人教版小学六年级数学下册知识点总结

合集下载

人教版小学六年级数学下册知识点_数学知识点

人教版小学六年级数学下册知识点_数学知识点

人教版小学六年级数学下册知识点_数学知识点人教版小学六年级数学下册知识点一:比例1.理解比例的意义和基本性质,会解比例。

2.理解正比例和反比例的意义,能找出生活中成正比例和成反比例量的实例,能运用比例知识解决简单的实际问题。

3.认识正比例关系的图像,能根据给出的有正比例关系的数据在有坐标系的方格纸上画出图像,会根据其中一个量在图像中找出或估计出另一个量的值。

4.了解比例尺,会求平面图的比例尺以及根据比例尺求图上距离或实际距离。

5.认识放大与缩小现象,能利用方格纸等形式按一定的比例将简单图形放大或缩小,体会图形的相似。

6.渗透函数思想,使学生受到辩证唯物主义观点的启蒙教育。

7.比例的意义:表示两个比相等的式子叫做比例。

如:2:1=6:8.组成比例的四个数,叫做比例的项。

两端的两项叫做外项,中间的两项叫做内项。

9.比例的性质:在比例里,两个外项的积等于两个两个内向的积。

这叫做比例的基本性质。

例如:由3:2=6:4可知3×4=2×6;或者由x×1。

5=y×1。

2可知x:y=1.2:1.5。

10.解比例:根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个数比例中的另外一个未知项。

求比例中的未知项,叫做解比例。

例如:3:x=4:8,内项乘内项,外项乘外项,则:4x=3×8,解得x=6。

11.正比例和反比例:(1)成正比例的量:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,他们的关系叫做正比例关系。

用字母表示y/x=k(一定)例如:①速度一定,路程和时间成正比例;因为:路程÷时间=速度(一定)。

②圆的周长和直径成正比例,因为:圆的周长÷直径=圆周率(一定)。

③圆的面积和半径不成比例,因为:圆的面积÷半径=圆周率和半径的积(不一定)。

④y=5x,y和x成正比例,因为:y÷x=5(一定)。

六年级下册数学1到4单元总结

六年级下册数学1到4单元总结

六年级下册数学1到4单元总结六年级下册数学1 - 4单元总结(人教版)1. 知识点。

- 负数的定义:比0小的数叫做负数,负数与正数表示意义相反的量。

例如:在温度计上,0℃以上为正数,0℃以下为负数;海拔高度中,海平面以上为正数,海平面以下为负数。

- 负数的读写法。

- 读负数时,先读“负”字,再读数。

例如:-5读作“负五”。

- 写负数时,先写“ - ”,再写数。

如:负八写作“ - 8”。

- 数轴。

- 数轴是规定了原点(0点)、正方向和单位长度的直线。

- 在数轴上,负数在0的左边,正数在0的右边,从左到右的顺序就是数从小到大的顺序。

例如: - 3<0<2。

2. 重点与难点。

- 重点:理解负数的意义,能正确读写负数,会用数轴表示正负数。

- 难点:理解负数的大小比较规则,以及在实际情境中运用负数表示相反意义的量。

1. 知识点。

- 折扣。

- 折扣的意义:商店有时降价出售商品,叫做打折扣销售,通称“打折”。

几折就表示十分之几,也就是百分之几十。

例如:八折就是原价的80%,七五折就是原价的75%。

- 折扣问题的计算:原价×折扣 = 现价。

例如:一件商品原价100元,打八折后的价格是100×80% = 80元。

- 成数。

- 成数表示一个数是另一个数的十分之几,通称“几成”。

例如:一成就是10%,三成五就是35%。

- 成数问题的计算:例如,去年小麦产量是100吨,今年比去年增产二成,今年产量就是100×(1 + 20%)=120吨。

- 税率。

- 税率是应纳税额与各种收入(销售额、营业额等)的比率。

- 应纳税额的计算:应纳税额 = 各种收入×税率。

例如:某商店营业额为10000元,税率为3%,应纳税额为10000×3% = 300元。

- 利率。

- 利率是单位时间内利息与本金的比率。

- 利息的计算:利息 = 本金×利率×存期。

例如:本金1000元,年利率为2.1%,存期2年,利息为1000×2.1%×2 = 42元。

六年级下册数学(人教版)知识点归纳总结整理

六年级下册数学(人教版)知识点归纳总结整理

人教版六年级数学下册知识点总结一、用字母表示运算定律或性质加法交换律: a+b=b+a加法结合律: (a+b)+c=a+(b+c)乘法交换律: ab=ba乘法结合律:(ab)c=a(bc)乘法分配律:a(b+c)=ab+ac二、几何图形计算公式(1)周长:物体或封闭图形一周的长度。

