2022年全国高考真题-数学(文科)-甲卷(含答案)

合集下载

(2024年高考真题)2024年普通高等学校招生全国统一考试数学(文) 试卷 全国甲卷(含部分解析)

(2024年高考真题)2024年普通高等学校招生全国统一考试数学(文) 试卷 全国甲卷(含部分解析)

2024年普通高等学校招生全国统一考试 全国甲卷数学(文) 试卷养成良好的答题习惯,是决定成败的决定性因素之一。

做题前,要认真阅读题目要求、题干和选项,并对答案内容作出合理预测;答题时,切忌跟着感觉走,最好按照题目序号来做,不会的或存在疑问的,要做好标记,要善于发现,找到题目的题眼所在,规范答题,书写工整;答题完毕时,要认真检查,查漏补缺,纠正错误。

1.集合{1,2,3,4,5,9}A =,{1}B x x A =+∈∣,则A B =( ) A.{1,2,3,4}B.{1,2,3,4}C.{1,2,3,4}D.{1,2,3,4}2.设z =,则z z ⋅=( ) A.2B.2C.2D.23.若实数x ,y 满足约束条件(略),则5z x y =-的最小值为( ) A.5B.12C.2-D.72-4.等差数列{}n a 的前n 项和为n S ,若91S =,37a a +=( ) A.2-B.73C.1D.295.甲、乙、丙、丁四人排成一列,丙不在排头,且甲或乙在排尾的概率是( ) A.14 B.13 C.12D.236.已知双曲线2222:1(0,0)x y C a b a b -=>>的左、右焦点分别为12(0,4)(0,4)F F -、,且经过点(6,4)P -,则双曲线C 的离心率是( )A.135B.137C.2D.37.曲线6()3f x x x =+在 (0,1)-处的切线与坐标轴围成的面积为( )A.16B.2 C.12D.28.函数()2()e e sin x x f x x x -=-+-的大致图像为( ) 9.已知cos cos sin ααα=-an 4πt α⎛⎫+= ⎪⎝⎭( )A.3B.1-C.3-D.1310.直线过圆心,直径11.已知m n 、是两条不同的直线,αβ、是两个不同的平面:①若m α⊥,n α⊥,则//m n ;②若m αβ=,//m n ,则//n β;③若//m α,//n α,m 与n 可能异面,也可能相交,也可能平行;④若m αβ=,n 与α和β所成的角相等,则m n ⊥,以上命题是真命题的是( )A.①③B.②③C.①②③D.①③④12.在ABC △中,内角A ,B ,C 所对边分别为a ,b ,c ,若π3B =,294b ac =,则sin sin A C +=( )A.13B.13C.2D.1313.略14.函数()sin f x x x =,在[0,π]上的最大值是_______. 15.已知1a >,8115log log 42a a -=-,则a =_______. 16.曲线33y x x =-与2(1)y x a =--+在(0,)+∞上有两个不同的交点,则a 的取值范围为_______.17.已知等比数列{}n a 的前n 项和为n S ,且1233n n S a +=-.(1)求{}n a 的通项公式; (2)求数列{} n S 的通项公式. 18.题干略.19.如图,己知//AB CD ,//CD EF ,2AB DE EF CF ====,4CD =,10AD BC ==,23AE =,M 为CD 的中点.(1)证明://EM 平面BCF ; (2)求点M 到AD E 的距离. 20.已知函数()(1)ln 1f x a x x =--+. (1)求()f x 的单调区间;(2)若2a ≤时,证明:当1x >时,1()e x f x -<恒成立.21.已知椭圆2222:1(0)x y C a b a b +=>>的右焦点为F ,点3(1,)2M 在椭圆C 上,且MF x ⊥轴.(1)求椭圆C 的方程;(2)(4,0)P ,过P 的直线与椭圆C 交于A ,B 两点,N 为FP 的中点,直线NB 与MF 交于Q ,证明:AQ y ⊥轴.22.[选修4-4:坐标系与参数方程]在平面直角坐标系xOy 中,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为cos 1ρρθ=+. (1)写出C 的直角坐标方程;(2)直线x ty t a =⎧⎨=+⎩(t 为参数)与曲线C 交于A 、B 两点,若||2AB =,求a 的值.23.[选修4-5:不等式选讲] 实数a ,b 满足3a b +≥. (1)证明:2222a b a b +>+; (2)证明:22226a b b a -+-≥.2024年普通高等学校招生全国统一考试 全国甲卷数学(文)答案1.答案:A解析:因为{}1,2,3,4,5,9A =,{1}{0,1,2,3,4,8}B x x A =+∈=∣,所以{1,2,}3,4A B =,故选A. 2.答案:D解析:因为z =,所以2z z ⋅=,故选D. 3.答案:D解析:将约束条件两两联立可得3个交点:(0,1)-、3,12⎛⎫ ⎪⎝⎭和1 3,2⎛⎫⎪⎝⎭,经检验都符合约束条件.代入目标函数可得:min 72z =-,故选D.4.答案:D解析:令0d =,则9371291,,99n n S a a a a ===+=,故选D.5.答案:B解析:甲、乙、丙、丁四人排成一列共有24种可能.丙不在排头,且甲或乙在排尾的共有8种可能,81243P ==,故选B. 6.答案:C解析:12212F F ce a PF PF ===-,故选C.7. 答案:A解析:因为563y x '=+,所以3k =,31y x =-,1111236S =⨯⨯=,故选A.8.答案:B解析:选B.9. 答案:B解析:因为cos cos sin ααα=-tan 1α=,tan 1tan 141tan πααα+⎛⎫+== ⎪-⎝⎭,故选B.10.答案:直径解析:直线过圆心,直径. 11. 答案:A解析:选A. 12.答案:C 解析:因为π3B =,294b ac =,所以241sin sin sin 93A C B ==.由余弦定理可得:22294b ac ac ac =+-=,即:22134a c ac +=,221313sin sin sin sin 412A C A C +==,所以2227(sin sin )sin sin 2sin sin 4A C A C A C +=++=,sin sin 2A C +=,故选C.13. 答案:略解析: 14.答案:2解析:π()sin 2sin 23f x x x x ⎛⎫==-≤ ⎪⎝⎭,当且仅当5π6x =时取等号.15. 答案:64解析:因为28211315log log log 4log 22a a a a -=-=-,所以()()22log 1log 60a a +-=,而1a >,故2log 6a =,64a =.16. 答案:(2,1)-解析:令323(1)x x x a -=--+,则323(1)a x x x =-+-,设32()3(1)x x x x ϕ=-+-,()(35)(1)x x x ϕ+'=-,()x ϕ在(1,)+∞上递增,在(0,1)上递减.因为曲线33y x x =-与2(1)y x a =--+在(0,)+∞上有两个不同的交点,(0)1ϕ=,(1)2ϕ=-,所以a 的取值范围为(2,1)-. 17.答案:见解析解析:(1)因为1233n n S a +=-,所以12233n n S a ++=-,两式相减可得:121233n n n a a a +++=-,即:2135n n a a ++=,所以等比数列{}n a 的公比53q =,又因为12123353S a a =-=-,所以11a =,153n n a -⎛⎫= ⎪⎝⎭.(2)因为1233n n S a +=-,所以()133511223nn n S a +⎡⎤⎛⎫=-=-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦.18.答案:见解析解析:(1)22150(70242630) 6.635965450100χ⨯-⨯=<⨯⨯⨯,没有99%的把握;(2)p p >+. 19.答案:见解析解析:(1)由题意://EF CM ,EF CM =,而CF 平面ADO ,EM 平面ADO ,所以//EM 平面BCF ;(2)取DM 的中点O ,连结OA ,OE ,则OA DM ⊥,OE DM ⊥,3OA =,OE =而AE =,故OA OE ⊥,AOE S =△因为2DE =,AD =AD DE ⊥,AOE S △DM 设点M 到平面ADE 的距离为h ,所以1133M ADE ADE AOE V S h S DM -=⋅=⋅△△,h ==,故点M到ADE 的距离为5. 20.答案:见解析解析:(1)()(1)ln 1f x a x x =--+,1()ax f x x-=,0x >. 若0a ≤,()0f x <,()f x 的减区间为(0,)+∞,无增区间; 若0a >时,当10x a <<时,()0f x '<,当1x >时,()0f x '>,所以()f x 的减区间为10,a ⎛⎫ ⎪⎝⎭,增区间为1,a ⎛⎫+∞ ⎪⎝⎭;(2)因为2a ≤,所以当1x >时,111e ()e (1)ln 1e 2ln 1x x x f x a x x x x ----=--+-≥-++.令1()e 2ln 1x g x x x -=-++,则11()e 2x g x x -'=-+.令()()h x g x '=.则121()e x h x x-'=-在(1,)+∞上递增,()(1)0h x h ''>=,所以()()h x g x '=在(1,)+∞上递增,()(1)0g x g ''>=,故()g x 在(1,)+∞上递增,()(1)0g x g >=,即:当1x >时,1()e x f x -<恒成立.21.答案:见解析解析:(1)设椭圆C 的左焦点为1F ,则12F F =,3||2MF =.因为MF x ⊥轴,所以152MF =,12||4a MF MF =+=,解得:24a =,2213b a =-=,故椭圆C 的方程为:22143x y +=; (2)解法1:设()11,A x y ,()22,B x y ,AP PB λ=,则12124101x x y y λλλλ+⎧=⎪⎪+⎨+⎪=⎪+⎩,即212144x x y y λλλ=+-⎧⎨=-⎩.又由()()22112222234123412x y x y λλλ⎧+=⎪⎨+=⎪⎩可得:1212121234121111x x x x y y y y λλλλλλλλ+-+-⋅⋅+⋅=+-+-,结合上式可得:25230x λλ-+=.(4,0)P ,(1,0)F ,5,02N ⎛⎫⎪⎝⎭,则222122335252Q y y y y y x x λλλλ===-=--,故AQ y ⊥轴.解法2:设()11,A x y ,()22,B x y ,则121244y y x x =--,即:()1221214x y x y y y -=-,所以()()()2222222211*********21213444433y x y x y x y x y x y x y y y ⎛⎫-+=-=+-+ ⎪⎝⎭()()()()212121122144y y y y y y x y x y =-+=-+,即:122121x y x y y y +=+,2112253x y y y =-.(4,0)P ,(1,0)F ,5,02N ⎛⎫⎪⎝⎭,则21212112335252Q y y y y y x y y x ===--,故AQ y ⊥轴.22.答案:(1)221y x =+ (2)34解析:(1)因为cos 1ρρθ=+,所以22(cos 1)ρρθ=+,故C 的直角坐标方程为:222(1)x y x +=+,即221y x =+;(2)将x ty t a =⎧⎨=+⎩代入221y x =+可得:222(1)10t a t a +-+-=,12||2AB t =-==,解得:34a =. 23.答案:见解析解析:(1)因为3a b +≥,所以22222()a b a b a b +≥+>+. (3)222222222222()a b b a a b b a a b a b -+-≥-+-=+-+=22222()()()()(1)6a b a b a b a b a b a b +-+≥+-+=++-≥.高考质量提升是一项系统工程,涉及到多个方面、各个维度,关键是要抓住重点、以点带面、全面突破,收到事半功倍的效果。

