机械手姿态识别的立体视觉匹配

合集下载

《2024年基于双目视觉的立体匹配算法研究及应用》范文

《2024年基于双目视觉的立体匹配算法研究及应用》范文

《基于双目视觉的立体匹配算法研究及应用》篇一一、引言随着计算机视觉技术的不断发展,双目视觉技术已成为三维重建、机器人导航、自动驾驶等领域的重要技术手段。

其中,立体匹配算法作为双目视觉技术的核心,对于实现高精度的三维重建和场景理解具有重要意义。

本文旨在研究基于双目视觉的立体匹配算法,探讨其原理、方法及应用,以期为相关领域的研究和应用提供参考。

二、双目视觉原理及立体匹配算法概述双目视觉技术通过模拟人类双眼的视觉系统,利用两个相机从不同角度获取场景的图像信息,然后通过立体匹配算法对两幅图像进行匹配,从而恢复出场景的三维信息。

立体匹配算法是双目视觉技术的核心,其主要任务是在两个视图的像素之间找到对应的匹配点,进而计算出视差图(disparity map),最终实现三维重建。

三、立体匹配算法研究立体匹配算法的研究主要包括匹配基元选择、匹配代价计算、视差计算及优化等方面。

1. 匹配基元选择:匹配基元是立体匹配算法的基础,常用的包括像素、区域、特征等。

像素级匹配精度高,但计算量大;特征级匹配计算量小,但鲁棒性较好。

针对不同场景和应用需求,选择合适的匹配基元是关键。

2. 匹配代价计算:匹配代价是衡量两幅图像中对应点相似程度的指标。

常用的匹配代价计算方法包括灰度差绝对值法、灰度差平方法、归一化互相关法等。

合理的匹配代价计算方法有助于提高匹配精度和鲁棒性。

3. 视差计算及优化:视差计算是通过匹配代价计算得到的视差图来恢复场景的三维信息。

常用的视差计算方法包括块匹配法、动态规划法、基于全局优化的方法等。

在视差计算过程中,还需要考虑噪声、遮挡等问题,通过优化算法提高视差的准确性和稳定性。

四、立体匹配算法应用双目视觉技术及立体匹配算法在许多领域得到了广泛应用,如机器人导航、自动驾驶、三维重建等。

本文将介绍几种典型的应用场景:1. 机器人导航:利用双目视觉技术实现机器人的环境感知和障碍物检测,通过立体匹配算法获取视差图,为机器人提供精确的深度信息,从而实现自主导航和避障。

双目立体视觉匹配

双目立体视觉匹配

双目立体视觉匹配双目立体视觉匹配是一种计算机视觉技术,用于在双目摄像头中获取的图像中,找到对应的目标点,从而实现立体深度感知。

双目立体视觉匹配的原理是基于两个前提假设:一是视差概念,即两个相同的场景在左右两个眼睛中的图像位置差异;二是视差和深度之间的关系。

根据这两个基本假设,我们可以通过比较左右两个图像中的像素值来确定两个图像中的对应关系,从而计算出立体深度信息。

双目视觉匹配的过程通常包括以下几个步骤:1. 图像预处理:双目图像首先需要进行预处理,包括去噪、图像校正、颜色校正等。

这些步骤旨在提高图像质量和减少噪声对匹配结果的影响。

2. 特征提取:在预处理之后,需要从图像中提取出一些能够反映目标结构和纹理信息的特征点。

常用的特征包括角点、边缘、区域等。

3. 特征匹配:在这一步中,通过比较特征点之间的相似性来确定它们之间的对应关系。

常用的匹配算法有最近邻匹配、迭代最近点算法、随机抽样一致性算法等。

4. 视差计算:特征匹配之后,我们可以根据特征点之间的位置差异来计算出视差信息,即目标点在左右图像中的位置差异。

一般来说,视差越大,深度越小。

5. 深度计算:视差和深度之间的具体关系取决于相机的内外参数、基线长度等因素。

通过根据相机标定信息和经验参数,可以将视差转换为具体的深度值。

双目立体视觉匹配在机器人导航、三维重建、虚拟现实等领域具有广泛的应用。

通过获取场景的三维深度信息,可以使机器人在复杂环境中进行精确的定位和避障;在三维重建中,双目立体视觉匹配可以用于获取物体或场景的精确几何结构;在虚拟现实中,双目立体视觉匹配可以为用户提供更加真实的交互体验。

双目立体视觉匹配也面临着一些挑战和限制。

双目视觉匹配对于光照变化、纹理缺失等问题比较敏感,这会导致匹配结果的不稳定性;相机标定是双目视觉匹配中的重要一步,需要准确地测量相机参数和关联参数,否则会影响深度计算结果的精度;双目视觉匹配在处理大场景、纹理一致的区域等情况下会面临困难。

