小学人教版六年级下册数学各单元知识点
人教版数学六年级下册知识点整理

人教版数学六年级下册知识点整理5.数轴:(3)应纳税额:缴纳的税款叫做应纳税额。
(4)税率:应纳税额与各种收入的比率叫做税率。
(5)应纳税额的计算方法:应纳税额=总收入×税率收入额=应纳税额÷税率2.利率(1)存款分为活期、整存整取和零存整取等方法。
(2)储蓄的意义:人们常常把暂时不用的钱存入银行或信用社,储蓄起来,这样不仅可以支援国家建设,也使得个人用钱更加安全和有计划,还可以增加一些收入。
(3)本金:存入银行的钱叫做本金。
(4)利息:取款时银行多支付的钱叫做利息。
(5)利率:利息与本金的比值叫做利率。
(6)利息的计算公式:利息=本金×利率×存期利率=利息÷存期÷本金×100%(7)注意:如要上交利息税(国债和教育储藏的利息不纳税),则:税后利息=利息-利息的应纳税额=利息-利息×利息税率=利息×(1-利息税率)第三单元圆柱和圆锥一、圆柱1.圆柱的形成:圆柱是以长方形的一边为轴旋转而得的,也可以由长方形卷曲而得到。
一个长方形有两种卷曲圆柱的方式(长>宽):(1)以长方形的长为底面周长,宽为高;(2)以长方形的宽为底面周长,长为高。
其中,第一种方式得到的圆柱体体积较大。
2.圆柱的高是两个底面之间的距离,一个圆柱有无数条高,同一个圆柱的高都是相等的。
3.圆柱的特征:(1)底面的特征:圆柱的底面是完全相等的两个圆。
(2)侧面的特征:圆柱的侧面是一个曲面。
(3)高的特征:圆柱有无数条高。
4.圆柱的切割:①横切:切面是圆,表面积增加2倍底面积,即S 增 =2πr²②竖切(过直径):切面是长方形(如果h=2R,切面为正方形),该长方形的长是圆柱的高,宽是圆柱的底面直径,表面积增加两个长方形的面积,即S增=4rh5.圆柱的侧面展开图:①沿着高展开,展开图是长方形,如果h=2πr,则展开图形为正方形②不沿着高展开,展开图形是平行四边形或不规则图形③无论怎么展开都得不到梯形6.圆柱的相关计算公式:底面积:S底=πr²底面周长:C底=πd=2πr侧面积:S侧=ch=πdh=2πrh表面积:S表=2S底+S侧=2πr²+2πrh体积:V柱=πr²h考试常见题型:①已知圆柱的底面积和高,求圆柱的侧面积,表面积,体积,底面周长②已知圆柱的底面周长和高,求圆柱的侧面积,表面积,体积,底面积③已知圆柱的底面周长和体积,求圆柱的侧面积,表面积,高,底面积④已知圆柱的底面面积和高,求圆柱的侧面积,表面积,体积⑤已知圆柱的侧面积和高,求圆柱的底面半径,表面积,体积,底面积以上几种常见题型的解题方法,通常是求出圆柱的底面半径和高,再根据圆柱的相关计算公式进行计算。
人教版小学数学六年级下册第二单元知识点汇总

1.农业上经常用“成数”来表示收成的情况。现在,“成数”已经广泛应用于表示各行各业的发展变化情况。
2.成数表示一个数是另一个数的十分之几,也就是百分之几十;但是在表示百分之几十几时,要说几成几。
3.解决成数问题时,把成数转化为百分数后,解题思路和解题方法同解决百分数问题完全相同。
三、税率
1.纳税的含义:纳税是根据国家税法的有关规定,按照一定的比率把集体或个人收入的一部分缴纳给国家。
2.每个公民都有依法纳税的义务。缴纳的税款叫做应纳税额,应纳税额与各种收入(销售额、营业额……)的比率叫做税率。
3.求应纳税额,就是求一个数的百分之几是多少的问题,收入×税率=应纳税额。求税率,就是求应纳税额是应纳税收入的百分之几,税率=应纳税额÷收入×100%。求收入,就是已知一个数的百分之几是多少,求这个数是多少,收入=应纳税额÷税率。
例如:打九折就是按原价的90%出售。打八五折就是按原价的85%出售。
现价=原价×折扣
原价=现价÷折扣
折扣=现价÷原价
节省钱数=原价×(1-折扣)
例如:今年我省油菜籽比去年增产两成。两成就是十分之二,改写成百分数就是20%。35%改写成成数是三成五。
提示:税收的种类不同,税率也各不相同。