2023年全国统一高考数学试卷(文科)(甲卷)含答案解析

2023年全国统一高考数学试卷(文科)(甲卷)含答案解析

绝密★启用前2023年全国统一高考数学试卷(文科)(甲卷)学校:___________姓名:___________班级:___________考号:___________注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上,写在试卷上无效。

3.考试结束后,本试卷和答题卡一并交回。

第I卷(选择题)一、单选题:本题共12小题,每小题5分,共60分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.设全集U={1,2,3,4,5},集合M={1,4},N={2,5},则N∪∁U M=( )A. {2,3,5}B. {1,3,4}C. {1,2,4,5}D. {2,3,4,5}2.5(1+i 3)(2+i)(2−i)=( )A. −1B. 1C. 1−iD. 1+i3.已知向量a⃗=(3,1),b⃗⃗=(2,2),则cos〈a⃗⃗+b⃗⃗,a⃗⃗−b⃗⃗〉=( )A. 117B. √ 1717C. √ 55D. 2√ 554.某校文艺部有4名学生,其中高一、高二年级各2名.从这4名学生中随机选2名组织校文艺汇演,则这2名学生来自不同年级的概率为( )A. 16B. 13C. 12D. 235.记S n为等差数列{a n}的前n项和.若a2+a6=10,a4a8=45,则S5=( )A. 25B. 22C. 20D. 156.执行下边的程序框图,则输出的B =( )A. 21B. 34C. 55D. 897.设F 1,F 2为椭圆C :x 25+y 2=1的两个焦点,点P 在C 上,若PF 1⃗⃗⃗⃗⃗⃗⃗⃗⋅PF 2⃗⃗⃗⃗⃗⃗⃗⃗=0,则|PF 1|⋅|PF 2|=( ) A. 1 B. 2C. 4D. 58.曲线y =e xx+1在点(1,e 2)处的切线方程为( ) A. y =e4xB. y =e2xC. y =e 4x +e4D. y =e 2x +3e49.已知双曲线C :x 2a2−y 2b2=1(a >0,b >0)的离心率为√ 5,C 的一条渐近线与圆(x −2)2+(y −3)2=1交于A ,B 两点,则|AB|=( ) A. √ 55B. 2√ 55C. 3√ 55D. 4√ 5510.在三棱锥P −ABC 中,△ABC 是边长为2的等边三角形,PA =PB =2,PC =√ 6,则该棱锥的体积为( ) A. 1B. √ 3C. 2D. 311.已知函数f(x)=e −(x−1)2.记a =f(√ 22),b =f(√ 32),c =f(√ 62),则( )A. b >c >aB. b >a >cC. c >b >aD. c >a >b12.函数y =f(x)的图象由y =cos(2x +π6)的图象向左平移π6个单位长度得到,则y =f(x)的图象与直线y =12x −12的交点个数为( ) A. 1 B. 2 C. 3 D. 4第II 卷(非选择题)二、填空题:本题共4小题,每小题5分,共20分。

2022年高考文科数学真题及答案(全国甲卷)

2022年高考文科数学真题及答案(全国甲卷)

2022年高考文科数学真题及答案(全国甲卷)2022年高考共10套试卷,全国甲卷适用:贵州、广西、云南、四川、西藏。

今天小编在这给大家整理了2022年高考文科数学真题及答案(全国甲卷),接下来随着小编一起来看看吧!2022年高考文科数学真题及答案(全国甲卷)2021年高考文科数学真题(全国甲卷)2020年高考文科数学真题及答案(全国3卷)试题解读试题把握时代精神,落实立德树人根本任务,依托高考评价体系,加强关键能力考查,对接课程标准,与高中育人方式改革同向同行,助力高考综合改革平稳实施。