①长方形周长=(长+宽)×2 C=(a+b)×2②正方形周长=边长×4 C=4a③圆的周长=圆周率×直径 =圆周率×半径×2 C=πd C =2πr(2)面积:即物体的表面或封闭图形的大小。

①长方形的面积=长×宽 S=ab②正方形的面积=边长×边长 S=a•a=a2③平行四边形的面积=底×高 S=ah④三角形的面积=底×高÷2 S=ah÷2⑤梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷2⑥圆的面积=圆周率×半径S=πr2⑦直径d=2r 半径=直径÷2 r= d÷2⑧环形面积=外圆面积-内圆面积S环=S外-S内【相互联系】平面图形的面积公式是以长方形面积计算公式为基础的。

如两个完全相同的三角形、梯形可拼成一个平行四边形。

圆拼成长方形的长时1/2C,宽是R.(3)表面积:立体图形的所有面的面积之和叫做它的表面积。

①长方体的表面积=(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh)②正方体的表面积=棱长×棱长×6 S=a×a×6 =6a2③圆柱体的侧面积=底面周长×高 S=Ch =2πrh④圆柱体的表面积=侧面积+底面积×2 S= Ch+2πr2 = 2πrh+2πr2 注意:圆柱的底面周长与高相等时侧面展开是正方形,C=h 2πr=h(4)体积:物体所占空间的大小叫体积。

人教版小学六年级数学上下册知识点归纳总结

人教版小学六年级数学上下册知识点归纳总结

小学六年级数学知识点归纳六年级上册知识点概念总结1.分数乘法:分数乘法的意义与整数乘法的意义相同,就是求几个相同加数和的简便运算。

2.分数乘法的计算法则:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。

但分子分母不能为零.。

3.分数乘法意义分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。

一个数与分数相乘,可以看作是求这个数的几分之几是多少。

4.分数乘整数:数形结合、转化化归5.倒数:乘积是1的两个数叫做互为倒数。

6.分数的倒数找一个分数的倒数,例如3/4 把3/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。

则是4/3。

3/4是4/3的倒数,也可以说4/3是3/4的倒数。

7.整数的倒数找一个整数的倒数,例如12,把12化成分数,即12/1 ,再把12/1这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。

则是1/12 ,12是1/12的倒数。

8.小数的倒数:普通算法:找一个小数的倒数,例如0.25 ,把0.25化成分数,即1/4 ,再把1/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。

则是4/19.用1计算法:也可以用1去除以这个数,例如0.25 ,1/0.25等于4 ,所以0.25的倒数4 ,因为乘积是1的两个数互为倒数。

分数、整数也都使用这种规律。

10.分数除法:分数除法是分数乘法的逆运算。

11.分数除法计算法则:甲数除以乙数(0除外),等于甲数乘乙数的倒数。

12.分数除法的意义:与整数除法的意义相同,都是已知两个因数的积与其中一个因数求另一个因数。

13.分数除法应用题:先找单位1。

单位1已知,求部分量或对应分率用乘法,求单位1用除法。

14.比和比例:比和比例一直是学数学容易弄混的几大问题之一,其实它们之间的问题完全可以用一句话概括:比,等同于算式中等号左边的式子,是式子的一种(如:a:b);比例,由至少两个称为比的式子由等号连接而成,且这两个比的比值是相同(如:a:b=c:d)。

六年级下册数学(人教版)知识点归纳总结复习资料

六年级下册数学(人教版)知识点归纳总结复习资料

人教版六年级数学下册知识点总结一、用字母表示运算定律或性质加法交换律: a+b=b+a加法结合律: (a+b)+c=a+(b+c)乘法交换律: ab=ba乘法结合律:(ab)c=a(bc)乘法分配律:a(b+c)=ab+ac二、几何图形计算公式(1)周长:物体或封闭图形一周的长度。

①长方形周长=(长+宽)×2 C=(a+b)×2②正方形周长=边长×4 C=4a③圆的周长=圆周率×直径 =圆周率×半径×2 C=πd C =2πr(2)面积:即物体的表面或封闭图形的大小。