提示:有时并不是全部收入都需要纳税,例如,目前个人工资或薪金收入的3500元以下的部分是不需要纳税的,而超过3500元部分则需要按规定纳税。需要纳税部分的收入叫做应税收入。
小学数学六年级下册第二单元知识点汇总(人教版)
一、折扣
1.商店有时降价出售商品,叫做打折扣销售,俗称“打折”。
2.几折就表示原价的十分之几,也就是原价的百分之几十;几几折就是原价的百分之几十几。
3.求现价,就是求原价的百分之几是多少。求原价,就是已知一个数的百分之几是多少,求这个数。
人教版六年级数学下册第六单元整理与复习——数与代数课件

2021/12/30
2. 数的改写
求小数的近似数
1
保留整数表示精确到个位,就是要用四舍五入法把小数部
分的数去掉,要看十分位,十分位的数比5小就舍去,比5
大或等于5就向前进一。
保留一位小数,表示精确到十分位,就是要用四舍五入法
2 把十分位后面的数去掉,要看百分位,百分位上的数比5小
就舍去,比5大或等于5就向前进一。
1. 数的读写
分数的读写法
读分数时,先读分母,再读分之,然后读分子,分子和
分母按照整数的读法来读。
写分数时,先写分数线,再写分母,左后写分子,按照
整数的写法来写。
如:
六十一分之九
2021/12/30
读作: 二十九分之五
写作:
返回
1. 数的读写
百分数的读写法
读百分数时,先写百分之,再读百分号前面的数,读
百分号
返回
2021/12/30
分数与除法的关系
分母
分数 分子 分数线(不能为0) 分数值 是一种数
除数
除法 被除数 除号 (不能为0) 商
是一种运算
返回
2021/12/30
小数
=0.1
=0.01
整数部分是否为0
小数
=0.001 ……
小数点
纯小数
带小数
3 . 1 4 1 5 9
-3
-1.5
0
1
3.5
0的左边为负数,右边为正数。
返回
2021/12/30
3. 计数单位和数位
什么是十进制计数法?数位和计数单位有什么区别?填写下
人教版六年级下册数学知识点汇总

人教版六年级下册数学知识点汇总一、负数。
1. 负数的定义。
- 为了表示相反意义的量,如零上温度和零下温度、收入与支出等,我们引入负数。
像 -3、-5.6、- (1)/(2)等带有负号的数叫做负数;以前学过的像3、5.6、(1)/(2)等这样的数叫做正数(正数前面也可以加“+”号);0既不是正数也不是负数。
2. 数轴。
- 规定了原点、正方向和单位长度的直线叫做数轴。
- 在数轴上,从左到右的顺序就是数从小到大的顺序。
所有的负数都在0的左边,也就是负数都比0小;所有的正数都在0的右边,正数都比0大。
- 两个负数比较大小,“ - ”后面的数越大,这个负数反而越小。
例如 -5< -3。
二、百分数(二)1. 折扣。
- 商店有时降价出售商品,叫做打折扣销售,通称“打折”。
几折就表示十分之几,也就是百分之几十。
例如,八折就是原价的80%,七五折就是原价的75%。
- 原价×折扣 = 现价;现价÷折扣 = 原价;现价÷原价 = 折扣。
2. 成数。
- 成数表示一个数是另一个数的十分之几,通称“几成”。
例如,“一成”就是十分之一,改写成百分数就是10%;“三成五”就是十分之三点五,改写成百分数就是35%。
3. 税率。
- 应纳税额与各种收入(销售额、营业额……)的比率叫做税率。
应纳税额 = 各种收入×税率。
4. 利率。
- 单位时间(如1年、1月、1日等)内的利息与本金的比率叫做利率。
利息=本金×利率×存期。
三、圆柱与圆锥。
1. 圆柱。
- 圆柱的认识。
- 圆柱是由两个底面和一个侧面组成的。
圆柱的两个底面是完全相同的圆,侧面是一个曲面,沿高展开后是一个长方形(或正方形),这个长方形的长等于圆柱底面的周长,宽等于圆柱的高。
- 圆柱的表面积。
- 圆柱的表面积 = 侧面积+两个底面积。
圆柱的侧面积 = 底面周长×高,用字母表示为S_侧=Ch = 2π rh(r为底面半径,h为圆柱的高);圆柱的底面积S=π r^2,所以圆柱的表面积S = 2π rh+2π r^2。
六年级数学下册知识点归纳整理

