基于Radon变换的图像轮廓提取方法研究

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

󰀁2010年第29卷第2期󰀁󰀁󰀁󰀁󰀁󰀁󰀁传感器与微系统(TransducerandMicrosystemTechnologies)

基于Radon变换的图像轮廓提取方法研究

陈至坤1,潘晓娣1,王福斌1,2,周亚罗1,刘󰀁杰2

(1.河北理工大学计算机与自动控制学院,河北唐山063009;2.东北大学机械工程与自动化学院,辽宁沈阳110004)

摘󰀁要:图像的轮廓提取是机器视觉的重要组成部分,针对传统的轮廓提取方法提取的图像轮廓有时存在断点的问题,给出了Radon变换法对断点轮廓进行重构,从而得到连续的图像轮廓。给出了关键技术的原理和实现方法。Matlab仿真实验表明:Radon变换法重构的图像轮廓具有单像素宽、连续的特点,且在噪声存在的情况下有一定的自抗干扰能力。关键词:边缘检测;阈值;数学形态学;Radon变换中图分类号:TP751󰀁󰀁󰀁文献标识码:A󰀁󰀁󰀁文章编号:1000󰀂9787(2010)02󰀂0063󰀂03

Researchonimagecontourextractionmethod

basedonRadontransform

CHENZhi󰀁kun1,PANXiao󰀁di1,WANGFu󰀁bin1,2,ZHOUYa󰀁luo1,LIUJie2

(1.ComputerandAutomaticControlCollege,HebeiPolytechnicUniversity,Tangshan063009,China;2.CollegeofMechanicalEngineeringandAutomation,NortheasternUniversity,Shenyang110004,China)

Abstract:Imagecontourextractionisthemostimportantpartofmachinevision.Aimedattheproblemofpoint󰀁breakoftraditionalmethodofcontourextraction,Radontransformisgiventoreconstructtheoutlineofthebreakpoint.Andobtaincontinuousimagecontour.Theprincipleandrealizationmethodofkeytechnologyaregiven.MatlabsimulationexperimentresultsshowthatthereconstructedimagebyRadontransformhasthecharacteristicsofwidesingle󰀁pixeloutline,arow,andcontinuous.Ithascertaindegreeofself󰀁anti󰀁interferenceabilityintheabsenceofnoise.Keywords:edgemeasure;threshold;mathematicsmorphology;Radontransform

0󰀁引󰀁言

轮廓提取在许多智能视觉系统中特别是模式识别中被

认为是非常重要的过程,轮廓提取的好坏直接影响图像的

下一步处理,因此,图像的轮廓提取是机器视觉研究的重要

课题。

传统的轮廓提取方法主要有边缘检测算子法和数学形

态学法[1~3]。边缘检测算子法具有算法简单、提取速度快

等优点,但提取的轮廓不一定是连续和单像素宽,轮廓包含

的特征不宜于计算机的下一步处理;数学形态学法提取轮

廓具有单像素宽、抗干扰等优点,但由于噪声随机分布的特

征,物体边界领域受噪声干扰的点,幅值接近阈值的像素点

被检漏或误检,所以,提取的轮廓有时有断点的出现,并不

是连续的轮廓,不能把轮廓的特征完全表达出来,给图像的

进一步处理带来麻烦。

本文针对有断点的轮廓,利用Radon变换对断点轮廓收稿日期:2009󰀂07󰀂09进行重构,得到连续的轮廓,并由实验验证了其可行性。

1󰀁Radon变换重构断点轮廓的原理

从物体图像中得到目标物体的外形轮廓称为轮廓提

取,它是计算机视觉的重要组成部分,轮廓提取的好坏直接

影响计算机的下一步处理。Radon变换法对断点轮廓进行

重构得到连续轮廓的原理图如图1所示,首先,通过预处

理、阈值处理得到二值图像;然后,经过数学形态学对二值

图像进行缺陷修补;用数学形态学法提取轮廓;最后,用

Radon变换法对提取的有断点的轮廓进行重构,得到连续

的轮廓,轮廓以链码的形式储存。

2󰀁图像处理理论基础

2.1󰀁Sobel边缘检测算子[4]