①长方形的面积=长×宽 S=ab②正方形的面积=边长×边长 S=a•a=a2③平行四边形的面积=底×高 S=ah④三角形的面积=底×高÷2 S=ah÷2⑤梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷2⑥圆的面积=圆周率×半径S=πr2⑦直径d=2r 半径=直径÷2 r= d÷2⑧环形面积=外圆面积-内圆面积S环=S外-S内【相互联系】平面图形的面积公式是以长方形面积计算公式为基础的。

如两个完全相同的三角形、梯形可拼成一个平行四边形。

圆拼成长方形的长时1/2C,宽是R.(3)表面积:立体图形的所有面的面积之和叫做它的表面积。

①长方体的表面积=(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh)②正方体的表面积=棱长×棱长×6 S=a×a×6 =6a2③圆柱体的侧面积=底面周长×高 S=Ch =2πrh④圆柱体的表面积=侧面积+底面积×2 S= Ch+2πr2 = 2πrh+2πr2 注意:圆柱的底面周长与高相等时侧面展开是正方形,C=h 2πr=h(4)体积:物体所占空间的大小叫体积。

人教版六年级下册数学知识点归纳整数的乘除法规则

人教版六年级下册数学知识点归纳整数的乘除法规则

人教版六年级下册数学知识点归纳整数的乘除法规则整数的乘除法规则是六年级下册数学课程中的一个重要知识点。

通过学习这些规则,同学们可以更好地理解和应用整数的乘除法运算。

在本文中,我们将对人教版六年级下册数学知识点归纳整数的乘除法规则进行详细讲解。

一、整数的乘法规则在乘法运算中,同号相乘得正,异号相乘得负。

具体规则如下:1. 正数乘以正数,结果为正数。

例如:3 × 4 = 12。

2. 负数乘以负数,结果为正数。

例如:(-2) × (-3) = 6。

3. 正数乘以负数,结果为负数。

例如:5 × (-2) = -10。

4. 负数乘以正数,结果为负数。

例如:(-4) × 3 = -12。

二、整数的除法规则在除法运算中,同号相除得正,异号相除得负。

具体规则如下:1. 正数除以正数,结果为正数。

例如:12 ÷ 3 = 4。

2. 负数除以负数,结果为正数。

例如:(-6) ÷ (-2) = 3。

3. 正数除以负数,结果为负数。

例如:8 ÷ (-4) = -2。

4. 负数除以正数,结果为负数。

例如:(-10) ÷ 2 = -5。

三、整数的乘除法运算混合运算在整数的乘除法混合运算中,需要遵循运算法则的先后顺序。

具体运算步骤如下:1. 先进行乘法运算,再进行除法运算。

2. 先按照同号相乘的规则,进行乘法运算。

3. 再按照同号相除的规则,进行除法运算。

4. 当出现多个乘除号时,按从左向右的顺序进行运算。

例如:计算 -6 × (-2) ÷ 3 的结果。

按照运算法则,先进行乘法运算:-6 × (-2) = 12。

然后进行除法运算:12 ÷ 3 = 4。

所以,-6 × (-2) ÷ 3 = 4。

四、练习题下面给出一些乘除法运算的练习题,供同学们巩固学习成果:1. 2 × (-8) = ?2. (-5) ÷ 2 = ?3. (-12) × (-3) = ?4. 16 ÷ (-4) = ?请同学们根据整数的乘除法规则进行计算,并写出计算结果。

新人教版六年级数学下册单元知识点归纳整理

新人教版六年级数学下册单元知识点归纳整理第一单元负数1.负数:在数轴线上;负数都在0的(左侧);所有的负数都比自然数小。

负数用负号“-”标记;如-2;-5.33;-45;-0.6等。

2.正数:大于0的数叫正数(不包括0);数轴上0(右边)的数叫做正数若一个数大于零(>0);则称它是一个正数。

正数的前面可以加上正号“+”来表示。

正数有(无数个);其中有(正整数;正分数和正小数)。

3. (0)既不是正数;也不是负数;它是正、负数的界限。

所有的负数都在0的(左边);负数都小于0;正数都大于0;负数都比正数(小)。

第二单元圆柱和圆锥1、圆柱的特征:(1)底面的特征:圆柱的底面是完全相等的两个圆。

(2)侧面的特征:圆柱的侧面是一个曲面。

(3)高的特征:圆柱有无数条高。

2、圆柱的高:两个底面之间的距离叫做高。

3、圆柱的侧面展开图:当沿高展开时展开图是(长方形);这个长方形的长等于(圆柱的底面周长);长方形的宽等于(圆柱的高)。

这个长方形的面积等于(圆柱的侧面积);因为长方形面积=长×宽;所以圆柱的侧面积=底面周长×高当底面周长和高相等时;沿高展开图是(正方形);当不沿高展开时展开图是(平行四边形)。

