一元稀疏多项式
一元稀疏多项式的链式存储实现及简单运算

一元稀疏多项式的链式存储实现及简单运算大家好,今天我们来聊聊一元稀疏多项式的链式存储实现及简单运算。
我们要明白什么是一元稀疏多项式。
一元稀疏多项式就是形如f(x) = ax^n + bx^(n-1) + ... + b的多项式,其中a、b、n是常数,x是未知数,x^0=1。
在很多实际问题中,我们会遇到很多这样的多项式,但是它们的系数a和b并不是很多,而且有些系数可能是0,这时候我们就需要用到稀疏矩阵来存储这些多项式。
那么,为什么我们需要用链表来存储稀疏矩阵呢?这是因为链表有很多优点,比如说它可以根据需要动态地分配内存空间,这样就可以节省内存资源。
而且,链表还可以方便地进行插入和删除操作,这对于我们处理稀疏矩阵来说是非常重要的。
下面,我们来看一个例子。
假设我们有一个一元稀疏多项式f(x) = 2x^3 + 3x^2 + x + 4。
为了方便起见,我们先把它表示成一个链表的形式:```Node 1: {value: 2, next: Node 2}Node 2: {value: 3, next: Node 3}Node 3: {value: 1, next: null}Node 4: {value: 4, next: null}```这个链表表示的是一元稀疏多项式的系数。
从这个链表中,我们可以很容易地计算出f(x)的值。
具体方法是:从链表的头节点开始,依次取出每个节点的值,然后将它们相乘并加上下一个节点的值,直到遍历完整个链表为止。
在这个例子中,f(x) = 2 * x^3 + 3 * x^2 + x + 4 = x(2x^2 + 3x + 1) + 4。
除了上述的例子之外,链表还有很多其他的应用场景。
比如说,在计算机科学中,链表可以用来实现栈和队列等数据结构;在数学中,链表可以用来表示无穷级数;在工程领域,链表可以用来表示文件系统等等。
链表是一种非常有用的数据结构,它可以帮助我们更好地处理各种问题。
C++一元多项式计算问题-课程设计说明书

XX学院课程设计说明书题目一元多项式计算问题系(部) 计算机科学与技术系专业(班级) 计算机科学与技术专业姓名学号指导教师起止日期课程设计任务书课程名称:数据结构与算法设计题目:一元多项式计算问题已知技术参数和设计要求:问题描述:设计一个稀疏多项式简单计算器基本要求:(1)输入并分别建立多项式A和B(2)输入输出多项式,输出形式为整数序列:n,c1,e1,c2,e2……,其中n是多项式的项数,ci和ei是第i项的系数和指数,序列按指数降序排列(3)完成两个多项式的相加、相减,并将结果输出;测试数据:(1) A+B A= 3x14-8x8+6x2+2 B=2x10+4x8+-6x2(2) A-B A=11x14+3x10+2x8+10x6+5 B=2x14+3x8+5x6+7(3) A+B A=x3+x1B=-x3-x1(4) A+B A=0 B=x7+x5+x3+x1(5) A-B A=100x100+50x50+20x20+x B=10x100+10x50+10x20+x选作内容:(1).多项式在x=1时的运算结果(2)求多项式A和B的乘积设计工作量:40课时工作计划:指导教师签名:日期:教研室主任签名:日期:系主任签名:日期:长沙学院课程设计鉴定表摘要本文是关于一个一元稀疏多项式计算器的问题。
一元稀疏多项式计算内容包括输入并建立多项式,多项式相加,多项式求值,多项式求乘积以及输出多项式。
本程序运用面向对象程序设计方法,使用C++语言,利用Microsoft Visual C++ 6.0开发工具,还有数据结构课中学到的链式存储结构,存储一元稀疏多项式,从而实现程序的基本功能。
在程序中定义了各种类型的运算的模块,通过主程序的调用来完成它们之间的配合,进而使得一元稀疏多项式计算器的顺利运行。
关键词:数据结构;一元稀疏多项式;链表;C++语言目录1 设计内容与要求 (1)2.设计说明 (1)2.1 问题描述与功能设计 (1)2.2 数据结构与算法 (1)2.3 函数定义 (3)2.4 界面设计 (4)2.5 编码 (5)2.6 测试 (10)3 总结 (14)参考文献 (15)附录A 源代码 (16)⒈设计内容与要求设计内容:设计一个稀疏多项式简单计算器,能够进行简单的基本运算。
一元稀疏多项式计算器数据结构

一元稀疏多项式计算器数据结构一元稀疏多项式计算器是一种用于计算多项式的工具,该工具可以用于代数计算、数学分析以及计算机科学中的算法设计。
它可以通过一种特殊的数据结构来存储多项式,并可以对其进行加法、减法、乘法、除法等运算。
这种数据结构被称为稀疏多项式,它是一种基于链表的数据结构。
在稀疏多项式中,每个节点表示一个单项式,节点的数据包含该单项式的系数和指数。
