测定水中铝的方法

合集下载

水质铝测定实验报告

水质铝测定实验报告

水质铝测定实验报告【实验报告】水质铝测定实验一、实验目的掌握水质中铝含量的测定方法,了解测定原理,并实际操作完成铝含量测定。

二、实验原理本实验利用二乙酮肼法测定水中铝的含量。

该方法的原理是:二乙酮肼与铝形成紫红色络合物,其吸收峰位于565nm处,其吸光度与铝的浓度成正比,从而可以间接测定水中铝的含量。

三、实验步骤1.装量取样溶液20.00mL到100mL锥形瓶内,加入适量二乙酮肼试剂。

2.用六氟硼酸调节溶液的pH至6.5-7.0。

3.稀释,以保证落入比色皿中样品溶液浓度在0.1-0.5mg/L之间。

4.用紫外可见分光光度计设置好波长,调节比色皿中吸光度值为0。

5.将保持吸光度为0的比色皿放入紫外分光光度计,可操纵室外的样品:L+比色皿,并置于样品槽中。

6.按下"测量"键开始测量,等到数据稳定后,读取吸光度数值。

四、实验数据处理根据实验数据计算出样品中的铝含量。

首先,根据铝标准曲线,计算出吸光度与铝浓度的线性方程式。

然后,代入所测吸光度值,求得铝的浓度。

最后,根据样品的体积和稀释倍数,计算出样品中铝的实际含量。

五、实验结果与分析通过实验测得样品的吸光度为0.567。

据此计算出样品中铝的浓度为0.234 mg/L。

再考虑稀释倍数为10,样品的体积为20.00 mL,则可计算出样品中铝的实际含量为0.117 mg。

六、实验讨论本实验采用了二乙酮肼法测定水质中铝的含量。

该方法简便、快捷,同时精确度高。

通过本次实验,我们成功地测定出了水样中铝的含量。

然而,需要注意的是,在样品制备过程中,要注意保持样品的卫生,以避免外界污染对实验结果的影响。

另外,实验过程中,需保持仪器的良好状态,如:光谱仪的调节、清洁等。

这些因素都可能对实验结果产生影响。

七、实验总结本实验成功地运用了二乙酮肼法测定水样中铝的含量。

通过实验,了解了该方法的原理和操作步骤,并获得了实验数据。

通过数据处理,得出了样品中铝的实际含量。

水质铝测定实验报告

水质铝测定实验报告

一、实验目的1. 了解水质铝测定的原理和方法。

2. 掌握使用分光光度法测定水中铝含量的操作步骤。

3. 分析实验结果,了解水中铝含量的分布情况。

二、实验原理水中铝含量通常以铝离子(Al3+)的形式存在,采用分光光度法测定铝含量是基于铝离子与显色剂发生反应,生成有色络合物,该络合物在一定波长下有最大吸收,通过测定其吸光度可以计算出铝离子的含量。

三、实验仪器与试剂1. 仪器:分光光度计、移液器、容量瓶、烧杯、玻璃棒、比色皿等。

2. 试剂:铝标准溶液、显色剂、盐酸、氢氧化钠、硝酸、硝酸银等。

四、实验步骤1. 标准曲线的绘制(1)取一系列的铝标准溶液,分别加入适量的显色剂,混合均匀。

(2)用分光光度计在特定波长下测定溶液的吸光度。

(3)以铝离子浓度为横坐标,吸光度为纵坐标,绘制标准曲线。

2. 水样测定(1)取一定量的水样,加入适量的盐酸和氢氧化钠,调节pH值至一定范围。

(2)按照标准曲线的绘制方法,加入显色剂,混合均匀。

(3)用分光光度计在特定波长下测定溶液的吸光度。

(4)根据标准曲线,计算出铝离子的含量。

五、实验数据与结果1. 标准曲线绘制结果标准溶液浓度(mg/L) | 吸光度---------------------- | --------0.00 | 0.0000.10 | 0.4500.20 | 0.9200.30 | 1.3800.40 | 1.8600.50 | 2.3402. 水样测定结果水样中铝离子含量:0.25 mg/L六、实验分析与讨论1. 通过实验,掌握了分光光度法测定水中铝含量的原理和操作步骤。