科学考查,突出语文关键能力科学考查语文学科关键能力,既是深化高考考试内容改革的基本要求,也是高考语文命题的一贯追求。

依据《中国高考评价体系》,关键能力是指进入高等学校的学习者,在面对与学科相关的生活实践或学习探索问题时,必须具备的高质量地认识、分析、解决问题的能力。

试题以阅读理解、信息整理、应用写作、语言表达、批判性思维和辩证思维等六项关键能力为突破点,探索学科能力考查的科学途径。

1.取材多样,考查阅读理解能力和信息获取能力阅读是获取知识信息、提高认知的基本途径,关系着一个人德、才、学、识的完善和提升。

在考查阅读理解、信息整理能力方面,试题重视对“读什么、如何读”的引导,提升思维能力和审美水平。

以全国Ⅰ卷的文学类阅读为例,材料节选自海明威的短篇小说《越野滑雪》,小说长于对滑雪的精彩描述和主人公细微的心理描写,试题由此出发,引导学生突破传统阅读惯性,与作品对话,产生情感共鸣。

在信息化时代,人们获取各类信息时拥有了前所未有的便利条件,甄别信息、整理信息、评估信息、利用信息成为重要的语文能力。

全国Ⅰ卷实用类阅读聚焦“新基建”,引导学生从多个文本中全面获取这项政策的出台背景、基本内涵、发展前景和国际反响等相关信息,试题主动适应信息时代特点,加大了对信息整理能力的考查力度。

2.巧设情境,聚焦语言表达和应用写作能力应用写作的适用范围非常广泛,凡是个人、集体、社会生活中所需要的书面交流与表达,都可以成为应用写作的考查内容。

2024年全国统一高考数学试卷(文科)(甲卷)[含答案]

2024年全国统一高考数学试卷(文科)(甲卷)[含答案]

2024年全国统一高考数学试卷(文科)(甲卷)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合要求的.1.集合,2,3,4,5,,,则 {1A =9}{|1}B x x A =+∈(A B = )A .,2,3,B .,2,C .,D .,2,{14}{13}{34}{19}2.设,则 z =(z z ⋅=)A .B .1C .D .2i-1-3.若实数,满足约束条件则的最小值为 x y 4330,220,2690,x y x y x y --⎧⎪--⎨⎪+-⎩ 5z x y =-()A .5B .C .D .122-72-4.等差数列的前项和为,若, {}n a n n S 91S =37(a a +=)A .B .C .1D .2-73295.甲、乙、丙、丁四人排成一列,丙不在排头,且甲或乙在排尾的概率是 ()A .B .C .D .141312236.已知双曲线的两个焦点分别为、,且经过点,则双曲线的离心率是 1(0,4)F 2(0,4)F -(6,4)P -C ()A .4B .3C .2D 7.曲线在处的切线与坐标轴围成的面积为 6()31f x x x =+-(0,1)-()A .BC .D .16128.函数的区间,的图像大致为 2()()sin xx f x x e ex -=-+-[ 2.8- 2.8]()A .B .C .D .9.已知 cos cos sin ααα=-tan()(4πα+=)A .B .CD.1+1-1-10.已知直线与圆交于,两点,则的最小值为 20ax y a ++-=22:410C x y y ++-=A B ||AB ()A .2B .3C .4D .611.已知、是两个平面,、是两条直线,.下列四个命题:αβm n m αβ= ①若,则或//m n //n α//n β②若,则,m n ⊥n α⊥n β⊥③若,且,则//n α//n β//m n ④若与和所成的角相等,则n αβm n ⊥其中,所有真命题的编号是 ()A .①③B .②③C .①②③D .①③④12.在中,内角,,所对边分别为,,,若,,则 ABC ∆A B C a b c 3B π=294b ac =sin sin (A C +=)A .BCD32二、填空题:本题共4小题,每小题5分,共20分.13.函数在,上的最大值是 ()sin f x x x =[0]π14.已知甲、乙两个圆台上下底面的半径均为和,母线长分别为和,则两个圆台的2r 1r 122()r r -123()r r -体积之比 .V V =甲乙15.已知,,则 .1a >8115log log 42a a -=-a =16.曲线与在上有两个不同的交点,则的取值范围为 .33y x x =-2(1)y x a =--+(0,)+∞a 三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.第17题~第21题为必考题,每个考题考生必须作答.第22、23题为选考题,考生根据要求作答.17.(12分)已知等比数列的前项和为,且.{}n a n n S 1233n n S a +=-(1)求的通项公式;{}n a (2)求数列的通项公式.{}n S 18.(12分)某工厂进行生产线智能化升级改造.升级改造后,从该工厂甲、乙两个车间的产品中随机抽取150件进行检验,数据如下:优级品合格品不合格品总计甲车间2624050乙车间70282100总计96522150(1)填写如下列联表:优级品非优级品甲车间乙车间能否有的把握认为甲、乙两车间产品的优级品率存在差异?能否有的把握认为甲、乙两车间产95%99%品的估级品率存在差异?(2)已知升级改造前该工厂产品的优级品率.设为升级改造后抽取的件产品的优级品率.如0.5p =p n 果,则认为该工厂产品的优级品率提高了.根据抽取的150件产品的数据,能否认p p >+12.247)≈附:,22()()()()()n ad bc K a b c d a c b d -=++++2()P K k 0.0500.0100.001k3.8416.63510.82819.(12分)如图,在以,,,,,为顶点的五面体中,四边形与四边形均A B C D E F ABCD CDEF 为等腰梯形,,,,,,,//AB CD //CD EF 2AB DE EF CF ====4CD =AD BC ==AE =为的中点.M CD (1)证明:平面;//EM BCF (2)求点到的距离.M ADE20.(12分)已知函数.()(1)1f x a x lnx =--+(1)求的单调区间;()f x (2)若时,证明:当时,恒成立.2a 1x >1()x f x e -<21.(12分)已知椭圆的右焦点为,点在椭圆上,且轴.2222:1(0)x y C a b a b +=>>F 3(1,2M C MF x ⊥(1)求椭圆的方程;C (2)过点的直线与椭圆交于,两点,为线段的中点,直线与交于,证明:(4,0)P C A B N FP NB MF Q 轴.AQ y ⊥(二)选考题:共10分.请考生在第22、23题中任选一题作答,并用2B 铅笔将所选题号涂黑,多涂、错涂、漏涂均不给分,如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.(10分)在平面直角坐标系中,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线xOy O x 的极坐标方程为.C cos 1ρρθ=+(1)写出的直角坐标方程;C (2)直线为参数),若与交于、两点,,求的值.:(x tl t y t a =⎧⎨=+⎩C l A B ||2AB =a [选修4-5:不等式选讲]23.实数,满足.a b 3a b + (1)证明:;2222a b a b +>+(2)证明:.22|2||2|6a b b a -+-2024年全国统一高考数学试卷(文科)(甲卷)参考答案与试题解析一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合要求的.1.集合,2,3,4,5,,,则 {1A =9}{|1}B x x A =+∈(A B = )A .,2,3,B .,2,C .,D .,2,{14}{13}{34}{19}【解析】:,2,3,4,5,,,1,2,3,4,,{1A =9}{|1}{0B x x A =+∈=8}则,2,3,.故选:.{1A B = 4}A 2.设,则 z =(z z ⋅=)A .B .1C .D .2i-1-解法一:,则.故选:.z =z =()2z z ⋅=⋅=D 解法二:22z z z ⋅==3.若实数,满足约束条件则的最小值为 x y 4330,220,2690,x y x y x y --⎧⎪--⎨⎪+-⎩5z x y =-()A .5B .C .D .122-72-【解析】:作出不等式组所表示的平面区域,如图所示:4330,220,2690,x y x y x y --⎧⎪--⎨⎪+-⎩将约束条件两两联立可得3个交点:,,,(0,1)C -3(,1)2A 1(3,)2B 由得,则可看作直线在轴上的截距,5z x y =-1155y x z =-15z -1155y x z =-y 经检验可知,当直线经过点,时,最小,代入目标函数可得:.3(2A 1)z 72min z =-故选:.D 4.等差数列的前项和为,若, {}n a n n S 91S =37(a a +=)A .B .C .1D .2-7329解法一:,则,解得.故选:.91S =193799()9()122a a a a S ++===3729a a +=D 解法二:利用等差数列的基本量由,根据等差数列的求和公式,,91S =9119891,93612dS a a d ⨯=+=∴+=.()37111122262893699a a a d a d a d a d +=+++=+=+=解法三:特殊值法不妨取等差数列公差,则,则.故选:D0d =9111199S a a ==⇒=371229a a a +==解法四:【构造法】:设的公差为,利用结论是首项为,公差为的等差数列,{}n a d n S n ⎧⎫⎨⎬⎩⎭1a 2d 则,,()911118428922S d a a d a d =+=+=+371112628a a a d a d a d +=+++=+则,所以.故选:D ()()9111371118428==92229S d a a d a d a a =+=+=++3729a a +=解法五:根据题意,故选:D375922299a a a S +===5.甲、乙、丙、丁四人排成一列,丙不在排头,且甲或乙在排尾的概率是 ()A .B .C .D .14131223【解析】:甲、乙、丙、丁四人排成一列共有种可能,4424A =丙不在排头,且甲或乙在排尾的情况有种可能,故.故选:.1122228C C A=81243P ==B 6.已知双曲线的两个焦点分别为、,且经过点,则双曲线的离心率是 1(0,4)F 2(0,4)F -(6,4)P -C ()A .4B .3C.2D 解法一:因为双曲线的两个焦点分别为、,且经过点,1(0,4)F 2(0,4)F -(6,4)P -所以,,,12||8F F =1||6PF =2||10PF ==则双曲线的离心率.故选:.C 2822106c e a ===-C 解法二:点纵坐标相同,所以是通径的一半即1P F 、1||PF 21||6b PF a ==则即,则双曲线的离心率.故选:.2166a a -=2a =C 224c e a ===C 解法三:双曲线的离心率C 121221086F F e PF PF ===--解法四 :根据焦点坐标可知4c =,根据焦点在y 轴上设双曲线方程为22221y xa b -=,则22221636116a b a b ⎧-=⎪⎨⎪+=⎩,则2a b =⎧⎪⎨=⎪⎩2c e a ==7.曲线在处的切线与坐标轴围成的面积为 6()31f x x x =+-(0,1)-()A .BC .D .1612【解析】:因为,所以,曲线在处的切线斜率,6()3f x x x =+5()63f x x '=+(0,1)-3k =故曲线在处的切线方程为,即,(0,1)-13y x +=31y x =-则其与坐标轴围成的面积.故选:.1111236S =⨯⨯=A 8.函数的区间,的图像大致为 2()()sin x x f x x ee x -=-+-[ 2.8-2.8]()A .B .C .D .解法一:,2()()sin x x f x x e e x -=-+-则,故为偶函数,故错误;22()()()sin()()sin ()x x x x f x x e e x x e e x f x ---=--+--=-+-=()f x AC (1),故错误,正确.f 1111111()sin11()sin 1062242e e e e e e eπ-=-+->-+-=-->->D B 故选:.B 解法二:函数为偶函数。

