燃气管网水力计算方法
城市燃气课件第六章燃气管网水力计算

THANKS
感谢观看
软件具有友好的用户界面,方 便用户进行操作和数据输入。
软件功能
计算功能
软件可以对燃气管网的流量、压 力、温度等参数进行计算,以确
定管网的运行状态。
模拟功能
软件可以对燃气管网的运行进行 模拟,预测管网的性能和表现, 以便及时发现和解决潜在问题。
分析功能
软件可以对燃气管网的数据进行 分析,提供各种图表和报告,帮 助用户更好地理解和掌握管网的
05
CATALOGUE
燃气管网水力计算案例分析
案例一:某城市燃气输配管网的水力计算
总结词
复杂管网模型、多种气源、多级压力
详细描述
该案例针对某城市的燃气输配管网,建立了复杂的水力计算模型,考虑了多种 气源和多级压力的情况,通过计算和分析,确定了管网的输送能力和压力分布 。
案例二:某大型工业园区燃气管网的水力计算
目的
确保管网正常运行,优化燃气分 配,降低运营成本,预防潜在问 题。
计算原理
01
02
03
流体动力学原理
依据流体动力学的基本原 理,分析燃气在管网中的 流动状态和规律。
质量守恒定律
确保管网中燃气质量守恒 ,即流入和流出的燃气量 相等。
能量守恒定律
根据能量守恒定律,分析 燃气在管网中压力和流速 的变化。
混合模型的局限性
模型建立较为复杂,需要具备丰富 的专业知识和经验,同时对于某些 特定场景的适用性仍需进一步验证 。
03
CATALOGUE
燃气管网水力计算方法
节点法
01
节点法是一种基于管网节点压力 平衡的算法,通过求解管网中各 节点的压力和流量,计算出管网 的流量分配和压力损失。
低压燃气管道水力计算公式

燃气管道输送水力计算一、适用公式燃气的管道输配起点压力为10KPa,按《城镇燃气设计规范》,应纳入中压燃气管道的范围。
但本设计认为,虽然成套设备的输出压力为10KPa,出站后,压力即降至10KPa以下。
整个管网系统都在10KPa以下的压力状态下工作,因此,在混空轻烃管道燃气输配过程的水力计算,应采取低压水力计算公式为宜。
二、低压燃气管道水力计算公式:1、层流状态 Re≤2100λ=64/Re Re=dv/γΔP/L=1.13×1010(Q0/d4)γρ0(T/T0)2、临界状态 Re=2100~3500λ=0.03+(Re -2100)/(65 Re-1×105)ΔP/L=1.88×106[1+(11.8 Q0-7×104dγ)/(23.0Q-1×105dγ)](Q02/d5)ρ(T/T)3、紊流状态 Re≥35001)钢管λ=0.11[(Δ/d)+(68/ Re)]0.25ΔP/L=6.89×106[(Δ/d)+192.26(dγ/ Q0)]0.25(Q2/d5)ρ(T/T)2)铸铁管λ=0.102[(1/d)+4960(dγ/ Q)]0.284ΔP/L=6.39×106[(1/d)+4960(dγ/ Q0)]0.284(Q02/d5)ρ0(T/T0)注:ΔP——燃气管道的沿程压力降(Pa) L——管道计算长度(m)λ——燃气管道的摩阻系数 Q——燃气流量(Nm3/h)d——管道内径(mm)ρ——燃气密度(kg/Nm3)γ——0℃和101.325kPa时的燃气运动粘度(m2/s)Δ——管壁内表面的绝对当量粗糙度(mm) Re——雷诺数T——燃气绝对温度(K) T——273Kv——管内燃气流动的平均速度(m/s)(摘自姜正侯教授主编的《燃气工程技术手册》——同济大学出版社1993版P551)二、燃气的输配工况条件起点压力——10KPa 最大流速——10m/s燃气密度——1.658kg/Nm3(20℃和浓度20%时)纯轻烃燃气运动粘度——1.92×10-6m2/s(0℃和101.325kPa时)燃气运动粘度——11.1×10-6m2/s(0℃和101.325kPa时)三、钢管阻力降的计算与查表结果注:1、——*因计算数据与实际数据误差过大,已无计算、列表的必要。
第六章燃气管网的水力计算