4、圆柱的侧面积:圆柱的侧面积=底面的周长×高;用字母表示为:S侧=Ch。

h=S侧÷C C= S侧÷hS侧=∏dh=2∏rh5、圆柱的表面积:圆柱的表面积=侧面积+底面积×2。

即S表= S侧+ S底×2=Ch+∏(C÷∏÷2)²×2=∏dh+∏(d÷2) ²×2=2∏rh+∏r²×2(计算时最好分步使用公式;以免出现计算错误。

)6、圆柱表面积在实际中的应用:无盖水桶的表面积=侧面积+一个底面积油桶的表面积=侧面积+两个底面积烟囱通风管的表面积=侧面积只求侧面积:灯罩、排水管、漆柱、通风管、压路机、卫生纸中轴、薯片盒包装侧面积+一个底面积:玻璃杯、水桶、笔筒、帽子、游泳池侧面积+两个底面积:油桶、米桶、罐桶类7、圆柱的体积:V=Sh h=V÷S S=V÷hV=∏r²h (已知r)V=∏(d÷2) ²h (已知d)V=∏(C÷∏÷2)²h (已知C)8、把一个圆柱体切分成若干份拼成一个近似的长方体;在这个过程中;形状发生了变化;体积没有发生变化。

人教版小学数学六年级下册1-6单元知识点思维导图

人教版小学数学六年级下册16单元知识点思维导图一、数与代数1. 分数分数的意义和性质分数加减法分数乘除法分数混合运算2. 小数小数的意义和性质小数加减法小数乘除法小数混合运算3. 比和比例比的意义和性质比例的意义和性质比例尺比例应用题二、空间与图形1. 角角的度量角的分类角的画法2. 三角形三角形的性质三角形的分类三角形的画法3. 四边形四边形的性质四边形的分类四边形的画法4. 圆圆的性质圆的画法圆的周长和面积三、统计与概率1. 数据的收集和整理调查法抽样调查数据整理2. 数据的表示条形统计图折线统计图扇形统计图3. 数据的分析平均数中位数众数4. 概率概率的定义概率的计算概率应用题四、实践与综合应用1. 实践活动数学游戏数学实验数学探究2. 综合应用解决实际问题的能力综合应用题数学建模人教版小学数学六年级下册16单元知识点思维导图一、数与代数1. 分数分数的意义和性质分数表示部分与整体的关系分数的分子和分母分数的基本性质分数加减法同分母分数的加减法异分母分数的加减法分数加减法的应用分数乘除法分数乘法的意义和计算方法分数除法的意义和计算方法分数乘除法的应用分数混合运算分数混合运算的顺序分数混合运算的技巧分数混合运算的应用2. 小数小数的意义和性质小数表示部分与整体的关系小数的整数部分和小数部分小数的基本性质小数加减法小数点对齐的加减法小数加减法的应用小数乘除法小数乘法的意义和计算方法小数除法的意义和计算方法小数乘除法的应用小数混合运算小数混合运算的顺序小数混合运算的技巧小数混合运算的应用3. 比和比例比的意义和性质比表示两个数的关系比的基本性质比例的意义和性质比例表示两个比的关系比例的基本性质比例尺比例尺的定义比例尺的应用比例应用题比例问题的解决方法比例问题的应用二、空间与图形1. 角角的度量角的定义角的度量单位角的分类锐角、直角、钝角、周角角的画法角的画法步骤角的画法应用2. 三角形三角形的性质三角形的边和角的关系三角形的分类三角形的分类按边分类:等边三角形、等腰三角形、不等边三角形按角分类:锐角三角形、直角三角形、钝角三角形三角形的画法三角形的画法步骤三角形的画法应用3. 四边形四边形的性质四边形的边和角的关系四边形的分类四边形的分类按边分类:等边四边形、等腰四边形、不等边四边形按角分类:锐角四边形、直角四边形、钝角四边形四边形的画法四边形的画法步骤四边形的画法应用4. 圆圆的性质圆的定义圆的基本性质圆的画法圆规的使用方法圆的画法应用圆的周长和面积圆的周长公式圆的面积公式三、统计与概率1. 