在一个稀疏多项式中,只有少数几个节点表示一个多项式,这就是稀疏性的来源。
稀疏多项式的加法和减法非常简单,只需要对两个多项式的对应节点进行加减即可。
而稀疏多项式的乘法需要更复杂的算法。
乘法的过程中需要将两个多项式的每个单项式乘起来,并将同类项合并成一个新的多项式。
这个过程涉及到大量的链表操作,但只要注意一些细节,将会得到正确的结果。
除了基本的加法、减法、乘法运算,一元稀疏多项式计算器还有一个非常重要的运算,那就是求导。
求导是一种将多项式每个单项式的指数减一,并将系数乘以指数的运算。
它常用于解决微积分、概率论等问题。
求导操作可以通过修改节点的指数和系数来实现。
在计算机科学中,稀疏多项式可以用于设计高效的算法,例如在数论、密码学、图像处理、计算器表达式求值等方面。
稀疏多项式的优点在于它可以有效地节省存储空间和计算时间。
通过动态链表的形式,可以轻松地添加、删除节点,使得稀疏多项式非常适合用于处理大规模的数据。
总的来说,一元稀疏多项式计算器是一种非常实用的工具。
它可以用于解决多项式运算问题,并可以为计算机科学方面的算法设计提供很大的帮助。
通过了解这种数据结构,我们可以更深入地理解代数学、微积分学等数学原理,并且能够更好地应用于实际问题中。
一元稀疏多项式计算器(数据结构)

院系:计算机科学学院专业:软件工程年级: 2013级课程名称:数据结构姓名:韦宜(201321092034)指导教师:宋中山2015年 12 月 15日题目:设计一个一元稀疏多项式简单计算器班级:软件工程1301 姓名:韦宜学号:201321092034 完成日期:12月15日一、需求分析问题描述:设计一个一元多项式加法器基本要求:输入并建立多项式;(2)两个多项式相加;(3)输出多项式:n, c1, e1, c2, e2, …cn , en, 其中,n是多项式项数,ci和ei分别是第 i 项的系数和指数,序列按指数降序排列。
(4)计算多项式在x处的值;(5)求多项式的导函数。
软件环境:Windows,UNIX,Linux等不同平台下的Visual C++ 6.0硬件环境: 512MB内存,80Gb硬盘,Pentium4 CPU,CRT显示器。
概要分析本程序有五个函数:PolyNode *Input()(输入函数);PolyNode *Deri(PolyNode *head)(求导函数);PolyNode * Plus(PolyNode *A,PolyNode *B)(求和函数);void Output(PolyNode*head)(输出函数);int main()(主函数)本程序可使用带有附加头结点的单链表来实现多项式的链表表示,每个链表结点表示多项式的一项,命名为node,它包括两个数据成员:系数coef和指数exp,他们都是公共数据成员,*next为指针域,用链表来表示多项式。
适用于不定的多项式,特别是对于项数再运算过程中动态增长的多项式,不存在存储溢出的问题。
其次,对于某些零系数项,在执行加法运算后不再是零系数项,这就需要在结果多项式中增添新的项;对于某些非零系数项,在执行加法运算后可能是零系数项,这就需要在结果多项式中删去这些项,利用链表操作,可以简单的修改结点的指针以完成这种插入和删除运算(不像在顺序方式中那样,可能移动大量数据项)运行效率高。
一元稀疏多项式实验报告(罗忠霖)

集美大学计算机工程学院实验报告课程名称: 数据结构与算法班级:计算1013 实验成绩:指导老师:杨艳华姓名:罗忠霖实验名称:一元稀疏多项式计算器学号:2010810072 上机时间2011年10月20号编号:03 组号;12 上机完成时间:2学时一.目的(本次试验所涉及并要求掌握的知识点)本次实习的主要目的在于帮助学生熟练掌握线性表的基本操作在两种存储结构上的实现,其中以各种链表的操作和应用为重点。
二.实验内容与设计思想1.问题描述设计一个一元稀疏多项式简单计算器2.基本要求一元稀疏多项式简单计算器的基本功能:(1)输入并建立多项式;(2)输出多项式,输出的形式为整数序列:n,c1,e1,c2,,en,期中n为多项式的项数,ci和ei分别为第i 项的系数和指数,系列按指数的降序排列;(3)多项式a和多项式b相加,建立多项式a+b;(4)多项式a和b相减,建立多项式a-b;3.