压) ;P r—额定容量基准值。
此相对值也等于短路试验中为产生相应额定电流(或分接电流)时所施加的电压与额定电压之比或化成百分数表示。
各线圈电抗高度, 然后再计算平均电抗高度; 按后面相关的公式计算; B q 1, B q 2, B q3 ——各线圈的辐向尺寸(cm ); 按线圈计算中公式(2.17)及公式(2.22)计算;A 12, A13,A 23, ——各对线圈间主空道尺寸(c m); 按线圈计算中公式(2.26)及公式(2.27)计算及见后面相关的图;Rp1, R p2, R p3 ——各线圈的平均半径(cm); 按线圈计算中公式(2.26)及公式(2.27)计算及见后面相关的图;Rp12, R p13, R p23 —各主空道平均半径(cm); 按线圈计算中公式(2.26)及公式(2.27)计算及见后面相关的图。
Kx ——电抗修正系数, 见表5.2表5.2 电抗修正系数 ( K x )ρ —— 洛氏系数; 按下式计算或查表5.3 ( 时当3.1H u k≥λ=, 可用等号后的近似公式计算 ) :ρπππ=--≈--11111u e uu ()( 5 . 1 )第 页 共 页 17 3 油 浸 电 力 变 压 器 阻 抗 计 算其中: u H k=λ表5.3 洛氏系数ρs——横向洛氏系数;线圈一侧有铁心时:按公式(5.2)计算; 线圈两侧都有铁心时:(如壳式变压器)按公式(5.3)计算;线圈一侧有铁心时:[]ρππππssu v uue e es s=-------11110512().()( 5. 2 )其中:'t'ssssD03.0s2D03.0sshsvhu+≈δ++==λ=其它尺寸见图5.2线圈两侧都有铁心(如壳式变压器)时:[]ρππππππsu v u v v u v vue e e e e=----+-------++111105111211121212().()(()()(5. 3 )其中:s22s11s2ss1hsvhsvhuhu==λ=λ=图5.2 横向漏磁组尺寸图铁心a) 线圈一侧有铁心b) 线圈两侧有铁心铁心铁心s s D s D t 110100032003=++≈+''..δ s s D s D t220200032003=++≈+''..δ δt ——导线绝缘(两边)厚度(cm); 其它尺寸见图5.2第页 共页 17 4 油 浸 电 力 变 压 器 阻 抗 计 算u →30 10.5 1.5 2 2.500.10.20.30.40.50.60.70.80.910.050.10.150.20.250.317 5 第 页 u →↑ρs图5.3 线圈一侧有铁心时的横向洛氏系数ρs = f ( u , v )曲线共 页 油 浸 电 力 变 压 器 阻 抗 计 算2.2 双绕组变压器电抗计算2.8 双绕组变压器(低压Z形联结) 电抗计算3 电阻分量计算短路阻抗中的电阻分量, 由变压器的负载损耗计算而得。
直接转矩控制的研究现状和应用现状
Research and Application of Direct Torque Control in AC MotorJames Abin HillCollege of Automation Science and Engineering, South China University of TechnologyI. INTRODUCTIONDirect Torque Control (DTC) is one method used in variable frequency drives to control the torque (and thus the speed) of 3-pahse AC electric motors. It involves calculating an estimate of the motor’s magnet flux and torque based on the voltage and current measured from the motor. Three kinds of DTC schemes are presented as following: a, DTC scheme in Chinese books as shown in Figure 1; b, DTC scheme in English book as shown in Figure 2; c, DTC scheme in ABB technical guide as shown in Figure 3/4/5. In spite of some differences among three kinds of DTC scheme, DTC consists of a stator flux and torque (and speed for speed-sensorless) estimator, two hysteresis controllers for magnet flux and torque and a voltage vector selector. In this paper, both research and application of DTC in AC motor are summarized.Chinese Books,“异步电动机的控制”李鹤轩、李杨译,119页;“电力拖动自动控制系统”陈伯时著,214-216页;“交流调速控制系统”李华德主编,192-219页:Figure 1. DTC scheme in Chinese booksEnglish Book, “Power Electronics and Motor Drive”, 2006 Edition, page 412:Figure 2. DTC scheme in English bookABB, Drivers of Change Embedded DSP-based motor control, page 2, 2/2006:Figure 3. DTC scheme in ABB technical guide ABB, Technical Guide No.1 – Direct Torque Control, page 26, 8/2002:Figure 4. DTC scheme in ABB technical guideABB, Direct Torque Control Principle:Figure 5. DTC scheme in ABB technical guide Emotron, Direct Torque Control:Figure 6. Comparison of anti-interference between VC and DTCII. Status of Research on DTCThis paper investigates 33 papers about DTC from journals embodied by ISI, EI and IEEE of 2008 to 2010. The study shows that recent research on DTC comes from 4 perspectives as following: 1. torque and flux (if sensorless and speed) estimation; 2, torque and flux ripple reduction; 3, motor types; 4, torque, flux and speed controllers.1. 14 from 33 papers are research on torque and flux (if sensorless and speed) estimation (16-20, 22-30). They propose many estimation methods mostly to improve the estimation accuracy at low-speed (standstill included sometimes), such as adaptive estimation (MRAS included), Extended Kalman Filter (EKF) based estimation, non-linear estimation (Sliding Mode included), High-Frequency Signal Injection (HFSI) Algorithm, stator resistance compensator based estimation and so on.2. 