六年级数学下册知识点归纳整理第一单元负数1.负数:任何正数前加上负号都等于负数.在数轴线上.负数都在0的左侧.所有的负数都比自然数小.负数用负号“-”标记.如-2.-5.33.-45.-0.6等.2.正数:大于0的数叫正数(不包括0).数轴上0右边的数叫做正数若一个数大于零(>0).则称它是一个正数.正数的前面可以加上正号“+”来表示.正数有无数个.其中有正整数.正分数和正小数.3. (0)既不是正数.也不是负数.它是正、负数的界限.正数都大于0.负数都小于0.正数大于一切负数.4.数轴:规定了原点.正方向和单位长度的直线叫数轴.所有的数都可以用数轴上的点来表示.也可以用数轴来比较两个数的大小.5.数轴的三要素:原点、单位长度、正方向.在数轴上表示的两个数.正方向的数大于负方向的数.第二单元圆柱和圆锥1、圆柱的特征:(1)底面的特征:圆柱的底面是完全相的两个圆.(2)侧面的特征:圆柱的侧面是一个曲面.(3)高的特征:圆柱有无数条高.7.圆柱的体积:2、圆柱的高:两个底面之间的距离叫做高.3、圆柱的侧面展开图:当沿高展开时展开图是长方形;当底面周长和高相等时.沿高展开图是正方形;当不沿高展开时展开图是平行四边形.4、圆柱的侧面积:圆柱的侧面积=底面的周长×高.用字母表示为:S侧=Ch.5、圆往的表面积:圆柱的表面积=侧面积+2×底面积.即s表=s侧+2s底.6、圆柱的体积:圆柱所占空间的大小.叫做这个圆柱体的体积.V=Sh7、圆锥:以直角三角形的一条直角边所在直线为旋转轴.其余两边旋转形成的面所围成的旋转体叫做圆锥.该直角边叫圆锥的轴.8、圆锥的高:从圆锥的顶点到底面圆心的距离是圆锥的高.9、圆锥的特征:(1)底面的特征:圆锥的底面一个圆.(2)侧面的特征:圆锥的侧面是一个曲面.(3)高的特征:圆锥有一条高.10、圆锥的母线:圆锥的侧面展开形成的扇形的半径、底面圆周上点到顶点的距离.圆锥有无数条母线.11、圆锥的侧面:将圆锥的侧面沿母线展开.是一个扇形.这个扇形的弧长等于圆锥底面的周长.而扇形的半径等于圆锥的母线的长.12、圆锥的侧面积=底面的周长(展开图弧长)×母线÷2;13、圆锥的体积:一个圆锥所占空间的大小.叫做这个圆锥的体积.一个圆锥的体积等于与它等底等高的圆柱的体积的1/3.根据圆柱体积公式V=Sh(V=rrπh).得出圆锥体积公式:V=1/3Sh14、圆柱与圆锥的关系:(1)与圆柱等底等高的圆锥体积是圆柱体积的三分之一.(2)体积和高相等的圆锥与圆柱(等底等高)之间.圆锥的底面积是圆柱的三倍.(3)体积和底面积相等的圆锥与圆柱(等低等高)之间.圆锥的高是圆柱的三倍.15、生活中的圆锥:生活中经常出现的圆锥有:沙堆、漏斗、帽子.圆锥在日常生活中也是不可或缺的.第三单元比例1、比的意义(1)两个数相除又叫做两个数的比(2)“:”是比号.读作“比”.比号前面的数叫做比的前项.比号后面的数叫做比的后项.比的前项除以后项所得的商.叫做比值.(3)同除法比较.比的前项相当于被除数.后项相当于除数.比值相当于商.(4)比值通常用分数表示.也可以用小数表示.有时也可能是整数.(5)比的后项不能是零.(6)根据分数与除法的关系.可知比的前项相当于分子.后项相当于分母.比值相当于分数值.2、比的基本性质:比的前项和后项同时乘上或者除以相同的数(0除外).比值不变.这叫做比的基本性质.3、求比值和化简比:求比值的方法:用比的前项除以后项.它的结果是一个数值可以是整数.也可以是小数或分数.根据比的基本性质可以把比化成最简单的整数比.它的结果必须是一个最简比.即前、后项是互质的数.4、按比例分配:在农业生产和日常生活中.常常需要把一个数量按照一定的比来进行分配.这种分配的方法通常叫做按比例分配.方法:首先求出各部分占总量的几分之几.然后求出总数的几分之几是多少.5、比例的意义:比例的意义表示两个比相等的式子叫做比例.组成比例的四个数.叫做比例的项.两端的两项叫做外项.中间的两项叫做内项.6、比例的基本性质:在比例里.两个外项的积等于两个两个内项的积.