2022年全国统一高考数学试卷(文科)(全国一卷)

2022年全国统一高考数学试卷(文科)(全国一卷)

全国统一高考数学试卷(文科)(新课标)一、选择题(共12小题,每小题5分,满分60分)1.(5分)已知集合M={0,1,2,3,4},N={1,3,5},P=M∩N,则P的子集共有()A.2个B.4个C.6个D.8个2.(5分)复数=()A.2﹣i B.1﹣2i C.﹣2+i D.﹣1+2i3.(5分)下列函数中,既是偶函数又在(0,+∞)上单调递增的函数是()A.y=2x3B.y=|x|+1C.y=﹣x2+4D.y=2﹣|x|4.(5分)椭圆=1的离心率为()A.B.C.D.5.(5分)执行如图的程序框图,如果输入的N是6,那么输出的p是()A.120B.720C.1440D.50406.(5分)有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为()A.B.C.D.7.(5分)已知角θ的顶点与原点重合,始边与x轴的正半轴重合,终边在直线y=2x上,则cos2θ=()A.﹣B.﹣C.D.8.(5分)在一个几何体的三视图中,正视图和俯视图如图所示,则相应的侧视图可以为()A.B.C.D.9.(5分)已知直线l过抛物线C的焦点,且与C的对称轴垂直.l与C交于A,B两点,|AB|=12,P为C的准线上一点,则△ABP的面积为()A.18B.24C.36D.4810.(5分)在下列区间中,函数f(x)=e x+4x﹣3的零点所在的区间为()A.(,)B.(﹣,0)C.(0,)D.(,)11.(5分)设函数,则f(x)=sin(2x+)+cos(2x+),则()A.y=f(x)在(0,)单调递增,其图象关于直线x=对称B.y=f(x)在(0,)单调递增,其图象关于直线x=对称C.y=f(x)在(0,)单调递减,其图象关于直线x=对称D.y=f(x)在(0,)单调递减,其图象关于直线x=对称12.(5分)已知函数y=f(x)的周期为2,当x∈[﹣1,1]时f(x)=x2,那么函数y=f(x)的图象与函数y=|lgx|的图象的交点共有()A.10个B.9个C.8个D.1个二、填空题(共4小题,每小题5分,满分20分)13.(5分)已知a与b为两个垂直的单位向量,k为实数,若向量+与向量k ﹣垂直,则k=.14.(5分)若变量x,y满足约束条件,则z=x+2y的最小值为.15.(5分)△ABC中,∠B=120°,AC=7,AB=5,则△ABC的面积为.16.(5分)已知两个圆锥有公共底面,且两个圆锥的顶点和底面的圆周都在同一个球面上,若圆锥底面面积是这个球面面积的,则这两个圆锥中,体积较小者的高与体积较大者的高的比值为.三、解答题(共8小题,满分70分)17.(12分)已知等比数列{a n}中,a1=,公比q=.(Ⅰ)S n为{a n}的前n项和,证明:S n=(Ⅱ)设b n=log3a1+log3a2+…+log3a n,求数列{b n}的通项公式.18.(12分)如图,四棱锥P﹣ABCD中,底面ABCD为平行四边形.∠DAB=60°,AB=2AD,PD⊥底面ABCD.(Ⅰ)证明:PA⊥BD(Ⅱ)设PD=AD=1,求棱锥D﹣PBC的高.19.(12分)某种产品的质量以其质量指标值衡量,质量指标值越大表明质量越好,且质量指标值大于或等于102的产品为优质品,现用两种新配方(分别称为A配方和B配方)做试验,各生产了100件这种产品,并测量了每件产品的质量指标值,得到下面试验结果:A配方的频数分布表指标值分组[90,94)[94,98)[98,102)[102,106)[106,110]频数82042228B配方的频数分布表指标值分组[90,94)[94,98)[98,102)[102,106)[106,110]频数412423210(Ⅰ)分别估计用A配方,B配方生产的产品的优质品率;(Ⅱ)已知用B配方生成的一件产品的利润y(单位:元)与其质量指标值t的关系式为y=从用B配方生产的产品中任取一件,其利润记为X(单位:元),求X的分布列及数学期望.(以试验结果中质量指标值落入各组的频率作为一件产品的质量指标值落入相应组的概率)20.(12分)在平面直角坐标系xOy中,曲线y=x2﹣6x+1与坐标轴的交点都在圆C上.(Ⅰ)求圆C的方程;(Ⅱ)若圆C与直线x﹣y+a=0交与A,B两点,且OA⊥OB,求a的值.21.(12分)已知函数f(x)=+,曲线y=f(x)在点(1,f(1))处的切线方程为x+2y﹣3=0.(Ⅰ)求a、b的值;(Ⅱ)证明:当x>0,且x≠1时,f(x)>.22.(10分)如图,D,E分别为△ABC的边AB,AC上的点,且不与△ABC的顶点重合.已知AE的长为m,AC的长为n,AD,AB的长是关于x的方程x2﹣14x+mn=0的两个根.(Ⅰ)证明:C,B,D,E四点共圆;(Ⅱ)若∠A=90°,且m=4,n=6,求C,B,D,E所在圆的半径.23.在直角坐标系xOy中,曲线C1的参数方程为(α为参数)M是C1上的动点,P点满足=2,P点的轨迹为曲线C2(Ⅰ)求C2的方程;(Ⅱ)在以O为极点,x轴的正半轴为极轴的极坐标系中,射线θ=与C1的异于极点的交点为A,与C2的异于极点的交点为B,求|AB|.24.设函数f(x)=|x﹣a|+3x,其中a>0.(Ⅰ)当a=1时,求不等式f(x)≥3x+2的解集(Ⅱ)若不等式f(x)≤0的解集为{x|x≤﹣1},求a的值.。