第六章燃气管网的水力计算第一节管道内燃气流动的基本方程式我们先看以下燃气管道计算的不稳定流动方程。
一、不稳定流动方程式燃气是可压缩流体,一般情况下管道内燃气的流动是不稳定流,管道内燃气的压力和流量在流动过程中都会发生变化,除此之外,随着管道内沿程压力的下降燃气的密度也在减小,而管道内燃气的温度可以认为是不变的,其温度等于管道周围土壤的温度。
这样,决定燃气流动状态的参数为:压力P,流速w和密度ρ,他们均随燃气流动的距离和时间而变化。
是距离L和时间τ的函数,即为了求得燃气流动的状态参数P,w和ρ,必须借助于运动方程,连续性方程和状态方程三个方程。
对管道内的燃气列出运动方程和连续性方程,再将其与状态方程组合,可以得到求解管道内燃气流动的基本方程式:其中α指的是燃气管道对水平面的倾斜角。
λ为摩阻系数,d是燃气管道的内径。
从理论上讲,该式可用来求解在燃气管道中任意断面x和任一时间τ的气流参数P,ρ和流速w,但实际上这一组非线性偏微分方程组很难求解析解,在工程上常可忽略某些对计算结果影响不大的项,并对该方程组进行线性简化,可求得近似解。
到简化后的方程组为:其中c为声速上式即为简化后的燃气管道不稳定流动方程组,但在实际生产和生活中,该方程的应用并不多,除了单位时间内输气量波动大的超高压天然气长输管线要用到上面的不稳定流进行计算外,设计城市燃气管道时燃气流动的不稳定性可以不考虑。
因此我们下面主要讲一下燃气管到计算的稳定流动方程式。
二、稳定流动方程式通常在城市燃气管网工程设计中,将某一小段时间内(如一小时或一天)的管内流动作为稳定流动,认为各运动参数P ,w 和ρ不随时间变化。
这样这三个参数对时间的偏导数都等于0,即0=∂∂τP0=∂∂τρ0=∂∂τω将他们带入不稳定流动方程组,然后进行适当简化积分后可得稳定流动燃气管计算的公式:该方程可以用来计算高压和低压燃气管道。
其中P1是管道起始端管内燃气的绝对压力Pa ,P2是L 处管道内燃气的绝对压力Pa , λ为摩阻系数,Q 0为燃气管道的计算流量Nm 3/s , d 是管道内径m ,0ρ为燃气的密度kg/Nm 3P 0为标准大气压,P 0=101325Pa ,T 为燃气的温度K ,T 0为标准状态温度,T 0=273.16KZ 是燃气在管内所处温度压力下的压缩因子,Z 0是燃气在标准状态下的压缩因子, 将该式用于计算低压燃气管道压降时可以进行简化,P m 为管道起始端和末端压力的算数平均值,,低压管道本身压力很低,可以认为0P P m ≈,带入稳定流动计算公式可得:若考虑城市燃气管道的压力一般在1.6MPa 以下,此时可认为10=≈Z Z ,并将公式中的各参数采用工程中常用的单位,P 的单位用kPa ,L 的单位采用km ,流量的单位采用Nm 3/h ,管道内径d 的单位采用mm ,则第三部分我们看一下计算公式中的摩阻系数λ 三、燃气管道的摩擦阻力系数简称摩阻系数,是反映管内燃气流动摩擦阻力的一个无因次系数,与燃气在管道内 的流动状况、管道材质、管道的连接方法及安装质量、燃气的性质等因素有关,是雷诺数Re 和相对粗糙度d∆的函数。
城市燃气输配_燃气管网水力计算

图:燃气97 6-4、5
计算图表的绘制条件:
1、燃气密度按 0=1Kg/Nm 计算,使用时不同的燃 气密度要进行修正。
3
低压管道:
p p ( ) 0 1 l l
2 2 p12 p2 p12 p2 高中压管道: ( ) 0 1 l l
2、运动粘度: 人工燃气: =25 10-6 m 2 /s
Q1 QN Q1 KQ L Q Q N N 1 KQN.75 L( x 1 x )1.75
1.75 N 1.75
由 P1 P2 得:
1.75
2n 1 1 0.88 x 0.11 x (1 x) n x
1502 P22 2.17 200
四、附加压头
由于空气与燃气密度不同,当管道始、末端存在标高差时, 在燃气管道中将产生附加压头。对始末端高程差值变化甚大 的个别管段,包括低压分配管道及建筑物的室内的低压燃气 管道,必须将附加压头计算在内。
计算公式:
P g a g H
0.284
管道内表面当量绝对粗糙度,对于钢管取0.2mm,塑料管 取0.01mm;
ν—0摄氏度、1.01325×105Pa时的燃气运动粘度,m2/s。
第二节 城市燃气管道水力计算公式和计算图表
低压燃气管道阻力损失计算公式 高中压燃气管道阻力损失计算公式
燃气管道阻力损失计算图表
层流区(Re≤2100) 临界区(Re=2100~3500) 紊流三个区(Re>3500)
64 = Re
Re 2100 =0.03 65 Re 10 5
68 =0.11 d Re
燃气管网水力计算