这叫做比例的基本性质.7、比和比例的区别(1)比表示两个量相除的关系.它有两项(即前、后项);比例表示两个比相等的式子.它有四项(即两个内项和两个外项).(2)比有基本性质.它是化简比的依据;比例出有基本性质.它是解比例的依据.7、解比例:根据比例的基本性质.把比例转化成以前学过的方程.求比例中的未知项.叫做解比例.8、成正比例的量:两种相关联的量.一种量变化.另一种量也随着变化.如果这两种量中相对应的两个数的比值(也就是商)一定.这两种量就叫做成正比例的量.他们的关系叫做正比例关系.用字母表示y/x=k(一定)9、成反比例的量:两种相关联的量.一种量变化.另一种量也随着变化.如果这两种量中相对应的两个数的积一定.这两种量就叫做成反比例的量.他们的关系叫做反比例关系.用字母表示x×y=k(一定)10、判断两种量成正比例还是成反比例的方法:关键是看这两个相关联的量中相对就的两个数的商一定还是积一定.如果商一定.就成正比例;如果积一定.就成反比例.11、比例尺:一幅图的图上距离和实际距离的比.叫做这幅图的比例尺.12、比例尺的分数(1)数值比例尺和线段比例尺(2)缩小比例尺和放大比例尺12、图上距离:实际距离=比例尺实际距离×比例尺=图上距离图上距离÷比例尺=实际距离13、应用比例尺画图(1)写出图的名称、(2)确定比例尺;(3)根据比例尺求出图上距离;(4)画图(画出单位长度)(5)标出实际距离.写清地点名称(6)标出比例尺14、图形的放大与缩小:形状相同.大小不同.(相似图形)15、用比例解决问题:根据问题中的不变量找出两种相关联的量.并正确判断这两种相关联的量成什么比例关系.并根据正、反比例关系式列出相应的方程并求解.第四单元统计1、统计表:把统计数据填写在一定格式的表格内.用来反映情况、说明问题.这样的表格就叫做统计表.2、统计种类:单式统计表:只含有一个项目的统计表.复式统计表:含有两个或两个以上统计项目的统计表.百分数统计表:不仅表明各统计项目的具体数量.而且表明比较量相当于标准量的百分比的统计表.3、统计图:用点线面积等来表示相关的量之间的数量关系的图形叫做统计图.4、条形统计图优点:很容易看出各种数量的多少.注意:画条形统计图时.直条的宽窄必须相同.复式条形统计图中表示不同项目的直条.要用不同的线条或颜色区别开.并在制图日期下面注明图例.5、折线统计图不但可以表示数量的多少.而且能够清楚地表示出数量增减变化的情况.注意:折线统计图的横轴表示不同的年份、月份等时间时.不同时间之间的距离要根据年份或月份的间隔来确定.按照数据的大小描出各点.再用线段顺次连接起来.并注明数量.6、扇形统计图(1)用整个圆的面积表示总数.用扇形面积表示各部分所占总数的百分数.(2)优点:很清楚地表示出各部分同总数之间的关系.(3)制扇形统计图的一般步骤:a)先算出各部分数量占总量的百分之几.b)再算出表示各部分数量的扇形的圆心角度数.c)取适当的半径画一个圆.并按照上面算出的圆心角的度数.在圆里画出各个扇形.d)在每个扇形中标明所表示的各部分数量名称和所占的百分数.并用不同颜色或条纹把各个扇形区别开.第五单元抽屉原理1、抽屉原理(一):把多于n个的物体放到n个抽屉里.则至少有一个抽屉里的东西不少于两件.2、抽屉原理(二):把多于mn(m乘以n)个的物体放到n个抽屉里.则至少有一个抽屉里有不少于m+1的物体.3、抽屉原理解题的关键是正确地判断什么抽屉.什么是物体?4、物体数÷抽屉数=商……余数至少数=商+1。
六年级下册数学重点知识笔记

六年级下册数学重点知识笔记
以下是六年级下册数学的一些重点知识笔记:
1. 负数:理解负数的概念,掌握正负数的读写方法,能用正负数表示日常生活中的问题。
2. 比例:理解比例的概念,掌握比例的基本性质,能应用比例的知识解决简单的问题。
3. 圆柱和圆锥:掌握圆柱和圆锥的各部分名称及特征,理解圆柱的侧面积和表面积的计算方法,掌握圆柱的体积的计算方法。
4. 比例尺:理解比例尺的概念,掌握计算方法,能根据比例尺计算图上距离和实际距离。