双目立体视觉匹配

双目立体视觉匹配

双目立体视觉匹配双目立体视觉匹配是指利用人类双眼在空间中略微不同的视角,联合大脑进行视觉信息的处理和匹配,从而获得空间的深度和立体感。

在现代科技中,利用双目立体视觉匹配可以实现很多实用的应用,比如立体影像、立体游戏、机器人视觉导航等。

双目立体视觉匹配技术是计算机视觉和人工智能领域的一个重要研究方向,具有广泛的应用前景。

一、双目立体视觉原理人类通过双眼获取的两幅视觉图像,实际上是同一个物体在不同视角下的投影。

这两幅图像之间存在视差,也就是物体在不同视角下的位置差异。

大脑通过对这些视差的处理,得出了深度信息,使我们能够感知到物体的三维空间位置。

双目立体视觉匹配主要涉及视差的计算和匹配。

在数字图像处理中,利用计算机对双眼获取的两幅图像进行处理和匹配,从而获取深度信息。

通常采用的方法包括视差计算、视差匹配和深度图生成等步骤。

1. 视差计算:通过一系列像素级的图像处理方法,计算出两幅图像之间的视差。

常见的计算方法包括半全局匹配(Semi-Global Matching, SGM)、立体匹配算法(Stereo Matching)、视差图像传感器(Depth Sensing Image Sensor)等。

2. 视差匹配:将两幅图像中对应的像素进行匹配,找到它们之间的视差值。

通常采用的方法包括基于特征点的匹配、基于像素级的匹配等。

3. 深度图生成:根据计算得出的视差信息,生成目标物体的深度图,从而实现三维空间中物体位置的感知。

双目立体视觉匹配的原理是基于人类视觉的工作原理,通过模拟人类双眼的工作方式,从而实现数字图像的深度感知和立体视觉效果。

二、双目立体视觉应用双目立体视觉匹配技术在现代科技中应用广泛,涉及到多个领域,包括计算机视觉、人工智能、机器人技术等。

以下将介绍一些典型的双目立体视觉应用。

1. 立体影像:利用双目立体视觉匹配技术,可以实现立体影像的拍摄和显示。

通过双目相机拍摄的图像以及虚拟现实(Virtual Reality, VR)或增强现实(Augmented Reality, AR)技术,可以实现逼真的立体影像体验。

《基于双目视觉的立体匹配算法研究及应用》范文

《基于双目视觉的立体匹配算法研究及应用》范文

《基于双目视觉的立体匹配算法研究及应用》篇一一、引言随着计算机视觉技术的不断发展,双目视觉技术已成为三维重建、机器人导航、自动驾驶等领域的重要技术手段。

其中,立体匹配算法是双目视觉技术的核心,其精度和稳定性直接影响着双目视觉系统的性能。

本文将介绍基于双目视觉的立体匹配算法的研究现状、原理及应用,并探讨其在实际应用中的优化与改进。

二、双目视觉的立体匹配算法研究1. 算法概述双目视觉的立体匹配算法是通过分析两个相机从不同视角获取的图像,从而恢复出场景的三维信息。

立体匹配算法主要包括特征提取、特征匹配和视差计算三个步骤。

其中,特征提取是提取出两幅图像中的有用信息,特征匹配则是根据一定的匹配准则,将两幅图像中的特征进行匹配,最后通过视差计算得到场景的三维信息。

2. 算法原理立体匹配算法的原理是基于视差原理,即同一场景从不同视角观察时,物体在左右图像中的位置会有所偏差。

通过比较两幅图像中对应位置的像素或特征,可以计算出视差,从而得到场景的三维信息。

在特征提取阶段,算法会提取出两幅图像中的关键点或特征描述符,如SIFT、SURF等;在特征匹配阶段,算法会根据一定的匹配准则,如欧氏距离、互信息等,将两幅图像中的特征进行匹配;在视差计算阶段,算法会根据匹配结果计算出视差图,从而得到场景的三维信息。

三、立体匹配算法的应用双目视觉的立体匹配算法在多个领域得到了广泛应用。

在机器人导航领域,可以通过双目视觉系统实现机器人的三维环境感知和避障;在自动驾驶领域,可以通过双目视觉系统实现车辆的自主驾驶和道路识别;在三维重建领域,可以通过双目视觉系统实现场景的三维重建和模型构建。