2. 实验结果表明,所测水样中铝离子含量为0.25 mg/L,属于较低水平。

3. 在实验过程中,发现以下问题:(1)显色剂加入量过多会导致吸光度增大,影响结果准确性;(2)水样在显色过程中,pH值的变化对吸光度有较大影响,需严格控制pH值;(3)实验过程中,应注意操作规范,避免污染和误差。

饮用水中铝的检测前处理和检测方法对比实验

饮用水中铝的检测前处理和检测方法对比实验

饮用水中铝的检测前处理和检测方法对比实验发布时间:2021-09-13T00:45:51.310Z 来源:《基层建设》2021年第17期作者:宋飞[1] 赵益杰[2] [导读] 摘要:饮用水中的铝部分来自于原水,部分来自于含有铝的混凝剂聚合氯化铝。

1.海口威立雅水务有限公司 570208;2.威立雅(中国)环境服务有限公司北京分公司 100004摘要:饮用水中的铝部分来自于原水,部分来自于含有铝的混凝剂聚合氯化铝。

自来水的残余铝的检测有铬天青S法和ICP-MS法,不同的前处理对这两种方法的检测结果有差异。

本文通过实验验证了这两种方法和不同的前处理。

实验表明:对于标准溶液,ICP-MS不管是何种前处理方法,结果都很可靠,偏差在3%之内,而铬天青S法对于酸化的水样在加氢氧化钠调节pH的样品中,偏差较大(20%),对于酸化标样和直接测试标样的偏差较小。

对于聚合氯化铝的稀释水样,两种方法都需要进行消解处理才能得到可靠的结果。

对于实验条件下的自来水厂出水水样,两种方法的酸化水样结果略有差异,但结果接近。

本文建议:水厂出水残余铝的日常检验可以使用铬天青S法;公司中心化验室进行水质对标检验时,有条件时使用GC-MS;对于铬天青S法检测铝,有必要研究不同的前处理得到的结果差异。

如果通过研究得到的消解结果和直接测定结果没有显著性差异,在日常运行检测中可以用直接测试或者酸化后测试代替消解后测试。

关键词::残余铝;前处理;消解;铬天青S法;ICP-MS1引言饮用水中的铝的来源有三个途径:一是土壤中的铝元素溶解在水中。

铝在地壳中的平均丰度为8.1%,在土壤中含量是0.9%到6.5%,在河流中平均为0.4mg/[1],并以溶解态存在或者包含在颗粒物中,经过水处理工艺在出厂水中形成一定的残余;第二是来自铝盐混凝剂(PAC)的投加。

PAC在水处理过程中没有随着污泥被分离的部分,在铝的检测中会体现为残留铝;第三是输配水过程中的管材和构筑物中铝元素的溶出[2]。

水质_铝的测定_电感耦合等离子发射光谱法_概述说明

水质_铝的测定_电感耦合等离子发射光谱法_概述说明

水质铝的测定电感耦合等离子发射光谱法概述说明1. 引言1.1 概述在现代社会中,水质和铝含量的测定成为了一个重要的研究领域。

水是人类生活中必不可少的资源,其质量直接关系到人们的健康与生活质量。

同时,铝作为一种常见且广泛存在于自然界和工业中的金属元素,其浓度过高也可能对环境和生物产生不良影响。

因此,深入了解水质及其中铝含量的测定方法具有重要意义。

电感耦合等离子发射光谱法(Inductively Coupled Plasma Atomic Emission Spectroscopy, ICP-AES)作为一种快速、准确且广泛应用的分析技术,在水质研究中扮演着重要角色。

本文以水质和铝含量测定为主题,综述了ICP-AES方法在这一领域中的应用情况,并探讨了其原理、设备使用与操作流程以及数据解读与分析方法。

希望通过本文能够增加读者对于水质检测技术以及铝含量分析方面的认识。

1.2 文章结构本文共分为五个章节:引言、水质、铝的测定、电感耦合等离子发射光谱法以及结论。

在引言部分,将对本文的主题和内容进行概述,并介绍各章节之间的关系。

水质部分将对水质的概念、影响因素以及评估方法进行阐述。

铝的测定部分将重点探讨铝元素的重要性、存在形式以及不同的测定方法。

在电感耦合等离子发射光谱法部分,将详细介绍其原理、设备操作流程以及数据解读与分析方法。

最后,在结论部分总结全文观点和实验结果,并展望未来的研究方向。

1.3 目的本文旨在提供一个全面且清晰的概述,介绍水质与铝含量测定这一领域中ICP-AES技术的应用情况和相关知识。

通过阅读本文,读者能够了解水质评估方法,认识铝元素在环境中的存在形式,掌握ICP-AES技术原理并了解其使用与操作流程,以及学习如何解读和分析ICP-AES得到的数据。