程序代码#include<stdio.h>#include<stdlib.h>#include<malloc.h>typedef struct list{float xishu;//某项的系数int zhishu;//某项的指数struct list * next;}*linklist;void caidan(void);void xianshi(linklist);linklist dx_built(int);linklist dx_jia(linklist,linklist);linklist dx_jian(linklist,linklist);linklist sort(linklist head);main(){int i,a,b;linklist pa,pb,pc1,pc2;caidan();do{printf("\n");printf("请选择你想要的功能0--4\n");scanf("%d",&i);switch(i){case 1: printf("请输入多项式A的项数:\n");scanf("%d",&a);pa=dx_built(a);pa=sort(pa);printf("请输入多项式B的项数:\n");scanf("%d",&b);pb=dx_built(b);pb=sort(pb);break;case 2: printf("多项式A与B的和为:");pc1=dx_jia(pa,pb);xianshi(pc1);break;case 3: printf("多项式A与B的差为:");pc2=dx_jian(pa,pb);xianshi(pc2);break;case 4: printf("多项式A=");xianshi(pa);printf("多项式B=");xianshi(pb);break;case 0: break;}} while(i!=0);printf("你选择了退出操作,欢迎使用!\n");system("pause");// 系统暂停,按任意键键继续flushall();system("cls");}void caidan(void){// 定义菜单函数printf("*************************************************\n");printf("\t一元稀疏多项式计算器\t\n");printf("*************************************************\n");printf("0.退出程序\n");printf("1.建立多项式\n");printf("2.多项式加法\n");printf("3.多项式减法\n");printf("4.多项式输出\n");printf("*************************************************\n"); }// caidanlinklist dx_built(int m){//创建多项式int i;linklist head,p;head=(struct list *)malloc(sizeof(struct list));head->next=NULL;for(i=1;i<=m;i++){p=(struct list *)malloc(sizeof(struct list));printf("(dx,%d)=",i);scanf("%f%d",&p->xishu,&p->zhishu);if(p->xishu==0) //系数为0的时候,删掉该节点free(p);else//系数不为0的时候{p->next =head->next ;head->next =p;}}return head;}linklist sort(linklist head){//指数按降序排列linklist p,q,tail,s;tail=NULL;while(head->next!=tail){p=head;q=p->next;while(q->next!=tail){if(p->next->zhishu<q->next->zhishu){s=q->next;p->next=q->next;q->next=q->next->next;p->next->next=q;q=s;}p=p->next;q=q->next;}tail=q;}return head;}void xianshi(linklist head){linklist q=head->next;int flag=0;//项数计数器if(!q){ //若多项式为空,输出0printf("0\n");return;}while(q){if(q->xishu>0&&flag!=0) putchar('+'); //系数大于0且不是第一项if(q->xishu!=1&&q->xishu!