设图像的灰度函数为f(x,y),x和y分别为图像像素

点所在的行和列的坐标,如果在(x,y)处有边缘,利用f(x,

y)在x和y方向上的变化率,可以算出其变化最快的方向,63󰀁󰀁󰀁󰀁󰀁󰀁󰀁󰀁󰀁󰀁󰀁󰀁󰀁󰀁󰀁󰀁󰀁󰀁󰀁传感器与微系统󰀁󰀁󰀁󰀁󰀁󰀁󰀁󰀁󰀁󰀁󰀁󰀁󰀁󰀁󰀁󰀁󰀁󰀁󰀁󰀁第29卷

图1󰀁Radon变换重构断点轮廓原理图Fig1󰀁SchematicdiagramofreconstructedbreakpointbyRadontransform即梯度方向。边缘的方向垂直于这个梯度方向,有关的方

向导数、梯度幅度和相位的公式如下󰀁f󰀁󰀂=󰀁f󰀁xcos󰀂+󰀁f󰀁ysin󰀂,

| f(x,y)|=[(󰀁f󰀁x)2+(󰀁f󰀁x)2]12,

󰀂=arctg(󰀁f󰀁y)arctg(󰀁f󰀁x).

对于数字图像,要用差分代替微分

fx(x,y)=f(x,y)-f(x-1,y),

fy(x,y)=f(x,y)-f(x,y-1).

取梯度幅度值为

M={[fx(x,y)]2+[fy(x,y)]2}12.