此外,本文也希望能够引起读者对于水质与铝含量问题的关注,为未来的研究提供新的思路和研究方向。

2. 水质2.1 水质概述水质是指水体中溶解的物质、悬浮固体、微生物和其他有机与无机成分的总和。

用改进的铬天青S法测定饮用水中铝

用改进的铬天青S法测定饮用水中铝

用改进的铬天青S法测定饮用水中铝1.现行的水中铝的测定方法水中微量铝的测定方法可采用的有分光光度法、原子吸收光谱法、原子荧光法以及发射光谱法等。

用仪器分析技术测定饮用水中的微量铝近年来取得了长足的进步。

仪器分析方法具有灵敏度高、选择性好等优点,是目前国际测定水中铝的常用方法。

原子吸收光谱法、原子荧光法和发射光谱法都属于仪器分析方法,特别是发射光谱法测定水中微量铝的报道较多,但这些方法都需要大型的分析仪器支持,不适合我国大部分水厂的日常检测,尤其是广大的中小规模自来水公司尚不具备此条件。

用分光光度法测定铝是国内外采用最广泛的铝分析方法,许多发达国家自来水公司对铝的日常检测也都采用这种方法。

今年来随着一些高灵敏度、高选择性的显色体系的出现,分光光度法又呈现多元化发展的趋势,较常见的有铬天青S法、铝试剂法、邻苯二酚紫法、茜素磺酸钠法等,其中铬天青S法测定饮用水中微量铝是一种简单易行的分光光度法,但该方法目前尚不规范,且操作较繁琐,需要做适当改进。

2.改进的铬天青S法铬天青S法是使水中铝与乳化剂OP和铬天青S在pH值一定的溶液中反应,生成能溶于水的三元络合物,比色定量。

现行的方法在铬天青溶液的配制、显色条件等方面有不合理、不确切之处,本文对此进行了如下研究从而形成了改进后的铬天青S法。

2.1 铬天青溶液的配制及其用量选择铬天青与铝的反应必须在乙醇中进行,原方法是将0.5g铬天青溶解于100mL的乙醇中配制成0.5%的铬天青乙醇溶液。

但是铬天青在乙醇中的溶解度极小导致大量无法溶解的铬天青仍以颗粒状态存在,给分析带来较大误差。

根据铬天青在水中的溶解度略大些的特点,改用0.1%的铬天青(1+1)乙醇水溶液。

为了确定比色分析中铬天青溶液的用量,取饮用水中常见的铝浓度[Al]=0.1mg/L配制标样,在波长590nm处、pH值为6.5的条件下进行比色分析,比色皿厚度为1cm(以后同),结果如图1所示。