5. 正比例和反比例:理解正比例和反比例的概念,能判断两个量是否成正比例或反比例,能用正反比例解决简单的问题。
6. 统计:掌握扇形统计图和折线统计图的绘制方法,能根据数据选择合适的统计图进行描述。
7. 数学广角:通过实例使学生初步学会用假设法进行逻辑推理,体会假设法在解决实际问题中的应用。
以上仅为基础内容,具体的教学重点可能会有所不同,建议以教学大纲为准。
人教版小学六年级数学上下册知识点归纳总结

小学六年级数学知识点归纳六年级上册知识点概念总结1.分数乘法:分数乘法的意义与整数乘法的意义相同,就是求几个相同加数和的简便运算。
2.分数乘法的计算法则:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。
但分子分母不能为零.。
3.分数乘法意义分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
一个数与分数相乘,可以看作是求这个数的几分之几是多少。
4.分数乘整数:数形结合、转化化归5.倒数:乘积是1的两个数叫做互为倒数。
6.分数的倒数找一个分数的倒数,例如3/4 把3/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。
则是4/3。
3/4是4/3的倒数,也可以说4/3是3/4的倒数。
7.整数的倒数找一个整数的倒数,例如12,把12化成分数,即12/1 ,再把12/1这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。
则是1/12 ,12是1/12的倒数。
8.小数的倒数:普通算法:找一个小数的倒数,例如0.25 ,把0.25化成分数,即1/4 ,再把1/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。
则是4/19.用1计算法:也可以用1去除以这个数,例如0.25 ,1/0.25等于4 ,所以0.25的倒数4 ,因为乘积是1的两个数互为倒数。
分数、整数也都使用这种规律。
10.分数除法:分数除法是分数乘法的逆运算。
11.分数除法计算法则:甲数除以乙数(0除外),等于甲数乘乙数的倒数。
12.分数除法的意义:与整数除法的意义相同,都是已知两个因数的积与其中一个因数求另一个因数。
13.分数除法应用题:先找单位1。
单位1已知,求部分量或对应分率用乘法,求单位1用除法。
14.比和比例:比和比例一直是学数学容易弄混的几大问题之一,其实它们之间的问题完全可以用一句话概括:比,等同于算式中等号左边的式子,是式子的一种(如:a:b);比例,由至少两个称为比的式子由等号连接而成,且这两个比的比值是相同(如:a:b=c:d)。
2022年人教版小学数学六年级(上下册)知识点梳理归纳

人教版小学数学六年级(上下册)知识点梳理归纳上册第一单元《分数乘法》知识点归纳(一)分数乘法意义:1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
“分数乘整数”指的是第二个因数必须是整数,不能是分数。
2、一个数乘分数的意义就是求一个数的几分之几是多少。
“一个数乘分数”指的是第二个因数必须是分数,不能是整数。
(第一个因数是什么都可以)(二)分数乘法计算法则:1、分数乘整数的运算法则是:分子与整数相乘,分母不变。
(1)为了计算简便能约分的可先约分再计算。
(整数和分母约分)(2)约分是用整数和下面的分母约掉最大公因数。
(整数千万不能与分母相乘,计算结果必须是最简分数)。
2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。
(分子乘分子,分母乘分母)(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。
(2)分数化简的方法是:分子、分母同时除以它们的最大公因数。