索贝尔算子就是针对这一原理提出的一种分别计算

fx(x,y)和fy(x,y)的算子,如图2所示。

图2󰀁索贝尔边缘检测算子Fig2󰀁Sobeledgedetectionoperator2.2󰀁阈值分割

灰度级阈值化是最简单的分割处理。阈值化计算代价

小速度快,是最简单的分割方法且在简单的应用中广泛应

用。本文用阈值分割中最大类间方差法对图像进行二值

化。

最大类间方差法原理:对图像,记t为前景和背景的分

割阈值,前景点数占图像比例为w0,平均灰度为u0;背景点

数占图像比例为w1,平均灰度为u1。图像的总平均灰度为

u=w0u0+w1u1。

从最小灰度值到最大灰度值遍历为t,当t使得值g=

w0(u0-u)2+w1(u1-u)2最大时,t即为分割的最佳阈值。

具体的算法和实现过程图如图3所示。图3󰀁最大类间方差法算法实现图

Fig3󰀁LargestOTSUalgorithm2.3󰀁数学形态学

数学形态学主要包括4种运算子,即膨胀运算子、腐蚀

运算子、开运算子和闭运算子[4]。膨胀用来填补物体中狭

小的空洞和缝隙,使物体的形状增大;腐蚀简化物体的结构

可以使较复杂的物体分解成几个简单部分;先腐蚀再膨胀

称为开运算;先膨胀再腐蚀成为闭运算。开运算可以切断

搭结,去掉孤立子域、毛刺等部分,闭运算可以填充细小空

洞,搭结短的间隔。在实际应用中,运算形式的选择应遵循

以下原则:1)在保持图像基本特征的基础上,平滑边界,消

除图像中的细小空洞和毛刺;2)为保证测量的精度,应该

保持图像中目标的尺寸基本不变。基于数学形态学修补的

效果如图4所示。

图4󰀁数学形态学修补效果图

Fig4󰀁Effectdiagramofmathematicalmorphologypatch3󰀁Radon变换重构物体轮廓

Radon变换[5]的定义如下

R0(x )=!-∀∀f(x cos󰀂-y sin󰀂,x sin󰀂+y cos󰀂)dy ,

x

y =󰀁cos󰀂󰀁sin󰀂

-sin󰀂󰀁cos󰀂x

y.64第2期󰀁󰀁󰀁󰀁󰀁󰀁󰀁󰀁󰀁󰀁󰀁󰀁󰀁陈至坤,等:基于Radon变换的图像轮廓提取方法研究󰀁󰀁󰀁󰀁󰀁󰀁󰀁󰀁󰀁󰀁󰀁󰀁󰀁

上式的几何意义为函数f(x,y)在方向󰀂(与x坐标轴

成󰀂角)距原点x 上的一个投影值。当󰀂固定时,x 取所有

不同的值就可得到󰀂方向上的投影图,再改变󰀂即可得到

不同方向上的投影图。

Radon变换是计算指定方向上图形的投影,Radon变换

对物体轮廓进行重构,就是检测Radon变换矩阵中的峰值,

这些峰值对应着物体图像的边缘,Radon变换检测图像的

能力受图像断点的影响小,因此,可以用Radon逆变换对存

在断点的轮廓进行重构,得到连续的轮廓。

4󰀁存储轮廓

4.1󰀁方向码的定义

对于离散的数字图像,区域的边界轮廓可理解为相邻

边界像素点之间的单元连线逐段相连而成,考虑数字图像

像素点(x,y)的一个8邻域,显然,在该处的边界只能有以

下几种情况:正东、东北、正北、西北、正西、西南、正南和东

南,如图5所示。对于每一种方向赋以一种码表示,8个方

向对应于0,1,2,3,4,5,6,7,这些码称为方向码。

图5󰀁方向码的定义Fig5󰀁Definitionofdirectioncode4.2󰀁链码形式存储轮廓

如图6的封闭曲线,假设起始点为(0,0),按顺时针方

向进行,只需用(0,0,0,0,0,1,3,3,3,4,6,6,5,7)就可以把

此封闭曲线完整地表达出来。

图6󰀁链码存储轮廓Fig6󰀁Contourofchaincodestorage󰀁󰀁轮廓跟踪以链码形式存储步骤如下:

1)从左到右,从下到上对图像逐行扫描,搜索到第1个目

标点(0,0)后就将其作为起始点,接着,从方向码4开始绕起始

点逆时针旋转在其八邻域中搜索下一点(图中第1点)。

2)搜索到第1点后,绕其作逆时针旋转搜索第2点,方

向码从起始点在其八邻域中所在方向码的下1个(按逆时

钟)开始,如起始点在第一点中的方向码为4。3)如此循环,最终便能得到可表示整个轮廓的链码:0,0,0,0,0,1,3,3,3,4,6,6,5,7。

5󰀁图像轮廓提取的效果与分析

为了检验轮廓提取的效果,以钢筋图像作为测试对象,

进行图像轮廓提取实验,实验仿真结果图如图7所示。

图7󰀁图像的轮廓提取结果图Fig7󰀁Theresultsofcontourextractionofimage󰀁󰀁为了验证本方法的实用性和对噪声的抗干扰能力,在

图像中加入高斯噪声,仿真结果如图8所示。

图8󰀁加噪声后提取轮廓图Fig8󰀁Extractioncontourdiagramafteraddingnoise󰀁󰀁从仿真图可以看出:边缘检测算子法提取的轮廓,不

仅不连续且不是单像素宽,而且,没有自抗干扰的能力;数

学形态学法提取的轮廓有断点的出现;本文的方法提取的

图像轮廓具有连续、单像素、有抗干扰能力等特点,能够满

足计算机识别的要求。

6󰀁结󰀁论

Radon变换对断点轮廓进行重构得到的图像轮廓具有

连续、精度高、单像素的特点,能够把图像端面的特征表达

出来,并且,图像是经过数学形态学处理的,有一定的自抗噪声的能力。连续、精度高、单像素的图像轮廓能为计算机

对图像的下一步处理奠定基础。

(下转第68页)65

相关文档
最新文档