数据的收集和整理调查法调查问卷的设计调查数据的收集抽样调查抽样调查的方法抽样调查的应用数据整理数据的排序数据的分组2. 数据的表示条形统计图条形统计图的制作条形统计图的应用折线统计图折线统计图的制作折线统计图的应用扇形统计图扇形统计图的制作扇形统计图的应用3. 数据的分析平均数平均数的计算方法平均数的应用中位数中位数的计算方法中位数的应用众数众数的计算方法众数的应用4. 概率概率的定义概率的计算方法概率的表示概率的计算概率的基本公式概率的计算应用概率应用题概率问题的解决方法概率问题的应用四、实践与综合应用1. 实践活动数学游戏数学游戏的设计数学游戏的规则数学实验数学实验的设计数学实验的操作数学探究数学探究的主题数学探究的方法2. 综合应用解决实际问题的能力实际问题的分析实际问题的解决综合应用题综合应用题的类型综合应用题的解答数学建模数学建模的意义数学建模的方法人教版小学数学六年级下册16单元知识点思维导图一、数与代数1. 分数分数的意义和性质分数表示部分与整体的关系分数的分子和分母分数的基本性质分数加减法同分母分数的加减法异分母分数的加减法分数加减法的应用分数乘除法分数乘法的意义和计算方法分数除法的意义和计算方法分数乘除法的应用分数混合运算分数混合运算的顺序分数混合运算的技巧分数混合运算的应用2. 小数小数的意义和性质小数表示部分与整体的关系小数的整数部分和小数部分小数的基本性质小数加减法小数点对齐的加减法小数加减法的应用小数乘除法小数乘法的意义和计算方法小数除法的意义和计算方法小数乘除法的应用小数混合运算小数混合运算的顺序小数混合运算的技巧小数混合运算的应用3. 比和比例比的意义和性质比表示两个数的关系比的基本性质比例的意义和性质比例表示两个比的关系比例的基本性质比例尺比例尺的定义比例尺的应用比例应用题比例问题的解决方法比例问题的应用二、空间与图形1. 角角的度量角的定义角的度量单位角的分类锐角、直角、钝角、周角角的画法角的画法步骤角的画法应用2. 三角形三角形的性质三角形的边和角的关系三角形的分类三角形的分类按边分类:等边三角形、等腰三角形、不等边三角形按角分类:锐角三角形、直角三角形、钝角三角形三角形的画法三角形的画法步骤三角形的画法应用3. 四边形四边形的性质四边形的边和角的关系四边形的分类四边形的分类按边分类:等边四边形、等腰四边形、不等边四边形按角分类:锐角四边形、直角四边形、钝角四边形四边形的画法四边形的画法步骤四边形的画法应用4. 圆圆的性质圆的定义圆的基本性质圆的画法圆规的使用方法圆的画法应用圆的周长和面积圆的周长公式圆的面积公式三、统计与概率1. 数据的收集和整理调查法调查问卷的设计调查数据的收集抽样调查抽样调查的方法抽样调查的应用数据整理数据的排序数据的分组2. 数据的表示条形统计图条形统计图的制作条形统计图的应用折线统计图折线统计图的制作折线统计图的应用扇形统计图扇形统计图的制作扇形统计图的应用3. 数据的分析平均数平均数的计算方法平均数的应用中位数中位数的计算方法中位数的应用众数众数的计算方法众数的应用4. 概率概率的定义概率的计算方法概率的表示概率的计算概率的基本公式概率的计算应用概率应用题概率问题的解决方法概率问题的应用四、实践与综合应用1. 实践活动数学游戏数学游戏的设计数学游戏的规则数学实验数学实验的设计数学实验的操作数学探究数学探究的主题数学探究的方法2. 综合应用解决实际问题的能力实际问题的分析实际问题的解决综合应用题综合应用题的类型综合应用题的解答数学建模数学建模的意义数学建模的方法。