此外,立体匹配算法还可以应用于虚拟现实、人机交互等领域。

四、立体匹配算法的优化与改进针对立体匹配算法在实际应用中存在的问题,如匹配精度低、计算量大等,研究人员提出了多种优化与改进方法。

首先,可以通过改进特征提取算法,提取出更鲁棒、更丰富的特征信息;其次,可以通过优化匹配准则和匹配策略,提高匹配精度和计算效率;此外,还可以通过引入深度学习等技术,实现更准确的特征匹配和视差计算。

《基于双目视觉的立体匹配算法研究及应用》范文

《基于双目视觉的立体匹配算法研究及应用》范文

《基于双目视觉的立体匹配算法研究及应用》篇一一、引言随着计算机视觉技术的不断发展,双目视觉技术已成为三维重建、机器人导航、自动驾驶等领域的重要技术手段。

其中,立体匹配算法作为双目视觉技术的核心,其性能的优劣直接影响到整个系统的精度和稳定性。

本文旨在研究基于双目视觉的立体匹配算法,探讨其原理、方法及应用,为相关领域的研究和应用提供参考。

二、双目视觉原理及立体匹配算法概述双目视觉技术通过模拟人类双眼的视觉过程,利用两个相机从不同角度获取场景的图像信息,然后通过立体匹配算法对两幅图像进行匹配,从而获取场景的三维信息。

立体匹配算法是双目视觉技术的核心,其主要任务是在两个视图的像素之间找到对应的匹配点。

目前,常见的立体匹配算法包括基于区域的匹配算法、基于特征的匹配算法和基于相位的匹配算法等。

其中,基于区域的匹配算法具有较高的精度,但计算量大;基于特征的匹配算法计算量较小,但易受噪声和光照变化的影响;基于相位的匹配算法具有较好的抗干扰性和鲁棒性。

三、基于双目视觉的立体匹配算法研究(一)算法原理及流程本文研究了一种基于区域和特征的混合立体匹配算法。

该算法首先提取两幅图像中的特征信息,如边缘、角点等;然后,在特征匹配的基础上,利用基于区域的匹配算法对剩余区域进行精细匹配。

该算法既提高了匹配精度,又降低了计算量。

(二)算法优化及改进针对传统立体匹配算法在复杂场景下易出现误匹配的问题,本文提出了一种基于全局能量的优化方法。

该方法通过引入能量函数,将立体匹配问题转化为能量最小化问题,从而提高了匹配的稳定性和准确性。

此外,本文还研究了多尺度、多方向的特征提取方法,以提高特征匹配的鲁棒性。

四、立体匹配算法的应用(一)三维重建基于双目视觉的立体匹配算法可以用于三维重建。

通过获取场景的两个视图,并利用立体匹配算法获取视差图,然后根据视差图和相机参数进行三维重建,从而得到场景的三维模型。

该技术广泛应用于虚拟现实、游戏开发、工业检测等领域。

常见机器人与视觉标定的几种办法

常见机器人与视觉标定的几种办法

a是旋转标准的角度
Mdx=X1-X0,即旋转后Mark坐标与训练模板 的mark坐标
1.相机非线性校正
2.相机与机器人做9点标定 3.计算机器人的旋转中心 4.相机通过公式计算得出最终的输出结果
旋转中心标定说明
红色框为CCD FOV,黄色为工件
z
五星为Mark点
训练的标准位置
工件发生平移
y 工件发生平移和旋转
x Base Frame
所有 旋转中心方法用于
机器人与视觉配合场景
方法:计算工件实际发生的偏移量和旋转量,结合机器人的旋转中心进行二次补偿后,把补偿量 发送给机器人,然后机器人把补偿量补偿后进行抓取或放置即可;
下面介绍如何求解StDx和StDy
旋转中心标定—计算补偿
• StDx,StDy计算过程,首先Robot在拍照点旋转一定角度a(一定是Robot给出)
X0,Y0
X1,Y1
CDx= cos (a) * (Cx0-X0) - sin (a) * (Cy0-Y0) + X1 – Cx0 = (cos (a) -1) * (Cx0-X0) - sin (a) * (Cy0-Y0) + MDx = (cos (a) -1) * StDx- sin (a) * StDy+ MDx
CDy= cos (a) * (Cy0-Y0) + sin (a) * (Cx0-X0) + Y1 – Cy0
X’= cos (a) * (X0-Cx0) - sin (a) * (Y0-Cy0) + Cx0
(X0, Y0)
Y’= cos (a) * (Y0-Cy0) - sin (a) * (X0-Cx0) + Cy0