11 from 33 papers are research on torque and flux ripple reduction (1, 6-15). They propose several methods to reduce the torque and flux ripple, such as improving torque and flux controllers (predict control and neuro-fuzzy control, for instance), reforming the switching patterns (symmetry switching patterns of the applied voltage vectors and closed-loop switching frequency control, for instance), increasing the number of inverter states or degrees of freedom (matrix-converter and five-phase inverter, for instance) and so on.3. Most of 33 papers study DTC in Induction Motor (IM) and Permanent Magnet Synchronous Motor (PMSM), while others study Double Fed IM (DFIM), Brushless DC Motor (BLDCM), Multilevel-Inverter IM, Matrix-Converter-Fed PMSM, Three-level Inverter, Synchronous Reluctance Machine (SynRM), brushless doubly fed reluctance machine (BDFRM), Switched Reluctance (SR) motor and Five Phase Induction Motor.4. 4 from 33 papers are research on torque, flux and speed controllers. (20, 30) apply PI controller and fuzzy controller to replace the hysteresis controller in conventional DTC for torque and flux ripple reduction. When torque and flux hysteresis controllers are changed to continuous controllers, voltage vector selector (switching table) should be replaced by a space vector modulation (SVM) at the same time. (32, 33) compare different speed controllers such as conventional PI controllers, fuzzy logic controller and hybrid fuzzy sliding mode controller.III. Application Status of DTCDTC AC drive has already come into our daily life since several years ago. However, only two companies (ABB of Switzerland, Emotron of Sweden) have put it into production. Product:1)ABB ACS 600 AC DRIVES2)ABB ACS 800 AC DRIVES3)Emotron VFX 2.0 AC DRIVEReferences1. Abad, G., Rodriguez, M. A. & Poza, J. (2008) Two-Level VSC Based Predictive Direct Torque Control of the Doubly Fed Induction Machine With Reduced Torque and Flux Ripples at Low Constant Switching Frequency|, , 23|, 1050-1061|.2. Khoucha, F., Lagoun, S. M., Marouani, K., Kheloui, A. & El Hachemi Benbouzid, M. (2010) Hybrid Cascaded H-Bridge Multilevel-Inverter Induction-Motor-Drive Direct Torque Control for Automotive Applications|, , 57|, 892-899|.3. Si, Z. C., Cheung, N. C., Ka, C. W. & Jie, W. (2010) Integral Sliding-Mode Direct Torque Control of Doubly-Fed Induction Generators Under Unbalanced Grid Voltage|, , 25|, 356-368|.4. Arbi, J., Ghorbal, M. J. B., Slama-Belkhodja, I. & Charaabi, L. (2009) Direct Virtual Torque Control for Doubly Fed Induction Generator Grid Connection|, , 56|, 4163-4173|.5. Talaeizadeh, V., Kianinezhad, R., Seyfossadat, S. G. & Shayanfar, H. A. (2010) Direct torque control of six-phase induction motors using three-phase matrix converter, ENERGY CONVERSION AND MANAGEMENT, 51, 2482-2491.6. Beerten, J., Verveckken, J. & Driesen, J. (2010) Predictive Direct Torque Control for Flux and Torque Ripple Reduction|, , 57|, 404-412|.7. Shyu, K. K., Lin, J. K., Pham, V. T., Yang, M. J. & Wang, T. W. (2010) Global Minimum Torque Ripple Design for Direct Torque Control of Induction Motor Drives|, , 57|, 3148-3156|.8. Ortega, C., Arias, A., Caruana, C., Balcells, J. & Asher, G. M. (2010) Improved Waveform Quality in the Direct Torque Control of Matrix-Converter-Fed PMSM Drives|, , 57|, 2101-2110|.9. Geyer, T., Papafotiou, G. & Morari, M. (2009) Model Predictive Direct TorqueControl—Part I: Concept, Algorithm, and Analysis|, , 56|, 1894-1905|.10. Ziane, H., Retif, J. M. & Rekioua, T. (2008) Fixed-switching-frequency DTC control for PM synchronous machine with minimum torque ripples|, , 33|, 183-189|.11. del Toro