部编人教版六年级数学下册第二单元百分数(二)知识点总结

部编人教版六年级数学下册第二单元百分
数(二)知识点总结
付的钱叫做利息。

3.利率是银行为了吸纳存款和贷款而规定的
一种利息比率。

4.利率可以表示为年利率或月利率,一般情
况下,年利率是月利率的12倍。

5.计算利息的方法:利息=本金×利率×时间。

6.求利率,就是已知本金和利息,求利率是多
少。

利率=利息÷本金×时间。

求本金,就是已
知利率和利息,求本金是多少。

本金=利息÷利
率×时间。

求时间,就是已知本金、利率和利
息,求时间是多少。

时间=利息÷本金÷利率。

存期要以“月”为单位,日利率对应的存期要以“日”为单位。

利息是指存款的收益,可以用以下公式计算:利息=本金
×利率×存期。

本金是指存款的原始金额,可以用以下公式计算:本金=利息÷存期÷利率。

利率是指单位时间内的利息与本
金的比率。

在购物时,我们需要注意商品的促销政策,可以用学过的百分数知识求出商品的实际价格,从中选取最省钱的方案。

在个人所得税的计算中,超过3500元部分需要按规定纳税,需要纳税部分的收入称为应税收入。

需要注意的是,不同的存期对应不同的利率,而在累计存期相同的情况下,一次性存款比其他存款方式所获得的利息要多一些。

在计算时,存期要与利率相对应,年利率对应的存期要以“年”为单位,月利率对应的存期要以“月”为单位,日利率对应的存期要以“日”为单位。

人教版六年级数学下册数与代数知识点归纳及经典练习题

人教版六年级数学下册数与代数知识点归纳及经典练习题知识点一整数一、知识整理。

1、整数的定义:像-3,-2,-1,0,1,2……这样的数称为整数。

在整数中大于零的数称为正整数,小于零的数称为负整数。

正整数、零与负整数统称为整数。

2、整数的范围:除自然数外,整数还包括负整数。

但在小学阶段里,整数通常指的是自然数。

3、读法:从高位到低位,一级一级地读,每一级末尾的0都不读出来,其他数位连续有几个0都只读一个零。

4、写法:从高位到低位,一级一级地写,哪一个数位上一个单位也没有,就在那个数位上写0。

知识点二自然数1、自然数的定义:我们在数物体的时候,用来表示物体个数的0,1,2,3,……叫作自然数。

2、自然数的基本单位:任何非“0”的自然数都是由若干个“1”组成,所以“1”是自然数的基本单位。

3、“0”的含义:一个物体也没有,用“0”表示,但并不是说“0”只表示没有物体,它还有多方面的含义。

知识点三比较整数大小的方法1、数位不同的正整数的比较方法:如果位数不同,那么位数多的数就大。

2、数位相同的正整数的比较方法:如果位数相同,左起第一位上数大的那个数就大;如果左起第一位上的数相同,就比较左起第二位上的数。

依次类推直到比较出数的大小。

知识点四整数的改写把大数改写成用“万”或“亿”作单位的数:一个比较大的多位数,为了读写方便,常常把它改写成用“万”或“亿”作单位的数。

改写有两种情况:一种是把较大的多位数直接改写成用“万”或“亿”作单位的数,不满万、亿的尾数直接改写成小数;另一种是根据需要省略万位或亿位的尾数,把原来的多位数按照“四舍五入”法写成它的近似数。

知识点五倍数和因数1、倍数和因数的定义:自然数a(a≠0)乘自然数b(b≠0),所得的积c就是a和b的倍数,a和b就是c的因数。

2、倍数的特征:一个数的倍数的个数是无限的,其中最小的倍数是它本身,没有最大的倍数。

3、因数的特征:一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版小学六年级数学下册知识点总结六年级下册知识点第一单元负数负数的由来是为了表示相反意义的两个量,比如盈利亏损、收入支出等。