(3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。
(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数)。
(4)分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变。
(三)积与因数的关系:一个数(0除外)乘大于1的数,积大于这个数。
a×b=c,当b>1时,c>a。
一个数(0除外)乘小于1的数,积小于这个数。
a×b=c,当b <1时,c<a(b≠0)。
一个数(0除外)乘等于1的数,积等于这个数。
a×b=c,当b=1时,c=a。
在进行因数与积的大小比较时,要注意因数为0时的特殊情况。
(四)分数乘法混合运算1、分数乘法混合运算顺序与整数相同,先乘、除后加、减,有括号的先算括号里面的,再算括号外面的。
2、整数乘法运算定律对分数乘法同样适用;运算定律可以使一些计算简便。
乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)乘法分配律:a×(b±c)=a×b±a×c(五)倒数的意义:乘积为1的两个数互为倒数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版六年级下册数学各单元知识点第一单元:负数1、负数:负数是数学术语,指小于0的实数,如-3。
任何正数前加上负号都等于负数。
在数轴线上,负数都在0的左侧,所有的负数都比自然数小。
负数用负号“-”标记,如-2,-5.33,-45,-0.6,-25等。
2、正数:大于0的数叫正数(不包括0)。
若一个数大于零(>0),则称它是一个正数。
正数的前面可以加上正号“+”来表示。
正数有无数个,其中分正整数,正分数和正无理数。
3、正数的几何意义:数轴上0右边的数叫做正数。
4、0既不是整数,也不是负数。
0是正、负数的界限。
正数都大于0,负数都小于0,正数大于一切负数。
5、数轴:规定了原点,正方向和单位长度的直线叫数轴。
所有的数都可以用数轴上的点来表示。
也可以用数轴来比较两个数的大小。
在数轴上表示的两个数,正方向的数大于负方向的数。
6、数轴的三要素:原点、单位长度、正方向。
第二单元:圆柱和圆锥1.圆柱的特征:(1)底面的特征:圆柱的底面是完全相等的两个圆。
(2)侧面的特征:圆柱的侧面是一个曲面,其展开图是一个长方形。
(3)高的特征:圆柱有无数条高。
2.圆柱的高:两个底面之间的距离叫做高。
3.圆柱的侧面展开图:当沿高展开时展开图是长方形;当底面周长和高相等时,沿高展开图是正方形;当不沿高展开时展开图是平行四边形。
4.圆柱的侧面积:圆柱的侧面积=底面的周长×高,用字母表示为:S侧=Ch。
5.圆往的表面积:圆柱的表面积=侧面积+2×底面积,即S表= S侧+2 S底。
6.圆柱的体积:圆柱所占空间的大小,叫做这个圆柱体的体积,V=Sh。
7.圆锥:以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转形成的面所围成的旋转体叫做圆锥。
该直角边叫圆锥的轴。
8.圆锥的高:从圆锥的顶点到底面圆心的距离是圆锥的高。
9.圆锥的特征:(1)底面的特征:圆锥的底面一个圆。
(2)侧面的特征:圆锥的侧面是一个曲面,展开图是扇形。
(3)高的特征:圆锥只有一条高。
10.圆锥的母线:即圆锥的侧面展开形成的扇形的半径,底面圆周上点到顶点的距离。
圆锥有无数条母线。
11.圆锥的侧面:将圆锥的侧面沿母线展开,是一个扇形,这个扇形的弧长等于圆锥底面的周长,而扇形的半径等于圆锥的母线的长。
12.圆锥的侧面积=底面的周长(展开图弧长)×母线÷2;13.圆锥的体积:一个圆锥所占空间的大小,叫做这个圆锥的体积。
一个圆锥的体积等于与它等底等高的圆柱的体积的1/3。
根据圆柱体积公式V=Sh(V=πr2h),得出圆锥体积公式:V=1/3Sh14.圆柱与圆锥的关系:(1)与圆柱等底等高的圆锥体积是圆柱体积的三分之一。