由图1可以看出,铬天青溶液的用量对吸光度值有较大影响,在用量大于0.8mL以后变化趋于平缓,所以决定铬天青溶液的用量为1.0mL。

生活饮用水 铝的测定 无火焰原子吸收分光光度法

生活饮用水 铝的测定 无火焰原子吸收分光光度法

生活饮用水铝的测定无火焰原子吸收分光光度法1. 适用范围本标准规定了用无火焰原子吸收分光光度法测定生活饮用水及其水源水中的铝。

本法适用于生活饮用水及其水源水中铝的测定。

本法最低检测质量为0.2ng,若取20µL水样测定,则最低检测质量浓度为10µg/L。

水中共存离子一般不产生干扰。

2. 原理样品经适当处理后,注入石墨炉原子化器,铝离子在石墨管内高温原子化。

铝的基态原子吸收来自铝空心阴极灯发射的共振线,其吸收强度在一定范围内与铝浓度成正比。

3. 试剂3.1 铝标准储备溶液[ρ(Al)=1mg/mL]。

3.2 铝标准使用溶液[ρ(Al)=1µg/mL]。

3.3 硝酸镁溶液(50g/L):称取5g硝酸镁[Mg(NO3)2](优级纯),加水溶解并定容至100ml。

3.4 过氧化氢溶液[ω(H2O2)=30%],优级纯。

3.5 氢氟酸(ρ20=1.88g/mL)。

3.6 氢氟酸溶液(1+1)。

3.7 草酸(H2C2O4•2H2O)。

3.8 钽溶液(60g/L):称取3g金属钽(99.99%)放入聚四氟乙烯塑料杯中,加入10mL氢氟酸溶液,3g草酸和0.75mL过氧化氢溶液,在沙浴上小心加热至金属溶解,若反应太慢,可适量加入过氧化氢溶液,待溶解后加入4g草酸和约30mL 水,并稀释到50mL。

保存于塑料瓶中。

4. 仪器4.1 石墨炉原子吸收分光光度计4.2 铝元素空心阴极灯4.3 氩气钢瓶4.4 微量加样器:20µL4.5 聚乙烯瓶:100mL4.6 涂钽石墨管的制备:将普通石墨管先用无水乙醇漂洗管的内,外面,取出在室温干燥后,将石墨管垂直直浸入装有钽溶液的聚四氟乙烯杯中,然后将杯移入电热中空减压干燥箱中,50℃~60℃,减压53 328.3Pa~79 993.2Pa90min,取出石墨管常温风干,放入105℃烘箱中干燥1h,在通氩气300mL/min保护下按下述温度程序处理:干燥80℃~100℃ 30s,100℃~110℃ 30s,灰化900℃ 60s,原子化2700℃ 10s。

水中铝离子的测定方法

水中铝离子的测定方法水中铝离子与其他重金属一样含量过多时就会对人体产生危害,不过作为地壳中第三大含量的元素,它在天然水体中会以多种形式存在。

而近几年对各地水质的监测发觉地表水的铝含量要远大于地下水。

其主要原因是一些行业排放超标废水,污染河流湖泊所造成的。

目前检测水中铝含量的方法有很多,其中比拟常用的是铝试剂分光光度法,在pH3.8-4.5的条件下,水样中的铝会与铝试剂〔玫红羧酸按〕反响生成稳定的红色络合物,然后通过分光光度计进行测量。

该方法适用于高纯水及自来水等水体。

检测所用仪器及试剂1.具有磨口塞的50mL比色管。

2.分光光度计3.0.1%铝试剂称取0.1g铝试剂溶于100mL一级试剂水,并贮存于棕色的瓶中。

4.1%抗坏血酸溶液称取1.0g抗坏血酸溶于100mL一级试剂水中,并贮存于棕色瓶中。

5.浓盐酸6.浓氨水7.盐酸溶液〔1+1〕8.刚果红试纸9.铝标准溶液的配制a.贮备溶液称取0.5000g纯铝箔,将其置于烧杯中,然后参加10mL浓盐酸,缓慢的加热,将其溶化后转入500mL容量瓶中,接着用一级试剂水稀释至刻度。

b.中间溶液取贮备溶液10mL注于1L容量瓶中,加1mL浓盐酸,然后用一级试剂水稀释至刻度。

c.工作溶液用中间溶液酸化并用一级试剂水稀释10倍制取。

10.乙酸-乙酸铵缓冲溶液称取38.5g乙酸铵溶于约500mL一级试剂水中,缓慢参加104mL冰乙酸,再转入1L容量瓶中,并用一级试剂水稀释至刻度。

水中铝的检测步骤1.绘制工作曲线a.测定范围为0~100g/L的工作曲线。

取铝工作溶液于一组比色管中,用一级试剂水稀释至50mL,然后参加2mL抗坏血酸,摇匀;投入一小块刚果红试纸,认真滴加浓氨水或盐酸(1+1)溶液调节溶液的pH。

使刚果红试纸呈紫蓝色(pH≈3~5),参加2mL乙酸-乙酸铵缓冲溶液,摇匀。

再参加2mL铝试剂,摇匀;15min后,在分光光度计波长为530nm下,用30mm(或100mm)比色皿,以试剂空白作参比,测吸光度,依据吸光度和相应铝含量绘制工作曲线。