Garcia, X., Arias, A., Jayne, M. G. & Witting, P. A. (2008) Direct Torque Control of Induction Motors Utilizing Three-Level Voltage Source Inverters|, , 55|, 956-958|.12. Kumsuwan, Y., Premrudeepreechacharn, S. & Toliyat, H. A. (2008) Modified direct torque control method for induction motor drives based on amplitude and angle control of stator flux, , 78, 1712-1718.13. Riad, T., Hocine, B. & Salima, M. (2010) New Direct Torque Neuro-Fuzzy Control Based SVM-Three Level Inverter-Fed Induction Motor, INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS, 8, 425-432.14. Kim, N. & Kim, M. (2009) Modified Direct Torque Control System of Five Phase Induction Motor, JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY, 4, 266-271.15. El Badsi, B. & Masmoudi, A. (2008) DTC of an FSTPI-fed induction motor drive with extended speed range, COMPEL-THE INTERNATIONAL JOURNAL FOR COMPUTATION AND MATHEMATICS INELECTRICAL AND ELECTRONIC ENGINEERING, 27, 1110-1127.16. Foo, G. & Rahman, M. F. (2010) Sensorless Direct Torque and Flux-Controlled IPM Synchronous Motor Drive at Very Low Speed Without Signal Injection|, , 57|, 395-403|.17. Sayeef, S., Foo, G. & Rahman, M. F. (2010) Rotor Position and Speed Estimation of a Variable Structure Direct-Torque-Controlled IPM Synchronous Motor Drive at Very Low Speeds Including Standstill|, , 57|, 3715-3723|.18. Zhifeng, Z., Renyuan, T., Baodong, B. & Dexin, X. (2010) Novel Direct Torque Control Based on Space Vector Modulation With Adaptive Stator Flux Observer for Induction Motors|, , 46|, 3133-3136|.19. Foo, G. H. B. & Rahman, M. F. (2010) Direct Torque Control of an IPM-Synchronous Motor Drive at Very Low Speed Using a Sliding-Mode Stator Flux Observer|, , 25|, 933-942|. 20. Foo, G., Sayeef, S. & Rahman, M. F. (2010) Low-Speed and Standstill Operation of a Sensorless Direct Torque and Flux Controlled IPM Synchronous Motor Drive|, , 25|, 25-33|. 21. Ozturk, S. B., Alexander, W. C. & Toliyat, H. A. (2010) Direct Torque Control ofFour-Switch Brushless DC Motor With Non-Sinusoidal Back EMF|, , 25|, 263-271|.22. Hajian, M., Soltani, J., Markadeh, G. A. & Hosseinnia, S. (2010) Adaptive Nonlinear Direct Torque Control of Sensorless IM Drives With Efficiency Optimization|, , 57|, 975-985|.23. Morales-Caporal, R. & Pacas, M. (2008) Encoderless Predictive Direct Torque Control for Synchronous Reluctance Machines at Very Low and Zero Speed|, , 55|, 4408-4416|.24. Andreescu, G. D., Pitic, C. I., Blaabjerg, F. & Boldea, I. (2008) Combined Flux Observer With Signal Injection Enhancement for Wide Speed Range Sensorless Direct Torque Control of IPMSM Drives|, , 23|, 393-402|.25. Jovanovic, M. G. (2008) Sensorless speed and direct torque control of doublyfed reluctance motors, , 28, 408-415.26. Kucuk, F., Goto, H., Guo, H. & Ichinokura, O. (2008) Position sensorless speed estimation in switched reluctance motor drive with direct torque control-inductance vector angle based approach, , 128, 5+533-538.Research and Application of Direct Torque Control in AC Motor, Nov. 28, 2010, SCUT 11 27. Hartani, K., Miloud, Y. & Miloudi, A. (2010) Improved Direct Torque Control of Permanent Magnet Synchronous Electrical Vehicle Motor with Proportional-Integral Resistance Estimator, JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY, 5, 451-461.28. Barut, M. (2010) Bi Input-extended Kalman filter based estimation technique forspeed-sensorless control of induction motors, ENERGY CONVERSION AND MANAGEMENT, 51, 2032-2040.29. Khedher, A. & Mimouni, M. F. (2010) Sensorless-adaptive DTC of double star induction motor, ENERGY CONVERSION AND MANAGEMENT, 51, 2878-2892.30. Abbou, A. & Mahmoudi, H. (2008) Sensorless speed control of induction motor using DTFC based