=-1){//系数非1或-1的普通情况printf("%.f",q->xishu);if(q->zhishu==1) putchar('X');else if(q->zhishu) printf("X^%d",q->zhishu);}else{if(q->xishu==1){if(!q->zhishu) putchar('1');else if(q->zhishu==1) putchar('X');else printf("X^%d",q->zhishu);}if(q->xishu==-1){if(!q->zhishu) printf("-1");else if(q->zhishu==1) printf("-X");else printf("-X^%d",q->zhishu);}}q=q->next;flag++;}printf("\n");}linklist dx_jia(linklist pa,linklist pb){/*多项式相加*/linklist p=pa->next ,q=pb->next ,pc,tail,s;//pc用来存储两个多项式的和pc=tail=(struct list *)malloc(sizeof(struct list));while(p!=NULL&&q!=NULL){s=(struct list *)malloc(sizeof(struct list));if(p->zhishu >q->zhishu )//p指数大,则存入pc,p然后后移{s->xishu=p->xishu;s->zhishu=p->zhishu;tail->next =s;tail=s;p=p->next;}else{ if(p->zhishu <q->zhishu)//q指数大,则存入pc,q然后后移{s->xishu=q->xishu;s->zhishu=q->zhishu;tail->next =s;tail=s;q=q->next;}else //指数相等时{ if(p->xishu +q->xishu==0 )//系数和为0则不存入pc中,p.q都后移{p=p->next ;q=q->next ;}else //系数和不为0,则存入pc中,q,p后移{s->xishu=p->xishu+q->xishu ;s->zhishu=p->zhishu;tail->next=s;tail=s;p=p->next;q=q->next;}}}}if(p==NULL)//p多项式比q短的时候,把q剩余的部分接到pctail->next=q;else//q多项式比p短的时候,把p剩余的部分接到pctail->next=p;return pc;}linklist dx_jian(linklist pa,linklist pb){/*多项式相减*/linklist p=pa->next ,q=pb->next ,pc,tail,s;//pc用来存储两个多项式的差pc=tail=(struct list *)malloc(sizeof(struct list));while(p!=NULL&&q!=NULL){s=(struct list *)malloc(sizeof(struct list));if(p->zhishu >q->zhishu )//p指数大,则存入pc,p然后后移{s->xishu=p->xishu;s->zhishu=p->zhishu;tail->next =s;tail=s;p=p->next;}else{ if(p->zhishu <q->zhishu)//q指数大,则把q是系数前加-1再存入pc,q然后后移{s->xishu=-(q->xishu);s->zhishu=q->zhishu;tail->next =s;tail=s;q=q->next;}else //指数相等时{ if(p->xishu -q->xishu==0 )//系数差为0则不存入pc中,p.q都后移{p=p->next ;q=q->next ;}else //系数差不为0,则存入pc中,q,p后移{s->xishu=p->xishu-q->xishu ;s->zhishu=p->zhishu;tail->next=s;tail=s;p=p->next;q=q->next;}}}}if(p ==NULL)//p多项式比q短的时候,把q剩余的部分接到pctail->next=q;else//q多项式比p短的时候,把p剩余的部分接到pctail->next=p;return pc;}三.实验使用环境(本实验所使用的平台和相关的软件)Microsoft Visual C++ 6.0四.实验步骤和调试过程(实验步骤测试数据设计测试结果分析)测试结果:五.实验小结(实验过程中遇到的问题及解决过程.实验体会和收获)1.在编写一元稀疏多项式程序代码的时候,为了实现这个程序,我采取了模块化设计,针对每个功能,我使用一个函数去实现它;2.在建立多项式的时候,我使用了单向链表去实现,在建立的时候,我把系数为0时候,这个节点给删掉,if(p->xishu==0) //系数为0的时候,删掉该节点free(p);然而我我这个函数还有个不足的地方,就是当指数相同,系数不同的时候,我没考虑到把它合并,这我以后会改进;2.