间接火焰原子吸收法测定水中铝元素含量

间接火焰原子吸收法测定水中铝元素含量摘要:铝是易形成高温氧化物的元素之一,用空气-乙炔火焰通常无法直接测定,为建立一种适用于检测水中铝的分析方法,文章通过测定方法的改进,采用间接火焰原子吸收法间接测定水中铝的含量,结果分析表明,该方法灵敏度高,精密度和准确度好,检出限低,满足现行卫生标准对水中铝检验的要求,且实验仪器普通易得,运转成本较低,便于推广应用。

关键词:铝;空气-乙炔火焰原子吸收法;间接火焰原子吸收法铝在自然界中分布极广。

近年来的研究表明,铝是一种对人体健康有害的元素,由于过量摄入铝而引起人体铝中毒的临床表现愈加明显,而饮水是摄入铝的主要途径之一。

因此,对水中铝含量的监测是有必要的。

目前,水中铝含量测定的方法很多,主要有铝试剂分光光度法、铬天青S分光光度法、水杨基荧光酮-氯化十六烷基吡啶分光光度法及火焰原子吸收法等。

本文就火焰原子吸收法测定水中铝含量的实验进行了探讨,对试验测定条件进行了改进,以期能为类似实验更好的进行提供参考。

1 材料与方法1.1 仪器与试剂TAS-990火焰原子吸收分光光度计(北京普析通用)、空气压缩机、铜元素空心阴极灯、控温水浴装置。

浓硝酸、浓盐酸、浓氨水、硼酸、三氯甲烷,以上试剂均为优级纯。

1%百里香酚蓝指示剂:0.1g百里香酚蓝溶于100ml20%的乙醇溶液。

0.001mol/L的EDTA溶液:称取乙二胺四乙酸二钠1.8612g溶于适量水中,用水定容至500ml,再将该定容的溶液稀释10倍。

Cu(Ⅱ)-EDTA溶液:吸取0.001mol/L的EDTA溶液50ml于250ml锥形瓶中,先后加入5ml乙酸-乙酸钠缓冲溶液(pH=4.5)、5滴0.1%的PAN乙醇溶液,摇匀,加热至60~70℃,用0.100mg/mL铜溶液滴定,颜色由黄变紫红,过量三滴,待溶液冷却至室温,用20ml三氯甲烷萃取,弃去有机相。

1.2 样品预处理采样后应立即加入浓硝酸,调节水样的pH为1~2。

测定水中铝的方法

1 实验办法与测定结果1.1 搅拌实验准确称取聚合氯化铝(Al2O3的含量为10.02%)和硫酸铝(Al2O3的含量为4.99%)各1.000克,放入到100毫升容量瓶中,稀释到刻度。

取宁波市自来水总企业江东水厂使用的河水原水和水库水原水各两份(均为1000ml),分别加入如上配制好的聚合氯化铝混凝剂和硫酸铝混凝剂开展搅拌实验,搅拌设置为:300转/分,1分钟;90转/分,10分钟,沉淀20分钟。

加入量如表1所示。

将沉淀后的1000ml水样搅拌均匀,取样,按表中数据稀释后,用铬天青S法开展测定。

数据如表2所示。

1.2 硫酸铝混凝剂、聚合氯化铝混凝剂稀释后铝含量的测定准确称取聚合氯化铝(Al2O3的含量为10.02%)和硫酸铝(Al2O3的含量为4.99%)各1.000克,放入到100毫升容量瓶中,稀释到刻度。

再把这两种溶液各稀释4000倍、2000倍,测定稀释后溶液中的铝含量,所得结果如表3。

1.3 改进铬天青S法(一)实验实验办法和顺序同1.1,只是先将样品倒入一干净烧杯中,将pH调节到3前后,再用碱液(10%氢氧化钠溶液)将pH调节到7前后,或者先用碱液(10%氢氧化钠溶液)将pH 调节到11前后,再用酸液(1+1盐酸)将pH调节到7前后,调节时的pH测定用pH试纸即可。

然后取样,再按照铬天青S法开展测定。

混凝剂为聚合氯化铝、硫酸铝,加入量分别为30Kg/KT、60Kg/KT,测定数据如表3.水库原水含铝量:0.014 mg/L。

1.4 改进铬天青S法(二)实验实验办法和顺序同1.1,但样品先开展前处理,办法为:取一定量的试样,用盐酸溶液将pH调整到1以下,将试样加热近沸,用氢氧化钠溶液将试样pH调整到7前后,再按照铬天青S法开展测定。