所以出现了负数,以盈利为正、亏损为负;以收入为正、支出为负。

负数是小于零的数,数轴上左边的数叫做负数。

负数有无数个,其中包括负整数、负分数和负小数。

负数的写法是数字前面加负号“-”号,不可以省略。

正数是大于零的数,数轴上右边的数叫做正数。

正数有无数个,其中包括正整数、正分数和正小数。

正数的写法是数字前面可以加正号“+”号,也可以省略不写。

0既不是正数,也不是负数,它是正、负数的分界限。

负数都小于零,正数都大于零,负数都比正数小,正数都比负数大。

数轴可以用来比较两个数的大小。

负数小于正数或者左边小于右边。

第二单元百分数二一、折扣和成数折扣是用于商品的,现价是原价的百分之几,叫做折扣。

通称“打折”。

几折就是十分之几,也就是百分之几十。

例如:八折=8/10=80%,六折五=6.5/10=65/100=65%。

解决打折的问题,关键是先将打的折数转化为百分数或分数,然后按照求比一个数多(少)百分之几(几分之几)的数的解题方法进行解答。

商品现在打八折,现在的售价是原价的80%。

商品现在打六折五,现在的售价是原价的65%。

成数是几成就是十分之几,也就是百分之几十。

例如:一成=1/10=10%,八成五=8.5/10=85/100=85%。

解决成数的问题,关键是先将成数转化为百分数或分数,然后按照求比一个数多(少)百分之几(几分之几)的数的解题方法进行解答。

这次衣服的进价增加一成,这次衣服的进价比原来的进价增加10%。

今年小麦的收成是去年的八成五,今年小麦的收成是去年的85%。

二、税率和利率税率是根据国家税法的有关规定,按照一定的比率把集体或个人收入的一部分缴纳给国家。

2.纳税的意义:税收是国家财政收入的主要来源之一。

国家用收来的税款发展经济、科技、教育、文化和国防安全等事业。

因此,每个公民都有义务按照法定程序缴纳税款,以支持国家的发展和建设。

3.应纳税额:每个人根据自己的收入情况,需要按照一定的比例缴纳税款,这个缴纳的税款就是应纳税额。

4.税率:应纳税额与各种收入的比率叫做税率。

税率的高低根据国家的财政政策而定,不同的收入水平对应不同的税率。

5.应纳税额的计算方法:应纳税额可以通过总收入乘以税率来计算,也可以通过应纳税额除以税率来计算收入额。

2.利率1.存款可以选择不同的储蓄方式,包括活期、整存整取和零存整取等方法。

2.储蓄的意义在于,可以将暂时不需要的钱存入银行或信用社,既支持国家建设,也保证个人的财产安全,同时还可以获得一定的收益。

3.存入银行的钱叫做本金,而取款时银行多支付的钱则是利息。

4.利率是指利息与本金的比值,不同的储蓄方式和期限对应不同的利率。

5.利息的计算公式为利息等于本金乘以利率乘以时间,而利率可以通过利息除以时间除以本金再乘以100%来计算。

6.需要注意的是,如果要缴纳利息税,可以通过利息乘以利息税率来计算应纳税额,从而得到税后利息。

购物策略:在购物时,需要根据实际的问题选择合理的估算策略来估算费用,并对常见的几种优惠策略进行分析和比较,最终选择最为优惠的方案。

学后反思:在做事情时,运用策略可以帮助我们更好地规划和实现目标,提高效率和成功率。

圆柱和圆锥1.圆柱的形成方式有两种:一种是以长方形的一边为轴旋转,另一种是由长方形卷曲而得到。

其中,以长方形的长为底面周长,宽为高的方式得到的圆柱体积较大。

2.圆柱的高是指两个底面之间的距离,一个圆柱有无数条高,它们的数值相等。

3.圆柱的特征包括底面是完全相等的两个圆、侧面是一个曲面以及有无数条高。

4.圆柱可以进行横切和竖切,分别对应不同的切面形状和表面积增加量。

5.圆柱的侧面展开图可以沿着高展开或不沿着高展开,展开图形可以是长方形、正方形、平行四边形或不规则图形。

6.圆柱的相关计算公式包括底面积和底面周长的公式。

圆柱和圆锥是几何学中常见的几何体,它们的表面积、体积和底面周长等参数是数学中的基础知识。

在考试中,会出现多种不同的题型,需要根据题目要求选择正确的计算公式进行求解。

对于圆柱,其侧面积为2πrh,表面积为2πr²+2πrh,体积为πr²h。

常见的题型包括已知底面积和高,求侧面积、表面积、体积和底面周长等;已知底面周长和高,求侧面积、表面积、体积和底面积等;已知底面周长和体积,求侧面积、表面积、高和底面积等。

需要注意的是,无盖水桶的表面积等于侧面积加一个底面积,而油桶的表面积等于侧面积加两个底面积。

对于圆锥,其底面积为πr²,底面周长为2πr,体积为1/3πr²h。

常见的题型包括已知底面积和高,求体积和底面周长;已知底面周长和高,求体积和底面积;已知底面周长和体积,求高和底面积等。

需要注意的是,圆锥的切割有横切和竖切两种,竖切会增加两个等腰三角形的面积,即S增=2rh。

圆柱和圆锥之间有一些关系,比如等底等高时,圆柱的体积是圆锥的3倍;等底等体积时,圆锥的高是圆柱的3倍;等高等体积时,圆锥的底面积是圆柱的3倍。

在解题时,需要根据题目要求选择正确的计算公式进行求解,注意计算过程中的单位换算和精度控制。

1.直接利用公式:分析清楚需要求的是圆柱或圆锥的表面积、侧面积、底面积和体积,同时分析半径变化对底面周长、侧面积、底面积和体积的影响,还需要比较两个圆柱或圆锥的半径、底面积、底面周长、侧面积、表面积和体积之比。