fuzzy logic, Journal of Electrical Engineering, 8 pp.31. West, N. T. & Lorenz, R. D. (2009) Digital Implementation of Stator and RotorFlux-Linkage Observers and a Stator-Current Observer for Deadbeat Direct Torque Control of Induction Machines|, , 45|, 729-736|.32. Gadoue, S. M., Giaouris, D. & Finch, J. W. (2009) Artificial intelligence-based speed control of DTC induction motor drives-A comparative study, , 79, 210-219.33. Chikhi, A. & Chikhi, K. (2009) Induction Motor Direct Torque Control with Fuzzy Logic Method, JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY, 4, 234-239.。
高压电缆用缓冲层材料体积电阻率测试方法研究
电气设备检修与故障诊断高压电缆用缓冲层材料体积电阻率测试方法研究黄宇吴长顺孙利(上海缆慧检测技术有限公司,上海 201206)摘要本文首先分析了JB/T 10259—2014标准中缓冲层材料体积电阻率的测量和计算方法,再结合高压电缆的实际结构和高压电缆阻水缓冲层的材料特性,指出了JB/T 10259—2014标准中缓冲层体积电阻率测试方法在接触面积和施加负荷方面并不能反映缓冲层在高压电缆实际情况中存在的问题。
大量试验数据表明,缓冲层材料体积电阻率与所受压力和电极接触面积关系密切,只有反映皱纹铝护套与缓冲层实际接触方式的试验方法,才能更准确地测量缓冲层材料的体积电阻率。
关键词:高压电缆;缓冲层;体积电阻率;接触面积;压力Study on the measurement method of volume resistivity ofbuffer material for high voltage cableHuang Yu Wu Changshun Sun Li(Shanghai Intelligent Service and Technology Co., Ltd, Shanghai 201206)Abstract This paper analyzes the measurement and calculation method of volume resistivity of buffer layer material in JB/T 10259—2014 standard firstly, and then combined with the actual construction of high-voltage cable and the material characteristics of water-resistant buffer layer of high-voltage cable, reveals the volume resistivity test method of buffer layer in JB/T 10259—2014 standard can not reflect the actual situation of buffer layer in high-voltage cable in terms of contact area and applied load. A large number of test data show that the volume resistivity of buffer layer material is closely related to the pressure and electrode contact area. In order to measure the volume resistivity of buffer layer material more accurately, the test method which can reflect the actual contact mode between corrugated aluminum sheath and buffer layer is necessary.Keywords:high voltage cable; buffer layer; volume resistivity; contact area; pressure高压交联聚乙烯(cross-linked polyethylene, XLPE)绝缘电力电缆在我国已经使用了近30年,最初全部使用进口产品,到目前为止66~500kV电力电缆基本实现国产化,每年有超过1×104km的高压电缆被埋设于地下。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2MICROMETALS,源自INC. • 5615 E. LA PALMA AVENUE • ANAHEIM, CALIFORNIA 92807-2109 • USA
Only a two dimensional FEA program was available, so a few simplifying assumptions still had to be made. The physical winding is essentially a two dimensional case on the inside and outside of a toroid of rectangular cross section, allowing conductor losses to be accurately modeled. Along the top and bottom of the winding the conductors are not parallel however, and create a three dimensional situation. The principal assumption in this work is that the conductor leases vary approximately linearly with radius on the top and bottom of a toroidal winding of rectangular cross section, allowing the effective total winding AC to DC resistance ratio (Rac/Rdc) to be calculated as the algebraic mean (average) of the Rac/Rdc ratios derived for the inside and outside portions of the winding. To the extent that this assumption is valid, the “form factor” of the rectangular cross section is not a consideration; the winding resistance formulas will apply to windings on a flat or