在主函数里,我采用了调用函数的方式,使界面简洁,但是我刚开始的时候没有准确地调用函数,程序运行失败,并且我把排序函数插入到现实函数里,导致了一个未知的错误,程序失败了,后来我把排序函数加到了建立的地方,printf("请输入多项式A的项数:\n");scanf("%d",&a);pa=dx_built(a);pa=sort(pa);3,这个程序我花了最多时间的地方就是加法算法,我使用了三条链,pa.pb,pc,我把和的结果给存放在pc中,当和为0的时候我不存入pc,if(p->xishu +q->xishu==0 )//系数和为0则不存入pc中,p.q都后移{p=p->next ;q=q->next ;}并且我还考虑了当两个多项式项数不相等的时候,用了一下这条语句去实现if(p==NULL)//p多项式比q短的时候,把q剩余的部分接到pctail->next=q;else//q多项式比p短的时候,把p剩余的部分接到pctail->next=p;,但是我刚开始的时候,if(p->next==NULL),这个加法没有成功,最后发现了这个错误,运行成功;4.我在编写这个程序的时候,很好地复习了c语言的知识,并且能够对链表这个章节的知识有很好的巩固;。
一元稀疏多项式计算器C语言课程设计

2014-2015学年第二学期《软件工程》课程设计报告题目:一元稀疏多项式计算器专业:计算机科学与技术班级:计算机科学与技术(2)班姓名:指导教师:成绩:一、问题描述错误!未定义书签。
二、需求分析错误!未定义书签。
三、概要设计错误!未定义书签。
四、详细设计错误!未定义书签。
五、源代码错误!未定义书签。
六、程序测试错误!未定义书签。
七、使用说明错误!未定义书签。
八、课设总结错误!未定义书签。
一、问题描述基本要求(1)输入并建立多项式;(2)输出多项式,输出形式为整数序列:n,c1,e1, c2,e2,,,,,,, cn,en,其中n是多项式的项数,ci,ei,分别是第i项的系数和指数,序列按指数降序排序;(3)多项式a和b相加,建立多项式a+b;(4)多项式a和b相减,建立多项式a-b;(5)计算多项式在x处的值。
(6)计算器的仿真界面。
设计目的数据结构是实践性很强的课程。
课程设计是加强学生实践能力的一个强有力手段。
课程设计要求学生在完成程序设计的同时能够写出比较规范的设计报告。
严格实施课程设计这一环节,对于学生基本程序设计素养的培养和软件工作者工作作风的训练,将起到显著的促进作用二、需求分析设计开发环境:软件方面:系统windows 7 编程软件:VC++思路分析:①一般情况下的一元n次多项式可写成pn(x)=p1xe1+p2xe2+……+pmxem其中,p1是指数为ei的项的非零系数,且满足0≦e1<e2<……<em=n ,若用一个长度为m且每个元素有两个数据项(系数项和指数项)的线性表((p1,e1),(p2,e2),……,(pm,em))便可惟一确定多项式pn(x)。
②用两个带表头结点的单链表分别存储两个多项式③根据一元多项式相加的运算规则:对于两个一元多项式中所有指数相同的项,对应系数相加,若其和不为零,则构成“和多项式”中的一项;④只需要将第二个多项式的系数改为其相反数,然后根据一元多项式相加的运算规则便可以得到其相应的“差多项式”三、概要设计图3-1功能模块图为实现上述程序功能,用带表头结点的单链表存储多项式。
一元稀疏多项式简单的计算器
1.一元稀疏多项式简单的计算器(实验类型:综合型)1)问题描述:用线性表表示一元稀疏多项式,设计一个一元多项式运算器2)实验要求:✧采用单链表存储结构一元稀疏多项式✧输入并建立多项式✧输出多项式✧实现多项式加、减运算3) 实现提示:以两个多项式相加为例✧结果多项式另存✧扫描两个相加多项式,若都未检测完:⏹若当前被检测项指数相等,系数相加,若结果未变成0,则将结果插入到结果多项式。
⏹若当前被检测项指数不等,则将指数较小者插入到结果多项式。
若有一个多项式已检测完,则将另一个多项式剩余部分直接连接到结果多项式。