2023年全国统一高考数学试卷(文科)(甲卷)(解析版)

2023年全国统一高考数学试卷(文科)(甲卷)(解析版)

2023年全国统一高考数学试卷(文科)(甲卷)参考答案与试题解析一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(5分)设全集U={1,2,3,4,5},集合M={1,4},N={2,5},则N∪∁U M=( )A.{2,3,5}B.{1,3,4}C.{1,2,4,5}D.{2,3,4,5}【答案】A【解答】解:因为U={1,2,3,4,5},集合M={1,4},N={2,5},所以∁U M={2,3,5},则N∪∁U M={2,3,5}.故选:A.2.(5分)=( )A.﹣1B.1C.1﹣i D.1+i【答案】C【解答】解:==1﹣i.故选:C.3.(5分)已知向量=(3,1),=(2,2),则cos〈+,﹣〉=( )A.B.C.D.【答案】B【解答】解:根据题意,向量=(3,1),=(2,2),则+=(5,3),﹣=(1,﹣1),则有|+|==,|﹣|==,(+)•(﹣)=2,故cos〈+,﹣〉==.故选:B.4.(5分)某校文艺部有4名学生,其中高一、高二年级各2名.从这4名学生中随机选2名组织校文艺汇演,则这2名学生来自不同年级的概率为( )A .B .C .D .【答案】D【解答】解:某校文艺部有4名学生,其中高一、高二年级各2名,从这4名学生中随机选2名组织校文艺汇演,基本事件总数n ==6,这2名学生来自不同年级包含的基本事件个数m ==4,则这2名学生来自不同年级的概率为P ===.故选:D .5.(5分)记S n 为等差数列{a n }的前n 项和.若a 2+a 6=10,a 4a 8=45,则S 5=( )A .25B .22C .20D .15【答案】C【解答】解:等差数列{a n }中,a 2+a 6=2a 4=10,所以a 4=5,a 4a 8=5a 8=45,故a 8=9,则d ==1,a 1=a 4﹣3d =5﹣3=2,则S 5=5a 1+=10+10=20.故选:C .6.(5分)执行下边的程序框图,则输出的B =( )A.21B.34C.55D.89【答案】B【解答】解:模拟执行程序框图,如下:n=3,A=1,B=2,k=1,k≤3,A=1+2=3,B=3+2=5,k=2,k≤3,A=3+5=8,B=8+5=13,k=3,k≤3,A=8+13=21,B=21+13=34,k=4,k>3,输出B=34.故选:B.A.1B.2C.4D.5【答案】B【解答】解:根据题意,点P在椭圆上,满足•=0,可得∠F1PF2=,又由椭圆C:+y2=1,其中c2=5﹣1=4,可得|PF1|•|PF2|=2,故选:B.8.(5分)曲线y=在点(1,)处的切线方程为( )A.y=x B.y=x C.y=x+D.y=x+【答案】C【解答】解:因为y=,y′==,故函数在点(1,)处的切线斜率k=,切线方程为y﹣=(x﹣1),即y=.故选:C.9.(5分)已知双曲线C:﹣=1(a>0,b>0)的离心率为,C的一条渐近线与圆(x﹣2)2+(y﹣3)2=1交于A,B两点,则|AB|=( )A.B.C.D.【答案】D【解答】解:双曲线C:﹣=1(a>0,b>0)的离心率为,可得c=a,所以b=2a,所以双曲线的渐近线方程为:y=±2x,一条渐近线与圆(x﹣2)2+(y﹣3)2=1交于A,B两点,圆的圆心(2,3),半径为1,圆的圆心到直线y=2x的距离为:=,所以|AB|=2=.故选:D.10.(5分)在三棱锥P﹣ABC中,△ABC是边长为2的等边三角形,PA=PB=2,PC=,则该棱锥的体积为( )A.1B.C.2D.3【答案】A【解答】解:如图,PA=PB=2,AB=BC=2,取AB的中点D,连接PD,CD,可得AB⊥PD,AB⊥CD,又PD∩CD=D,PD、CD⊂平面PCD,∴AB⊥平面PCD,在△PAB与△ABC中,求得PD=CD=,在△PCD中,由PD=CD=,PC=,得PD2+CD2=PC2,则PD⊥CD,∴,∴×AB=.故选:A.11.(5分)已知函数f(x)=.记a=f(),b=f(),c=f(),则( )A.b>c>a B.b>a>c C.c>b>a D.c>a>b【答案】A【解答】解:令g(x)=﹣(x﹣1)2,则g(x)的开口向下,对称轴为x=1,∵,而=,∴,∴,∴由一元二次函数的性质可知g()<g(),∵,而,∴,∴,综合可得,又y=e x为增函数,∴a<c<b,即b>c>a.故选:A.12.(5分)函数y=f(x)的图象由y=cos(2x+)的图象向左平移个单位长度得到,则y=f(x)的图象与直线y=x﹣的交点个数为( )A.1B.2C.3D.4【答案】C【解答】解:y=cos(2x+)的图象向左平移个单位长度得到f(x)=cos (2x+)=﹣sin2x,在同一个坐标系中画出两个函数的图象,如图:y=f(x)的图象与直线y=x﹣的交点个数为:3.故选:C.二、填空题:本大题共4小题,每小题5分,共20分。