(2)体积和高相等的圆锥与圆柱之间,圆锥的底面积是圆柱的三倍。
(3)体积和底面积相等的圆锥与圆柱之间,圆锥的高是圆柱的三倍。
15.生活中的圆锥:生活中经常出现的圆锥有:沙堆、漏斗、帽子。
第三单元:比例1、比的意义:(1)两个数相除又叫做两个数的比(2)“:”是比号,读作“比”。
比号前面的数叫做比的前项,比号后面的数叫做比的后项。
比的前项除以后项所得的商,叫做比值。
(3)同除法比较,比的前项相当于被除数,后项相当于除数,比值相当于商。
(4)比值通常用分数表示,也可以用小数表示,有时也可能是整数。
(5)比的后项不能是零。
(6)根据分数与除法的关系,可知比的前项相当于分子,后项相当于分母,比值相当于分数值。
2、比的基本性质:比的前项和后项同时乘上或者除以相同的数(0除外),比值不变,这叫做比的基本性质。
3、求比值和化简比:求比值的方法:用比的前项除以后项,它的结果是一个数值可以是整数,也可以是小数或分数。
根据比的基本性质可以把比化成最简单的整数比。
它的结果必须是一个最简比,即前、后项是互质的数。
4、比例尺:图上距离∶实际距离=比例尺要求会求比例尺:图上距离÷实际距离=比例尺;已知图上距离和比例尺求实际距离:图上距离÷比例尺=实际距离;已知实际距离和比例尺求图上距离:实际距离×比例尺=图上距离。
线段比例尺:在图上附有一条注有数目的线段,用来表示和地面上相对应的实际距离。
5、比例尺的分类:(1)数值比例尺和线段比例尺(2)缩小比例尺和放大比例尺6、应用比例尺画图:(1)写出图的名称、(2)确定比例尺;(3)根据比例尺求出图上距离;(4)画图(画出单位长度)(5)标出实际距离,写清地点名称(6)标出比例尺7、图形的放大与缩小:形状相同,大小不同。
(相似图形)8、按比例分配:在农业生产和日常生活中,常常需要把一个数量按照一定的比来进行分配。
这种分配的方法通常叫做按比例分配。
方法:首先求出各部分占总量的几分之几,然后求出总数的几分之几是多少。
9、比例的意义:表示两个比相等的式子叫做比例。
组成比例的四个数,叫做比例的项。
两端的两项叫做外项,中间的两项叫做内项。
10、比例的性质:在比例里,两个外项的积等于两个内项的积,这叫做比例的基本性质。
11、比和比例的区别(1)比表示两个量相除的关系,它有两项(即前、后项);比例表示两个比相等的式子,它有四项(即两个内项和两个外项)。
(2)比有基本性质,它是化简比的依据;比例也有基本性质,它是解比例的依据。
12、解比例:根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个数比例中的另外一个未知项。
求比例中的未知项,叫做解比例。
13、成正比例的量:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,他们的关系叫做正比例关系。
用字母表示yx=k(一定)14、成反比例的量:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,他们的关系叫做反比例关系。
用字母表示x×y=k(一定)15、判断两种量成正比例还是成反比例的方法:关键是看这两个相关联的量中相对的两个数的商一定还是积一定,如果商一定,就成正比例;如果积一定,就成反比例。
16、用比例解决问题:第一步:根据问题中的不变量找出两种相关联的量,第二步:正确判断这两种相关联的量成什么比例关系,第三步:根据正、反比例关系式列出相应的方程并求解。
第四单元:统计1、统计表:把统计数据填写在一定格式的表格内,用来反映情况、说明问题,这样的表格就叫做统计表。
2、统计组成部分:一般分为表格外和表格内两部分。
表格外部分包括标的名称,单位说明和制表日期;表格内部包括表头、横标目、纵标目和数据四个方面。
3、统计种类:单式统计表:只含有一个项目的统计表。
复式统计表:含有两个或两个以上统计项目的统计表。