2.圆柱与圆锥之间可以进行转换,例如削成最大体积的问题,可以转换为正方体、长方体、圆柱和圆锥之间的问题。

3.横截面也是一个重要的问题。

4.浸水体积问题需要注意,水面上升的部分体积等于物品在水中浸入的体积,可以用盛水的底面积乘以上升的高度来计算,对于圆柱、长方体和正方体都适用。

5.等体积转换问题需要注意,例如圆柱融化后做成圆锥,或者圆柱中的溶液倒入圆锥,都是体积不变的问题,不需要乘以1/3.1.比的意义:比是两个数相除的结果,比号用“:”表示,前项是被除数,后项是除数,比值是商。

比值可以是整数、小数或分数,但后项不能为零。

2.比的基本性质:比的前后项同时乘或除以相同的数(除零),比值不变,这是比的基本性质。

3.求比值和化简比:求比值的方法是前项除以后项,结果可以是整数、小数或分数。

比可以化简为最简比,即前、后项互质。

4.按比例分配:按比例分配是将数量按照一定比例分配的方法,首先计算各部分占总量的比例,然后计算总量的比例。

5.比例的意义:比例是表示两个比相等的式子,由四个数构成,其中两个内项和两个外项。

比例中的两个外项的积等于两个内项的积,这是比例的基本性质。

6.比和比例的区别:比是两个数相除的结果,有两项;比例是两个比相等的式子,有四项。

比有化简比的基本性质,比例有解比例的基本性质。

8、如果两种相关联的量,其中一种量变化,另一种量也随着变化,并且相对应的两个数的比值(即商)始终保持一定,那么这两种量就是成正比例的量,它们之间的关系被称为正比例关系,可以用字母表示为x/y=k(其中k是一个常数)。

9、如果两种相关联的量,其中一种量变化,另一种量也随着变化,并且相对应的两个数的积始终保持一定,那么这两种量就是成反比例的量,它们之间的关系被称为反比例关系,可以用字母表示为x×y=k(其中k是一个常数)。

10、判断两种量成正比例还是成反比例的方法,关键在于看这两个相关联的量中相对应的两个数的商一定还是积一定,如果商一定,就成正比例;如果积一定,就成反比例。

11、比例尺是指一幅图上距离和实际距离的比值,它可以用来帮助我们在画图和解决实际问题时进行距离的转换。

12、比例尺可以分为数值比例尺和线段比例尺,以及缩小比例尺和放大比例尺。

13、在计算图上距离和实际距离之间的关系时,可以使用图上距离/实际距离=比例尺的公式,或者实际距离=图上距离×比例尺、图上距离÷比例尺=实际距离的关系式。

14、应用比例尺画图的步骤包括:写出图的名称、确定比例尺、根据比例尺求出图上距离、画图并标出单位长度、标出实际距离和地点名称、标出比例尺。

15、图形的放大与缩小指的是形状相同但大小不同的图形之间的关系。

16、用比例解决问题的基本思路是根据问题中的不变量找出两种相关联的量,并正确判断这两种相关联的量成什么比例关系,然后根据正、反比例关系式列出相应的方程并求解。

17、常见的数量关系式包括单价×数量=总价、单产量×数量=总产量、速度×时间=路程、工效×工作时间=工作总量等。

18、已知图上距离和实际距离可以求比例尺;已知比例尺和图上距离可以求实际距离;已知比例尺和实际距离可以求图上距离。

在计算时,图距和实距的单位必须统一。

19、如果已知播种的总公顷数一定,那么每天播种的公顷数和要用的天数就是成反比例的关系,因为每天播种的公顷数和要用的天数的积是一定的。

无论采用哪种放法,都可以得出“必然结果”,即“必有一个盒子放了两个或两个以上的苹果”。

同样地,如果有5只鸽子飞进4个鸽笼里,那么一定有一个鸽笼飞进了2只或2只以上的鸽子。

再比如,如果有6封信,任意投入5个信箱里,那么一定有一个信箱至少有2封信。

将这些例子中的“苹果”、“鸽子”、“信”视为一种物体,将“盒子”、“鸽笼”、“信箱”视为鸽巢,就可以得到鸽巢原理最简单的表达形式。

解决摸2个同色球的问题有两种方法。

首先,要保证摸出两个同色的球,摸出的球的数量至少要比颜色数多1.因此,物体数=颜色数×(至少数-1)+1.其次,采用极端思想:用最不利的摸法先摸出两个不同颜色的球,再无论摸出一个什么颜色的球,都能保证一定有两个球是同色的。

最后,可以应用公式:两种颜色:2+1=3(个);三种颜色:3+1=4(个);四种颜色:4+1=5(个)。

相关文档
最新文档