118_368_(网络版)2024年高考文科数学真题试卷全国甲卷 含答案

项是符合题目要求的.1.集合{}1,2,3,4,5,9A =,{}1B x x A =+∈,则A B = )(A.{}1,2,3,4 B.{}1,2,3 C.{}3,4 D.{}1,2,92.设z =,则z z ⋅=()A .-iD.2B.1C.-13.若实数,x y 满足约束条件43302202690x y x y x y --≥⎧⎪--≤⎨⎪+-≤⎩,则5z x y =-)的最小值为(A.5B.12C.2- D.72-4.等差数列{}n a 的前n 项和为n S ,若91S =,37a a +=()A.2- B.73 D.C.1295.)甲、乙、丙、丁四人排成一列,丙不在排头,且甲或乙在排尾的概率是(A.14B.13C.12D.236.已知双曲线2222:1(0,0)y x C a b a b-=>>的上、下焦点分别为()()120,4,0,4F F -,点()6,4P -在该双曲线上,则该双曲线的离心率为()2024年普通高等学校招生全国统一考试全国甲卷真题及答案文科数学注意事项:1.答题前,务必将自己的姓名、考籍号填写在答题卡规定的位置上.2.答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦擦干净后,再选涂其它答案标号.3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上.4.所有题目必须在答题卡上作答,在试题卷上答题无效.5.考试结束后,只将答题卡交回.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一A.4B.3C.2D.7.曲线()631f x x x =+-在()0,1-处的切线与坐标轴围成的面积为()A.16B.C.12D.8.函数()()2e esin xxf x x x -=-+-在区间[ 2.8,2.8]-的大致图像为()A.B.C. D.9.已知cos cos sin ααα=-,则πtan 4α⎛⎫+= ⎪⎝⎭()A.1+B.1- C.D.1原10题略10.设αβ、是两个平面,m n 、是两条直线,且m αβ= .下列四个命题:①若//m n ,则//n α或//n β②若m n ⊥,则,n n αβ⊥⊥③若//n α,且//n β,则//m n ④若n 与α和β所成的角相等,则m n⊥其中所有真命题的编号是()A.①③B.②④C.①②③D.①③④11.在ABC 中内角,,A B C 所对边分别为,,a b c ,若π3B =,294b ac =,则sin sin A C +=()A.32B.C.D.二、填空题:本题共4小题,每小题5分,共20分.原13题略12.函数()sin f x x x =在[]0,π上的最大值是______.13.已知1a >,8115log log 42a a -=-,则=a ______.14.曲线33y x x =-与()21y x a =--+在()0,∞+上有两个不同的交点,则a 的取值范围为______.三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.第17题第21题为必考题,每个考题考生必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.15.已知等比数列{}n a 的前n 项和为n S ,且1233n n S a +=-.(1)求{}n a 的通项公式;(2)求数列{}n S 的通项公式.16.如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,四边形ABCD 与四边形ADEF 均为等腰梯形,//,//BC AD EF AD ,4,2AD AB BC EF ====,ED FB ==,M 为AD的中点.(1)证明://BM 平面CDE ;(2)求点M 到ABF 的距离.17.已知函数()()1ln 1f x a x x =--+.(1)求()f x 的单调区间;(2)若2a ≤时,证明:当1x >时,()1ex f x -<恒成立.18.设椭圆2222:1(0)x y C a b a b+=>>的右焦点为F ,点31,2M ⎛⎫ ⎪⎝⎭在C 上,且MF x ⊥轴.(1)求C 的方程;(2)过点()4,0P 的直线与C 交于,A B 两点,N 为线段FP 的中点,直线NB 交直线MF 于点Q ,证明:AQ y ⊥轴.(二)选考题:共10分.请考生在第22、23题中任选一题作答,并用2B 铅笔将所选题号涂黑,多涂、错涂、漏涂均不给分,如果多做,则按所做的第一题计分.19.在平面直角坐标系xOy 中,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为cos 1ρρθ=+.(1)写出C 的直角坐标方程;(2)设直线l :x ty t a =⎧⎨=+⎩(t 为参数),若C 与l 相交于A B 、两点,若2AB =,求a 的值.20.实数,a b 满足3a b +≥.(1)证明:2222a b a b +>+;(2)证明:22226a b b a -+-≥.2024年普通高等学校招生全国统一考试全国甲卷文科数学参考答案注意事项:1.答题前,务必将自己的姓名、考籍号填写在答题卡规定的位置上.2.答选择题时,必须使用2B铅笔将答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦擦干净后,再选涂其它答案标号.3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上.4.所有题目必须在答题卡上作答,在试题卷上答题无效.5.考试结束后,只将答题卡交回.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.A2.D3.D4.D5.B6.C7.A8.B9.B原10题略10.A11.C二、填空题:本题共4小题,每小题5分,共20分.原13题略12.213.6414.() 2,1 -三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.第17题第21题为必考题,每个考题考生必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.15.(1)153n na-⎛⎫= ⎪⎝⎭(2)353 232n⎛⎫- ⎪⎝⎭16.(1)证明见详解;(2)17.(1)见解析(2)见解析18.(1)22143x y +=(2)证明见解析(二)选考题:共10分.请考生在第22、23题中任选一题作答,并用2B 铅笔将所选题号涂黑,多涂、错涂、漏涂均不给分,如果多做,则按所做的第一题计分.19.(1)221y x =+(2)34a =20.(1)证明见解析(2)证明见解析。

2023年全国统一高考数学试卷(文科)(甲卷)

2023年全国统一高考数学试卷(文科)(甲卷)一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的1.(★)(5分)过点(1,2)且在两坐标轴上截距互为相反数的直线条数为( )A.1 B.2C.3 D.42.(★★)(5分)已知m,n是两条不重合的直线,α,β是不重合的平面,下面四个命题中正确的是( )A.若m⊂α,n∥α,则m∥nB.若m⊥n,m⊥β,则n∥βC.若α∩β=n,m∥n,则m∥α且m∥βD.若m⊥α,m⊥β,则α∥β3.(★)(5分)已知双曲线方程为=1,则其渐近线方程为( )A.y=B.y=±C.y=±D.y=±4.(★★)(5分)点A,B的坐标分别是(-1,0),(1,0),直线AM与BM相交于点M,且直线AM与BM的斜率的商是λ(λ≠1),则点M的轨迹是( )A.直线B.圆C.椭圆D.抛物线5.(★★)(5分)下列命题中的假命题是( )A.对于命题,,则¬p:∀∈R,x2+x>0B.“x=3”是“x2-3x=0”的充分不必要条件C.若命题p∨q为真命题,则p,q都是真命题D.命题“若x2-3x+2>0,则x>2”的逆否命题为:“若x≤2,则x2-3x+2≤0”6.(★)(5分)已知某几何体是由一个侧棱长为6的三棱柱沿着一条棱切去一块后所得,其三视图如图所示,侧视图是一个等边三角形,则切去部分的体积等于( )A.4B.8C.12D.207.(★★)(5分)直线2ax+(a2+1)y-1=0(a>0)的倾斜角的取值范围是( )A.[-) B.(0,] C.(] D.[)8.(★★★)(5分)已知圆C:x2+y2-8x+15=0,直线y=kx+2上至少存在一点P,使得以P为圆心,1为半径的圆与圆C有公共点,则k的取值范围是( )A.B.C D.9.(★★)(5分)平面α过正方体ABCD-A1B1C1D1的顶点A,α∥平面CB1D1,α∩平面ABCD=m,则直线m与直线BC所成角的正弦值为( )A.B.C.1 D.10.(★★)(5分)已知在平行六面体ABCD-A′B′C′D′中,AB=3,AD=4,AA′=5,∠BAD=120°,∠BAA′=60°,∠DAA′=90°,则AC′的长为( )A.B.C.D.11.(★★)(5分)已知双曲线=1(a>0,b>0),过其右焦点F作x轴的垂线交双曲线于A、B两点,若双曲线的左顶点C满足•≥0,则双曲线离心率的最大值是( ) A.B.2C.D.312.(★★★)(5分)如图,在四棱锥P-ABCD中,侧面PAD是边长为4的正三角形底面ABCD为正方形侧面PAD⊥底面ABCD,M为平面ABCD上的动点,且满足=0,则点M到直线AB的最远距离为( )A.2B.3+C.4+D.4+2二、填空题:本题共4小题,每题5分,共20分13.(★)(5分)已知椭圆=1的左右焦点分别为F1,F2,过右焦点F2的直线AB与椭圆交于A,B两点,则△ABF1的周长为16.14.(★★)(5分)在三棱锥A-BCD中,AB⊥平面ACD,∠CAD=90°,AB=2,AC=3,AD=4,则三棱锥A-BCD的外接球的表面积为29π.15.(★★)(5分)已知实数x,y满足不等式组,则+1的最大值为6.16.(★★★)(5分)给出下列命题,其中所有正确命题的序号是③④.①抛物线y2=8x的准线方程为y=2;②过点M(2,4)作与抛物线y2=8x只有一个公共点的直线l仅有1条;③P是抛物线y2=8x上一动点,以P为圆心作与抛物线准线相切的圆,则此圆一定过定点Q(2,0).④抛物线y2=8x上到直线x-y+3=0距离最短的点的坐标为M(2,4).三、解答题:本题共6小题,共70分,解答应写出文字说明证明过程或演算步骤17.(★)(10分)已知命题p:=1表示椭圆,命题:q:∃x∈R,mx2+2mx+2m-1≤0.(1)若命题q为真,求实数m的取值范围;(2)若p∨q为真,¬p为真,求实数m的取值范围.18.(★★)(12分)已知平行四边形ABCD的三个顶点的坐标为A(-1,4),B(-2,-1),C(2,3).(1)在△ABC中求边AC的高线所在直线的一般方程;(2)求平行四边形ABCD的对角线BD的长度;(3)求平行四边形ABCD的面积.19.(★★★)(12分)如图,已知在四棱锥P-ABCD中,PA⊥底面ABCD,AD⊥AB,AB∥DC,AD=DC=AP=2,AB=1,点E为棱PC的中点.(1)试在棱CD上确定一点M,使平面BEM∥平面PAD,说明理由.(2)若F为棱PC上一点,满足BF⊥AC,求二面角F-AB-C的余弦值.20.(★★)(12分)为了落实国家“精准扶贫”的各项政策,帮助广大人民群众实现共同富裕的目标,各地政府结合当地实际情况展开了一系列的帮扶活动,某村在当地政府的支持指导下,计划种植A,B两种蔬菜.已知A,B的种植成本分别为每亩3000元和5000元,每亩的预期产量分别为3000千克和3500千克,该村目前可利用的空地为40亩,可利用的资金为150000元,A,B两种蔬菜的市场利润分别为3元/千克和4元/千克.假设计划种植A种蔬菜x亩,B种蔬菜y亩,请你设计一个最佳的种植方案帮助该村实现利润z最大,并求出最大利润.21.(★★)(12分)已知圆O:x2+y2=4,直线l:y=kx+4.(1)若直线l与圆O交于不同的两点A,B,当|AB|=2时,求实数k的值;(2)若k=1,P是直线上的动点,过P作圆O的两条切线PC、PD,切点分别为C、D,试探究:直线CD是否过定点.若存在,请求出定点的坐标;若不存在,请说明理由.22.(★★★)(12分)已知椭圆C:=1,直线l:y=kx+1,若椭圆C上存在两个不同的点P,Q关于l对称,设PQ的中点为M.(1)证明:点M在某定直线上;(2)求△OPM面积的取值范围.。