百分数统计表:不仅表明各统计项目的具体数量,而且表明比较量相当于标准量的百分比的统计表。
4、统计表制作步骤:(1)搜集数据(2)整理数据:要根据制表的目的和统计的内容,对数据进行分类。
(3)设计草表:要根据统计的目的和内容设计分栏格内容、分栏格画法,规定横栏、竖栏各需几格,每格长度。
(4)正式制表:把核对过的数据填入表中,并根据制表要求,用简单、明确的语言写上统计表的名称和制表日期。
5、统计图:用点线面积等来表示相关的量之间的数量关系的图形叫做统计图。
6、条形统计图:(1)用一个单位长度表示一定的数量,根据数量的多少画成长短不同的直条,然后把这些直线按一定的顺序排列起来。
(2)优点:很容易看出各种数量的多少。
注意:画条形统计图时,直条的宽窄必须相同。
(3)取一个单位长度表示数量的多少要根据具体情况而确定(4)复式条形统计图中表示不同项目的直条,要用不同的线条或颜色区别开,并在制图日期下面注明图例。
(5)制作条形统计图的一般步骤:a)根据图纸的大小,画出两条互相垂直的射线。
b)在水平射线上,适当分配条形的位置,确定直线的宽度和间隔。
c)在与水平射线垂直的深线上根据数据大小的具体情况,确定单位长度表示多少。
d)按照数据的大小画出长短不同的直条,并注明数量。
7、折线统计图:(1)用一个单位长度表示一定的数量,根据数量的多少描出各点,然后把各点用线段顺次连接起来。
(2)优点:不但可以表示数量的多少,而且能够清楚地表示出数量增减变化的情况。
注意:折线统计图的横轴表示不同的年份、月份等时间时,不同时间之间的距离要根据年份或月份的间隔来确定。
(3)制作折线统计图的一般步骤:a)根据图纸的大小,画出两条互相垂直的射线。
b)在水平射线上,适当分配折线的位置,确定直线的宽度和间隔。
c)在与水平射线垂直的深线上根据数据大小的具体情况,确定单位长度表示多少。
d)按照数据的大小描出各点,再用线段顺次连接起来,并注明数量。
8、扇形统计图:(1)用整个圆的面积表示总数,用扇形面积表示各部分所占总数的百分数。
(2)优点:很清楚地表示出各部分同总数之间的关系。
(3)制扇形统计图的一般步骤:a)先算出各部分数量占总量的百分之几。
b)再算出表示各部分数量的扇形的圆心角度数。
c)取适当的半径画一个圆,并按照上面算出的圆心角的度数,在圆里画出各个扇形。
d)在每个扇形中标明所表示的各部分数量名称和所占的百分数,并用不同颜色或条纹把各个扇形区别开。
第五单元数学广角1、抽屉原理(一):把多于n个的物体放到n个抽屉里,则至少有一个抽屉里的东西不少于两件。
例如:把八个苹果任意地放进七个抽屉里,不论怎样放,至少有一个抽屉放有两个或两个以上的苹果。
这种现象叫着抽屉原理。
抽屉原理也被称为鸽巢原理。
2、抽屉原理(二):把多于m n(m乘以n)个的物体放到n个抽屉里,则至少有一个抽屉里有不少于m + 1的物体。
3、应用抽屉原理解题的步骤:第一步:分析题意:正确地判断什么是“东西”,什么是“抽屉”,也就是什么作“东西”,什么可作“抽屉”。
第二步:制造抽屉:这个是关键的一步,这一步就是如何设计抽屉。
根据题目条件和结论,结合有关的数学知识,抓住最基本的数量关系,设计和确定解决问题所需的抽屉及其个数,为使用抽屉铺平道路。
例如:从2、4、6、…、30这15个偶数中,任取9个数,证明其中一定有两个数之和是34。
分析与解答我们用题目中的15个偶数制造8个抽屉:此抽屉特点:凡是抽屉中有两个数的,都具有一个共同的特点:这两个数的和是34。
现从题目中的15个偶数中任取9个数,由抽屉原理(因为抽屉只有8个),必有两个数可以在同一个抽屉中(符合上述特点)。
由制造的抽屉的特点,这两个数的和是34。
第三步:运用抽屉原理:观察题意设条件,结合第二步,恰当应用各个原则或综合运用几个原则,以求问题之解决。
4、抽屉原理的计算公式:物体数÷抽屉数=商……余数至少数=商+15、摸2个同色球计算方法。
(1)要保证摸出两个同色的球,摸出的球的数量至少要比颜色数多1。