《基于双目视觉的立体匹配算法研究及应用》范文

《基于双目视觉的立体匹配算法研究及应用》范文

《基于双目视觉的立体匹配算法研究及应用》篇一一、引言随着计算机视觉技术的飞速发展,双目视觉立体匹配算法在三维重建、机器人导航、自动驾驶等领域得到了广泛应用。

本文旨在研究基于双目视觉的立体匹配算法,探讨其原理、方法及实际应用,以期为相关领域的研究提供参考。

二、双目视觉立体匹配算法原理双目视觉立体匹配算法是通过模拟人类双眼视觉原理,利用两个相机从不同角度获取场景的图像信息,通过计算两幅图像间的视差,从而恢复出场景的三维信息。

立体匹配是双目视觉的核心问题,其基本原理包括特征提取、特征匹配、视差计算等步骤。

1. 特征提取:在两幅图像中提取出具有代表性的特征点,如角点、边缘点等。

这些特征点将用于后续的匹配过程。

2. 特征匹配:利用一定的匹配算法,如基于区域的匹配、基于特征的匹配等,在两幅图像中寻找对应的特征点。

3. 视差计算:根据匹配得到的特征点,计算视差图。

视差图反映了场景中各点在两幅图像中的相对位移,从而可以恢复出场景的三维信息。

三、立体匹配算法研究针对双目视觉立体匹配算法,本文重点研究了以下几种方法:1. 基于区域的匹配算法:该类算法通过计算两幅图像中对应区域的相似性来寻找匹配点。

常见的区域匹配算法包括块匹配、窗口匹配等。

2. 基于特征的匹配算法:该类算法通过提取图像中的特征点,如角点、边缘点等,进行特征匹配。

常见的特征匹配算法包括SIFT、SURF等。

3. 视差计算优化方法:为了提高视差计算的精度和效率,研究者们提出了多种优化方法,如引入先验知识、利用多尺度信息、采用半全局匹配算法等。

四、立体匹配算法应用双目视觉立体匹配算法在多个领域得到了广泛应用,如三维重建、机器人导航、自动驾驶等。

本文将重点介绍其在以下两个领域的应用:1. 三维重建:通过双目视觉立体匹配算法,可以恢复出场景的三维信息,从而实现三维重建。

三维重建技术在游戏开发、虚拟现实、医疗影像处理等领域具有广泛应用。

2. 自动驾驶:双目视觉立体匹配算法可以用于自动驾驶系统的环境感知。

3d相机和六轴机械手之间的标定方法

3d相机和六轴机械手之间的标定方法

3d相机和六轴机械手之间的标定方法3D相机和六轴机械手之间的标定方法对于精确控制机械手在三维坐标系中的位置和姿态具有重要意义。

本文将介绍几种常用的标定方法,包括基于静态标定的方法和基于动态标定的方法。

一、基于静态标定的方法1.相机参数标定相机参数标定是确定相机的内部参数和外部参数的过程。

内部参数包括焦距、主点坐标和畸变参数等,外部参数包括相机在世界坐标系中的旋转矩阵和平移向量。

常见的相机参数标定方法有棋盘格标定法、Tsai标定法和直接线性变换(DLT)标定法。

其中,棋盘格标定法是最常用的方法之一。

这种方法需要将特定大小的棋盘格放在相机视野内,通过拍摄一系列包含棋盘格的图像来计算相机的内外参数。

2.机械手远心点偏移标定机械手的远心点偏移是指机械手抓取物体时,机械手工具坐标系原点与物体中心坐标之间存在的偏移。

为了准确控制机械手,需要将远心点偏移引入到标定中。

常见的机械手远心点偏移标定方法是通过测量机械手抓取物体的坐标系与相机坐标系之间的变换关系来确定偏移。

3.相机-机械手外部参数标定相机-机械手外部参数标定是确定相机和机械手之间的变换关系的过程。

这个过程需要将机械手末端工具坐标系与相机坐标系进行对齐。

常用的方法有手眼标定法和手眼标定法的变种。

手眼标定法需要采集一系列机械手末端工具坐标系和相机坐标系之间的变换关系,通过最小二乘法等方法求解变换关系的参数。

二、基于动态标定的方法1.手眼标定法这是一种基于动态标定的方法,通过在机械手末端工具上加装一个稳定标定板,并在工作空间内移动机械手来采集一系列标定姿态。

然后,通过计算机视觉算法识别标定板上的特征点,并将标定板坐标系与相机坐标系之间的变换关系作为标定结果。

2.相机自标定法这是一种不依赖外部标定工具的方法,通过机械手在工作空间内移动时,相机观察到的物体的几何特征进行动态分析和计算。

通过分析物体在图像中的形状、大小和运动等特征,可以得到相机的内外参数。

总结:相机和六轴机械手之间的标定方法主要包括基于静态标定的方法和基于动态标定的方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档