4.一元稀疏多项式简单的计算器(实验类型:综合型)#include<stdio.h>#include<stdlib.h>typedef struct{float coef;//系数int expn;//指数} Term;typedef struct ploynomial{Term term;ploynomial* next;} ploynomial,*LinkList;void InitList(LinkList&L){//初始化链表L= (ploynomial*)malloc(sizeof(ploynomial));//头结点L->term.coef=0.0;L->term.expn=-1; L->next=NULL;}int cmp(Term a,Term b){//比较结点的系数大小函数if(a.expn>b.expn) return -1;else if(a.expn==b.expn) return 0; else return 1;}void insertNode(LinkList&L,Term e){//将结点插入多项式链表的适当位置,可以同时起到创建链表和多项式相加的功能ploynomial* q=L;while(q->next!=NULL){if(cmp(q->next->term,e)<0)//如果当前结点q的下一个结点的指数大于要插入的结点的指数q=q->next;//q指向下一个结点else break;//此时,q.term.expn>e.expn>=q->next->term.expn }if(q->next!=NULL&&cmp(q->next->term,e)==0) //指数相同,系数相加{q->next->term.coef+=e.coef;}else{ploynomial* node =(ploynomial*) malloc(sizeof(ploynomial));node->term.coef=e.coef;node->term.expn=e.expn;if(q->next==NULL)node->next=NULL; //如果q结点为尾结点,则node的指针域设为NULLelsenode->next=q->next; //否则node的指针域指向q的下一个结点q->next=node;//将node结点插入链表中}}void CreatPolyn(LinkList&L,int m){//输入m项的系数和指数,建立表示一元多项式的有序链表L Term e;InitList(L);for(int i=1; i<=m; i++){printf("\n第%d项的系数和指数:",i);scanf("%f%d",&e.coef,&e.expn);insertNode(L,e);}}void addPolyn(LinkList&L,LinkList L1,LinkList L2){//用L返回L1+L2的结果ploynomial* q;for(q=L1->next; q!=NULL; q=q->next){insertNode(L,q->term);//将L1的每一项插入到L中}for(q=L2->next; q!=NULL; q=q->next) //将L2的每一项插入到L 中{insertNode(L,q->term);}}void SubtracatPolyn(LinkList&L,LinkList L1,LinkList L2){//用L返回L1-L2的结果ploynomial* q;for(q=L1->next; q!=NULL; q=q->next){insertNode(L,q->term);//将L1的每一项插入到L中}for(q=L2->next; q!=NULL; q=q->next){q->term.coef = -(q->term.coef); //把系数变成相反数,再进行相加操作,即为L1-L2insertNode(L,q->term);//将L2的每一项插入到L中}}void multiplyPolyn(LinkList&L,LinkList L1,LinkList L2) {//用L返回L1*L2的结果ploynomial *p,*q;Term term;term.coef=0.0;term.expn=0;for(q=L1->next; q!=NULL; q=q->next){for(p=L2->next; p!=NULL; p=p->next){term.coef=(q->term.coef)*(p->term.coef);//系数相乘term.expn=(q->term.expn)+(p->term.expn);// 指数想加insertNode(L,term);}}}void derivativePolyn(LinkList&L,LinkList L1){//用L返回L1的导数ploynomial *p;Term term;for(p=L1->next; p!=NULL; p=p->next){if(p->term.expn==0){ continue;//指数为0时,导数为0 ,跳过此次循环}else{ term.coef=(p->term.coef)*(p->term.expn); //系数乘以指数term.expn=(p->term.expn)-1;//指数减一insertNode(L,term);}}}void visitList(LinkList L){//以类数学表达式的形式打印输出一元多项式L,//即指数或者系数为1的情况下省略1ploynomial* q=L;int flag;while(q->next!