ABSTRACT Finite Element Analysis (FEA) software was used to model the HF losses in single and double layer toroidal windings of solid round wire over a wide range of conditions. At high frequencies, where the wire diameter is greater than 1.1 to 1.4 “skin depths”, the single layer winding is found to have the lower loss. Formulas and graphs for calculating single layer loses were derived, including the effects of insulation thickness, increased winding pitch at the outside circumference, and proximity of the core. INTRODUCTION The low cost and minimal external field of toroidal inductors finds them many applications in RF equipment and switching power converters, ranging from resonant inductors to filter chokes. A drawback has been the difficulty of calculating winding losses at high frequencies, where the conductor diameter becomes comparable to or greater than a skin depth. Reasonably accurate formulas are available for calculation of the HF resistance of solenoidal windings, notably derivations by Dowell [1] and Perry [2], with extensions to nonsinusoidal currents by Venkatraman [3], Carsten [4], and Vandelac & Ziogas [5]. These derivations are all based on simplifying assumptions which reduce a two or three dimensional problem to a one dimensional approximation of the physical winding, which is then amenable to analytical analysis. The simplifying assumptions are sufficiently valid that calculated resistances can be within ±5% to 10% of measured values in many practical cases.
1
MICROMETALS, INC. • 5615 E. LA PALMA AVENUE • ANAHEIM, CALIFORNIA 92807-2109 • USA
The situation is somewhat more difficult with toroidal windings, where wire spacing changes radially on the toroid. The effective number of layers also changes radially when you use more than a “single” layer on the inside of the toroid. An extra complication is that toroidal windings are often placed very close to a magnetic core, which modifies the magnetic field pattern near the conductors, and thus the HF current distribution and winding resistance. The inherent multi-dimensional nature of toroidal windings renders analytical techniques inapplicable. DERIVATION OF TOROIDAL WINDING RESISTANCE FORMULAS Two principal approaches to determining the HF resistance of toroidal windings are empirical measurement and computer modeling, using finite element analysis programs (FEA). The measurement of HF resistance is feasible for specific instances, but investigating a sufficient number of cases to derive general formulas is only practical with a sufficiently powerful and efficient computer program. Electromagnetic FEA software has improved markedly in the last ten years in terms of computer requirements, speed of operation and ease of use. The software used for this work was the ANSOFT Maxwell 2D Field Simulator, which proved invaluable. Running on a 133 MHz Pentium® computer (with a minimum of 16 Mbytes of RAM), analysis times ranged from typical values of 12 to 30 seconds up to 10 to 15 minutes in extreme cases. The latter occurred with multiple conductors and wire diameter to skin depth ratios of 100:1. Computation time was significantly increased by the reduction of the allowed field energy error by 100:1 (from 2% to 0.02%), which was found necessary to obtain high accuracy under these extreme conditions. About 740 conditions were modeled to derive the winding resistance formulas presented here, with another several hundred used for exploratory purposes and to refine the approach. CONDITIONS AND ASSUMPTIONS The formulas derived assume “precision” toroidal windings of round wire, with complete and uniform coverage of the toroidal core. Conductors are assumed straight and unbowed, everywhere in contact with the core and/or each other. Only single and dual layer windings are considered, as illustrated in Figure 1. As will be shown later, single layer windings have a lower HF resistance than two (or more) winding layers of solid conductors. Thus the bulk of the formula derivation is devoted to accurate resistance calculations for single layer windings.