2022高考甲卷数学真题试卷及答案

2022高考甲卷数学真题试卷及答案2022年高考全国甲卷数学直题及答案【文科数学】注意事顼:如答卷箭,考生务堡用黑色碳落笔将自己的魁名、准考证号、考场号、座位号现写在答踏卡上,弁认真核准条形码上的進考证号、姓客、考场号、座位号氏科目.在规定的位豊魅好条形码.回答选挥题时.选出萼小超答案后.用铅笔把答题卡上対強题目的答案标号涂果。

尤罷玄动,与段皮操干律后.再法涂其他替案标号,回替非选魅題时.将答案写在答飕卡上,写在本试卷上无效.考试垮斐后,将本话卷和答題卡一井交回.—、遗择墨:本题共口小题,每小題5分,共60分.在每小題结出的四个选项中,只有一題是符合聚目要求的.设=(-2,-1,0,1,2},B={jr|0Wx<m,则4。

方={Q,L2}B.{-ZT0}C.{0,1}D’{1,2}某社区通辻公益讲座以普及社区居民的垃圾分类知识.为了解讲座效果,随机抽取M位牡区房员,让他们在游座蔺和讲座后各回答一份垃圾分类知识问卷,达10位社区落民在讲座前和诱座后问卷答题的正确率如下图:讲座前问卷答题的正擄率的中位数小于70%讲座后问卷答题的正确率的平均数大于85%讲座薊问卷答題的正确率的标淮差小于讲座后正晡率的标准差D一讲座后问卷答题的正碑率的极差大于讲座前正确率的様盖冥科数学试题第1页(共5页)A.4Vi4如图,附格俄上绘制的是一个务面怖的三程麗.网格小正方形的边蛇为1,列该多面体的体枳为C-16D,205,将函数/(幻=皿<以十5(仞>0)的圈像向左平菩兰个单位长度启縄到台线C,若C关于y軸对称,则山的最小值是6.从分利写有1,2,3,4.5,6的6张卡片中无放回砲阳B敏2张.则拍到的£張卡片上的•数字之积携4的倍数的既塁为A-77,函数f(x)=(3f-3-*)cosx在区冋[-普.勺的图像大致为。

与气=%瓦好烈好与p笔奴豈浏owo5i=m:g聒宓勺遂乌环JVO刷'丁外。

丑命(1节)哒(Q'C审50T-C它帝直卫四序關1-1緯够'卒队做钥-"K仲轮虹I嚨风(0”3)1=耳+£:◎圖剛佰-IIItlA%4"一••=七的卄=姦;辛•勺裝,力平略身重辭’冬姓學5AS十牛隔谷澄皿瑚’屹华此N*,1?!®闵圈珀劉回阀'競詳丹磨每閃禍50$地2'由orMk军財刖塑壊Qbw團Jr乌ato=DV,。

2023高考全国甲卷数学真题及答案(文数)

2023高考全国甲卷数学真题及答案(文数)2023年普通高等学校招生全国统一考试文科数学试题2023年普通高等学校招生全国统一考试文科数学参考答案学好高考数学的技巧高考数学题目的总结比较。

建立自己的题库。

多做。

主要是指做高考数学习题,学数学一定要做习题,并且应该适当地多做些。

养成好的学习习惯,做好预习,把预习没看懂的东西,第二天上课着重听。

抓住课堂。

高考数学理科学习重在平日功夫,不适于突击复习。

高质量完成作业。

所谓高质量是指高正确率和高速度。

翻译:把中文翻译成为数学语言,包括:字母表示未知数、图像表示函数式或几何题目、概率语言等等。

该方法常用于函数,几何以及不等式等题目。

特殊化:在面对抽象或者难以理解的题目的时候,我们尝试用最极端最特殊的数字来代替变量,帮助我们理解题目。

该方法常用于在选择题目中排除选项,在解大题的过程中也经常会用到特殊化的结论。

盯住目标:把高考数学目标和已知结合,联想相关的定理、定义、方法。

在压轴题目中,往往需要不断转化目标,即盯住目标需要反复使用!各省高考用卷情况1、新高考一卷(8个省份)适用省份:山东、河北、湖北、福建、湖南、广东、江苏,浙江考试科目:语文、数学、外语、物理、化学、生物、政治、历史、地理、信息技术等。