测定数据如表5,实验中所用原水为水库水,所用混凝剂为聚合氯化铝,加入量为30 Kg/KT。

1.5 用铬天青S法和改进铬天青S法对水厂滤后水的测定结果在使用硫酸铝混凝剂和聚合氯化铝混凝剂的水厂各取滤后水水样一个,在不加酸不加碱、先加酸(到pH为3)后加碱(到pH为7)、先加碱(到pH为11)后加酸(到pH为7)、先加酸(到pH<1=后加热近沸再加碱(到pH为7)的前处理条件下测定水样中的铝含量,测定数据如表6所示。

水中铝的检测方法及研究进展

水中铝的检测方法及研究进展[摘要] 结合国内外的研究进展,综述了水中铝的各种检测方法,并展望了铝在检测方法上的发展趋势。

[关键词] 水铝检测进展铝是重要的金属元素,在自然界中含量丰富,在地壳中分布广泛,含量高达8.8%(重量),仅次于氧、硅位居第三。

存在的最主要形式是复硅酸盐及风化产物[1],主要矿物为冰晶石、铝土矿和高岭土,活性溶解态的铝含量非常有限,一般不会对植物的根系造成伤害,也很少被人体消化道吸收。

在生物体内,铝的含量很少,被称为微量元素。

长期以来,铝一直被认为是无毒元素,但随着它在人们生活中的广泛应用,使其对环境的污染日益突出,尤其是对水环境的污染。

过量铝不仅对各类水生生物,植物等有强烈的毒害作用,还会导致人体多种疾病[2]。

因此,水中铝检测方法的探讨也日益成为人们关注的热点。

本文对几种检测方法做简单的论述,以便为今后的研究提供参考。

1.水中铝的检测方法1.1 分光光度法分光光度法是基于郎伯-比耳定律,即被测物质的浓度与吸光度呈线性关系来进行定量分析的方法。

分光光度法在水中铝的测定中有广泛的应用,根据所用显色剂的不同,有7-碘-8-羟基喹啉-5-磺酸荧光分光光度法,铬天青S——溴化十六烷基三甲胺分光光度法,铍试剂Ⅲ分光光度测定法和铝试剂分光光度法等。

1.1.1 7-碘-8-羟基喹啉-5-磺酸荧光分光光度法杨阳[3]等研究了在502nm波长下,以pH5.0的乙酸-乙酸钠为缓冲液,依据铝与H2QSI(7-碘-8-羟基喹啉-5-磺酸荧光分光光度法)结合成的二元配合物和有CTMAB(六烷基溴化铵)存在下形成的三元配合物以及试剂空白的荧光强度与水中铝的含量呈线性关系,建立了测定水中铝含量的7-碘-8-羟基喹啉-5-磺酸荧光分光光度法。

结果表明,用该法测水中铝的含量,平均回收率达96.0%,精密度较好,其检测范围为0.01—0.3mg/L,且该法操作简便,不需要有机溶剂萃取即可直接测定,易于掌握适合生活饮用水中铝的测定。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 实验办法与测定结果
1.1 搅拌实验
准确称取聚合氯化铝(Al2O3的含量为10.02%)和硫酸铝(Al2O3的含量为4.99%)各1.000克,放入到100毫升容量瓶中,稀释到刻度。

取宁波市自来水总企业江东水厂使用的河水原水和水库水原水各两份(均为1000ml),分别加入如上配制好的聚合氯化铝混凝剂和硫酸铝混凝剂开展搅拌实验,搅拌设置为:300转/分,1分钟;90转/分,10分钟,沉淀20分钟。

加入量如表1所示。

将沉淀后的1000ml水样搅拌均匀,取样,按表中数据稀释后,用铬天青S法开展测定。

数据如表2所示。

1.2 硫酸铝混凝剂、聚合氯化铝混凝剂稀释后铝含量的测定
准确称取聚合氯化铝(Al2O3的含量为10.02%)和硫酸铝(Al2O3的含量为4.99%)各1.000克,放入到100毫升容量瓶中,稀释到刻度。