=NULL){q=q->next;flag=1;if(q->term.coef==0) continue;//系数为0 不输出if(q->term.expn==0&&flag==1) //指数为1{if(q->term.coef>0)printf("+%.2f",q->term.coef);elseprintf("%.2f",q->term.coef);flag=0;}if((q->term.coef==1||q->term.coef==-1)&&flag==1)//系数为1{if(q->term.expn==1){ if(q->term.coef==1)printf("+X"); elseprintf("-X");}else{if(q->term.coef==1)printf("+X^%d",q->term.expn); elseprintf("-X^%d",q->term.expn); } flag=0;}if(flag==1){ if(q->term.coef>0)printf("+%.2fX^%d",q->term.coef,q->term.expn);elseprintf("%.2fX^%d",q->term.coef,q->term.expn);} } printf("\n");}int main(){LinkList L1,L2; int n1,n2;printf("请输入多项式L1的项数:");scanf("%d",&n1);CreatPolyn(L1,n1);printf("请输入多项式L2的项数:");scanf("%d",&n2);CreatPolyn(L2,n2);printf("\n多项式L1:");visitList(L1);printf("\n多项式L2: ");visitList(L2);LinkListadd,sub,multiply,derivative1,derivative2;InitList(ad d);InitList(sub);InitList(multiply);InitList(derivative1);InitList(derivative2);derivativePol yn(derivative1,L1);derivativePolyn(derivative2,L2);printf("\nL1的导数:");visitList(derivative1);printf("\nL2的导数:");visitList(derivative2);addPolyn(add,L1,L2);SubtracatPolyn(sub,L1,L2);multiplyPolyn(multiply ,L1,L2);printf("\nL1 + L2: ");visitList(add);printf("\nL1 - L2: ");visitList(sub);printf("\nL1 * L2: ");visitList(multiply);}实验心得:无。
一元稀疏多项式运算(数据结构c语言)
{ CreateItem(p);
p->coef=coef;
p->expn=expn;
insert(pp,p);
}
else if(Select("has the same expn,Replace older value?"))
/************************************************************///要添加
Polyn SubtractPolyn(Polyn h1,Polyn h2)
{
//int flag;
Item *head,*last,*pa=h1->next,*pb=h2->next,*s,*s0;
}
else if(q->expn==expn)
{ *p=q;
return(0);
}
else
{ *p=pre;
return(-1);
}
}
/************************************************************/
/************************************************************/
int ItemComp(Item x,Item y)
{ if(x.expn<y.expn)
return(-1);
else if(x.expn==y.expn)
h->next=NULL;
一元稀疏多项式求导实验报告