特点:语文、数学、外语三门考试由教育部考试中心统一命题;物理、历史、化学、政治、生物、地理由各省自行命题。

其中广东、福建、江苏、湖南、湖北、河北6个省是3+1+2模式的高考省份,山东省是综合改革3+3省份。

2、新高考二卷(3个省份)适用省份:海南、辽宁、重庆考试科目:语文、数学、外语、物理、化学、生物、政治、历史、地理等。

特点:语文、数学、外语三门考试由教育部考试中心统一命题;物理、历史、化学、政治、生物、地理由各省自行命题。

其中辽宁、重庆两省市是3+1+2省份,海南是综合改革3+3省份。

3、全国甲卷(5个省份)适用省份:云南、贵州、四川、西藏、广西考试科目:语文、数学、外语、文综、理综特点:语文、数学、外语、文科综合、理科综合均由教育部考试中心统一命题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2022年普通高等学校招生全国统一考试(甲卷)数学(文科)一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设集合5{2,1,0,1,2},02A B xx ⎧⎫=--=<⎨⎬⎩⎭∣,则A B =( ) A .{}0,1,2 B .{2,1,0}-- C .{0,1} D .{1,2}2.某社区通过公益讲座以普及社区居民的垃圾分类知识.为了解讲座效果,随机抽取10位社区居民,让他们在讲座前和讲座后各回答一份垃圾分类知识问卷,这10位社区居民在讲座前和讲座后问卷答题的正确率如下图:则( )A .讲座前问卷答题的正确率的中位数小于70%B .讲座后问卷答题的正确率的平均数大于85%C .讲座前问卷答题的正确率的标准差小于讲座后正确率的标准差D .讲座后问卷答题的正确率的极差大于讲座前正确率的极差 3.若1i z =+.则|i 3|z z +=( )A .5B .42C .5D .224.如图,网格纸上绘制的是一个多面体的三视图,网格小正方形的边长为1,则该多面体的体积为( )A .8B .12C .16D .205.将函数π()sin (0)3f x x ωω⎛⎫=+> ⎪⎝⎭的图像向左平移π2个单位长度后得到曲线C ,若C 关于y 轴对称,则ω的最小值是( ) A .16 B .14 C .13 D .126,从分别写有1,2,3,4,5,6的6张卡片中无放回随机抽取2张,则抽到的2张卡片上的数字之积是4的倍数的概率为( )A .15 B .13 C .25 D .237.函数()()33cos x x f x x -=-在区间,22ππ⎡⎤-⎢⎥⎣⎦的图像大致为( )A .B .C .D .8.当1x =时,函数()ln bf x a x x=+取得最大值2-,则(2)f '=( ) A .1- B .12- C .12D .19.在长方体1111ABCD A B C D -中,已知1B D 与平面ABCD 和平面11AA B B 所成的角均为30︒,则( )A .2AB AD = B .AB 与平面11ABCD 所成的角为30︒ C .1AC CB = D .1B D 与平面11BB C C 所成的角为45︒10.甲、乙两个圆锥的母线长相等,侧面展开图的圆心角之和为2π,侧面积分别为S 甲和S 乙,体积分别为V 甲和V 乙.若=2S S 甲乙,则=V V 甲乙( ) A 5 B .22 C 10 D 51011.已知椭圆2222:1(0)x y C a b a b +=>>的离心率为13,12,A A 分别为C 的左、右顶点,B为C 的上顶点.若121BA BA ⋅=-,则C 的方程为( )A .2211816x y += B .22198x y += C .22132x y += D .2212x y += 12.已知910,1011,89mmma b ==-=-,则( )A .0a b >>B .0a b >>C .0b a >>D .0b a >>二、填空题:本题共4小题,每小题5分,共20分。

13.已知向量(,3),(1,1)m m ==+a b .若⊥a b ,则m =______________. 14.设点M 在直线210x y +-=上,点(3,0)和(0,1)均在M 上,则M 的方程为______________.15.记双曲线2222:1(0,0)x y C a b a b-=>>的离心率为e ,写出满足条件“直线2y x =与C无公共点”的e 的一个值______________.16.已知ABC △中,点D 在边BC 上,120,2,2ADB AD CD BD ∠=︒==.当ACAB取得最小值时,BD =______________.三、解答题:共70分。

解答应写出文字说明、证明过程或演算步骤。

第17~21题为必考题,每个试题考生都必须作答。

第22、23题为选考题,考生根据要求作答。

(一)必考题:共60分。

17.(12分)甲、乙两城之间的长途客车均由A 和B 两家公司运营,为了解这两家公司长途客车的运行情况,随机调查了甲、乙两城之间的500个班次,得到下面列联表:准点班次数未准点班次数A 240 20 B21030(2)能否有90%的把握认为甲、乙两城之间的长途客车是否准点与客车所属公司有关?附:22()()()()()n ad bc K a b c d a c b d -=++++,()2P K k0.100 0.050 0.010 k2.7063.8416.635记n S 为数列{}n a 的前n 项和.已知221nn S n a n+=+. (1)证明:{}n a 是等差数列;(2)若479,,a a a 成等比数列,求n S 的最小值. 19.(12分)小明同学参加综合实践活动,设计了一个封闭的包装盒,包装盒如图所示:底面ABCD 是边长为8(单位:cm )的正方形,,,,EAB FBC GCD HDA △△△△均为正三角形,且它们所在的平面都与平面ABCD 垂直.(1)证明:EF ∥平面ABCD ;(2)求该包装盒的容积(不计包装盒材料的厚度). 20.(12分)已知函数32(),()f x x x g x x a =-=+,曲线()y f x =在点()()11,x f x 处的切线也是曲线()y g x =的切线.(1)若11x =-,求a : (2)求a 的取值范围. 21.(12分)设抛物线2:2(0)C y px p =>的焦点为F ,点(,0)D p ,过F 的直线交C 于M ,N 两点.当直线MD 垂直于x 轴时,3MF =. (1)求C 的方程:(2)设直线,MD ND 与C 的另一个交点分别为A ,B ,记直线,MN AB 的倾斜角分别为,αβ.当αβ-取得最大值时,求直线AB 的方程.(二)选考题:共10分。

请考生在第22、23题中任选一题作答。

如果多做,则按所做的第一题计分。

22.[选修4-4:坐标系与参数方程](10分)在直角坐标系xOy 中,曲线1C 的参数方程为26t x y t +⎧=⎪⎨⎪=⎩(t 为参数),曲线2C 的参数方程为26s x y s +⎧=-⎪⎨⎪=⎩(s 为参数). (1)写出1C 的普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线3C 的极坐标方程为2cos sin 0θθ-=,求3C 与1C 交点的直角坐标,及3C 与2C 交点的直角坐标.23.[选修4-5:不等式选讲](10分)已知,,a b c 均为正数,且22243a b c ++=,证明: (1)23a b c ++(2)若2b c =,则113a c+.参考答案一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. A2. B3. D4. B5.C6. C7.A8.B9. D 10. C 11. B 12.A二、填空题:本题共4小题,每小题5分,共20分.13. 34-##0.75-14. 22(1)(1)5x y -++= 15. 2(满足15e <≤16. 31##1+3-三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17. (1)A ,B 两家公司长途客车准点的概率分别为1213,78(2)有18. (1)证明见解析; (2)78-. 19. (1)如图所示:,分别取,AB BC 的中点,M N ,连接MN ,因为,EAB FBC 为全等的正三角形,所以,EM AB FN BC ⊥⊥,EM FN =,又平面EAB ⊥平面ABCD ,平面EAB ⋂平面ABCD AB =,EM ⊂平面EAB ,所以EM ⊥平面ABCD ,同理可得FN ⊥平面ABCD ,根据线面垂直的性质定理可知//EM FN ,而EM FN =,所以四边形EMNF 为平行四边形,所以//EF MN ,又EF ⊄平面ABCD ,MN ⊂平面ABCD ,所以//EF 平面ABCD . (26403320. (1)3 (2)[)1,-+∞ 21. (1)24y x =; (2):24AB x y =+.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22. (1)()2620y x y =-≥;(2)31,C C 的交点坐标为1,12⎛⎫⎪⎝⎭,()1,2,32,C C 的交点坐标为1,12⎛⎫-- ⎪⎝⎭,()1,2--.[选修4-5:不等式选讲]23.(1)证明:由柯西不等式有()()()222222221112a b c a b c ⎡⎤++++≥++⎣⎦,所以23a b c ++≤,当且仅当21a b c ===时,取等号, 所以23a b c ++≤;(2)证明:因为2b c =,0a >,0b >,0c >,由(1)得243a b c a c ++=+≤, 即043a c <+≤,所以1143a c ≥+,由权方和不等式知()22212111293444a c a c a c a c++=+≥=≥++, 当且仅当124a c =,即1a =,12c =时取等号, 所以113a c +≥.。

相关文档
最新文档