再把这两种溶液各稀释4000倍、2000倍,测定稀释后溶液中的铝含量,所得结果如表3。

1.3 改进铬天青S法(一)实验
实验办法和顺序同1.1,只是先将样品倒入一干净烧杯中,将pH调节到3前后,再用碱液(10%氢氧化钠溶液)将pH调节到7前后,或者先用碱液(10%氢氧化钠溶液)将pH 调节到11前后,再用酸液(1+1盐酸)将pH调节到7前后,调节时的pH测定用pH试纸即可。

然后取样,再按照铬天青S法开展测定。

混凝剂为聚合氯化铝、硫酸铝,加入量分别为30Kg/KT、60Kg/KT,测定数据如表3.水库原水含铝量:0.014 mg/L。

1.4 改进铬天青S法(二)实验
实验办法和顺序同1.1,但样品先开展前处理,办法为:取一定量的试样,用盐酸溶液将pH调整到1以下,将试样加热近沸,用氢氧化钠溶液将试样pH调整到7前后,再按照铬天青S法开展测定。

测定数据如表5,实验中所用原水为水库水,所用混凝剂为聚合氯化铝,加入量为30 Kg/KT。

1.5 用铬天青S法和改进铬天青S法对水厂滤后水的测定结果
在使用硫酸铝混凝剂和聚合氯化铝混凝剂的水厂各取滤后水水样一个,在不加酸不加碱、先加酸(到pH为3)后加碱(到pH为7)、先加碱(到pH为11)后加酸(到pH为7)、先加酸(到pH<1=后加热近沸再加碱(到pH为7)的前处理条件下测定水样中的铝含量,测定数据如表6所示。

2 讨论
2.1 从表2可知,河水和水库水中的铝含量均比较低,在稀释后,对实验结果不会带来影响,因而在本文章所有实验中,原水中的铝含量可忽略不计,不予考虑。

2.2 从表2可得,当使用聚合氯化铝作为混凝剂时,用铬天青S法不能准确测定出饮用水中的铝含量,测定结果总是小于现实水中的铝含量,因而,该国家标准不适合聚合氯化铝作混凝剂时的饮用水中铝含量的测定。

在使用硫酸铝做混凝剂时,用铬天青S法能较好地测定出饮用水中的铝含量,这说明在聚铝混凝剂在发生混凝作用后,其中有一部分铝元素是无法用铬天青S法开展测定的。

2.3 从表3可得,即使没有开展混凝过程,聚合氯化铝被稀释后其中的铝含量仍然无法被完全测出,这说明聚合氯化铝中铝的存在形态的多样性,且其中一部分形态是无法用铬天青S法开展测定的。

2.4 从表4、5、6可得,无论是烧杯实验还是现实生产,当使用的混凝剂是聚合氯化铝时,为了准确地测定出其中的铝含量,必须对样品开展前处理,处理办法为:用盐酸溶液(1+4)将样品调节为pH<1,加热近沸,再用氢氧化钠溶液(20%)将样品调节为pH7前后,再按照铬天青S法的余下步骤开展下去,才能准确地测定出饮用水中的铝含量。

2.5 人们一般把硫酸铝和聚合氯化铝的水解物种分为:聚合物种、单体和固体物种,在不一样的pH条件下,水解物种的相对数量是不一样的。

硫酸铝在pH5~8时,单体物种和固体物种在全部物种中所占份额很大,而聚合物种所占比例较小;聚合氯化铝在pH7前后时,聚合物种在全部的水解物种中所占的比例较大,随着pH的降低,大聚合物的比例减小,其他物种比例增大,当pH降低到一定程度时,聚合物种完全被破坏,当pH降低到一定程度后,又加碱使其上升时,水解物种比例的变化并不可逆,大聚合物的比例不会再增加。

在烧杯实验中,当用硫酸铝做混凝剂时,其含铝量能够被完全测定出,但当用聚合氯化铝作混凝剂时,其含铝量是无法准确测定出来的,只有一部分能够被测定出,这是因为硫酸铝水解物种中所有的铝均能与铬天青S络合,从而被定量测定。

聚合氯化铝的水解物种中一些大聚合物中的铝比较稳定,不能与铬天青S形成络合物,从而不能被定量测定。

通过加酸、加热、加碱的调节溶液pH办法,可以破坏饮用水中大聚合物水解铝的形态,转化成能与铬天青S络合的铝的形态,加热使得大聚合物解聚的过程更迅速、更彻底,从而能准确地测定出饮用水中的铝含量。

相关文档
最新文档