TermSet中的每个元素包含一个表示系数的实数和表示指数的整数}
数据关系:R1={ <ai-1 ,ai >|ai-1 ,ai∈D,且ai-1中的指数值<ai中的指数值i=2,...,n }
基本操作:
CreatPolyn( &P,m)
SubtractPolyn(&Pa,&Pb)
初始条件:一元多项式Pa,Pb已存在
操作结果:完成多项式的相减运算,即Pa-Pb,并销毁一元多项式Pb。} ADT List
2.本程序主要包含个模块:
1)主程序模块:main函数
2)插入结点模块:void Insert(Polyn p,Polyn h)函数
flag++;
}
printf("\n");
}
Polyn QiuDaoPolyn(Polyn head)//求解并建立导函数多项式,并返回其头指针
{
Polyn q=head->next,p1,p2,hd;
hd=p1=(Polyn)malloc(sizeof(struct Polynomial));//建立头结点
}
}
}
Polyn CreatePolyn(Polyn head,int m)//建立一个头指针为head、项数为m的一元多项式
{
int i;
Polyn p;
p=head=(Polyn)malloc(sizeof(struct Polynomial));
head->next=NULL;
for(i=0;i<m;i++)
《C语言程序设计课程设计》题目
1 一元稀疏多项式的运算问题描述:设有两个带头指针的单链表表示两个一元稀疏多项式A、B,实现两个一元稀疏多项式的处理。
实现要求:⑴输入并建立多项式;⑵输出多项式,输出形式为整数序列:n,c1,e1,c2,e2……c n,e n,其中n是多项式的项数,c i,e i分别为第i项的系数和指数。
序列按指数降序排列;⑶多项式A和B相加,建立多项式A+B,输出相加的多项式;⑷多项式A和B相减,建立多项式A-B,输出相减的多项式;⑸多项式A和B相乘,建立多项式A×B,输出相乘的多项式;⑹设计一个菜单,至少具有上述操作要求的基本功能。
测试数据:(1) (2x+5x8-3.1x11)+(7-5x8+11x9)(2) (6x-3-x+4.4x2-1.2x9)-(-6x-3+5.4x2+7.8x15)(3)(x+x2+x3)+0(4)(x+x3)-(-x-x-3)2 成绩排序假设某年级有4个班,每班有45名同学。
本学期有5门课程考试,每门课程成绩是百分制。
假定每个同学的成绩记录包含:学号、姓名各门课程的成绩共7项,其中学号是一个10位的字符串,每个学生都有唯一的学号,并且这4个班的成绩分别放在4个数组中,完成以下操作要求:⑴编写一个成绩生成函数,使用随机数方法,利用随机函数生成学生的各门课程的成绩(每门课程的成绩都是0∽100之间的整数),通过调用该函数生成全部学生的成绩;⑵编写一个平均成绩计算函数,计算每个同学的平均成绩并保存在成绩数组中;⑶用冒泡排序法对4个班的成绩按每个同学的平均成绩的以非递增方式进行班内排序;⑷ 用选择排序法对4个班的成绩按每个同学的平均成绩的以非递增方式进行班内排序;⑸ 对已按平均成绩排好序的4个班的同学的构造一个所有按平均成绩的以非递增方式排列的新的单链表;⑹ 设计一个菜单,至少具有上述操作要求的基本功能。
3 栈及其操作问题描述:栈(Stack):是限制在表的一端进行插入和删除操作的线性表。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元稀疏多项式
结点定义
实现一元稀疏多项式需要用到线性表中的单链表,需要把多项式的指数和系数依次存入链表中。
因此链表的结构应如下定义:
创建链表
创建一元稀疏多项式的链表和创建一般的链表差不多,改变的只有在输入链表元素时输入
的是coef 和expo 两个参数。
同时直接输入一个正规的一元稀疏多项式(例如:
4
3232x x x ++)的话会比较难判断这个函数的系数和指数,多以我们在输入时就直接输入系数和指数(例如:1 2 2 3 3 4),创建链表的代码如下:
输入时我们需要判断输入结束,判断结束的条件为输入0 0
创建结点时副本P 的指向如下图:
输入结束后P指向了最后一个结点,此时再让P->next = NULL;就是最后一个结点后继为空。
打印链表
打印链表需要从头结点开始遍历所有的结点,同样的我们需要一个副本指针P指向头结点,用副本P来遍历所有的结点,代码如下:
一元稀疏多项式加法
我们在输入一元稀疏多项式时是要按照指数从大到小的顺序来输入的,这样程序的复杂会降低很多,代码如下,每句话都进行了注释:
一元稀疏多项式减法
减法的操作我就不进行注释了,它的操作跟加类似,直接参照加法就行了,具体代码如下:。