1、实际压力降的求解
采用微元的方法求解管段的实际压力降 简化:管段上有n条分支管,各分支管间距均相等,并且每条 分支管的途泄流量q也相等,n条分支管就管段AB均匀地分成了 n+1条小管段。 压降计算公式: 压降计算公式:
∆P = KQ 1.75 l
流进管段的总流量: 流进管段的总流量: QN=Q2+Q1 每一条分支管段的流量: 每一条分支管段的流量:
Q02 T 5 ρ0 d T0
∆ ∆P dν = 6.89 × 10 6 + 192.2 d L Q0
∆P dν 6 1 = 6.39 × 10 + 5158 d L Q0
0.25
Q02 T ρ0 T0 d5
Q02 T ρ0 T0 d5
2、运动粘度: 运动粘度: 人工燃气: 人工燃气: ν=25 ×10-6 m 2 /s 天然气: 天然气:
ν=15 ×10-6 m 2 /s
3、取钢管的当量绝对粗糙度: ∆=0.00017m 取钢管的当量绝对粗糙度:
例 题 1:
3 已知: 运动粘度: 已知:人工燃气的密度 ρ0=0.5Kg/Nm 运动粘度: ,
的低压燃气钢管,当流量Q0=10Nm3/h时,管段压力降 的低压燃气钢管,当流量Q /h时 4Pa,求该管道管径。 为4Pa,求该管道管径。
∆p 4 ∆p 0.04 = 0.08(p/m) ( )ρ0 =0.5= = 0.04(p/m) ( )ρ0 =1= a a l 100 l 0.5
据流量和压降查表得: 据流量和压降查表得:d=80mm
第六章 城市燃气管网的水力计算
燃气管网水力计算的任务: 1.根据燃气的计算流量和允许的压力损失计算管道 直径,以确定管道投资和金属消耗。 2.对已有管道进行流量和压力损失的验算,以充分 发挥管道的输气能力,或决定是否需要对原有管道进 行改造。
燃气管网水力计算方法

《现代燃气工程》结课论文------------------------------------------------------------------------题目:燃气管网水力计算姓名:王朋飞学号:S2*******教师:范慧方引言随着能源结构的不断改变,燃气开发规模和应用规模的不断扩大。
城市燃气管网是现代化城市人民生活和工业生产的一种主要能源配送方式,燃气输配管网的设计和运行要求对系统进行水力计算,获取必要的参数。
燃气输配管网系统由高度整体化的管网所组成,在系统内燃气压力和流量变化很大,需要通过水力计算来确定管网中每一管段的尺寸(如管径、管径)、材质等参数以及压缩机的台数功率以保证既向用户合理地供应天然气,又能降低操作管理费用。
[1]同时,考虑在满足用户用气量的前提下,当某一条或几条管道的使用有一定的压力要求时,水力计算数据可确定在这种最大承受压力下管道各个节点的压力,从而保证管网的正常运行。
另外,水力计算也用于调整各个调压阀的出口压力来适应事故工况下输送压力的要求。
随着燃气事业的发展,燃气输配管网系统也日趋庞大和复杂,为了掌握燃气在管道内的运行规律,合理地确定管道系统的设计和改造方案,保证管道系统的优化运行,提高管道系统的调度管理水平,解决管网流动的动态特性,在一些比较大型的城市燃气管网的水力计算分析中,必须要依靠相关的计算分析软件进行,以减少手工量和人工误差。
1燃气管网水力计算燃气是可压缩流体,一般情况下管道内燃气的流动是不稳定流,由压送机站开动压缩机不同台数的工况以及用户用气量变化的工况,这些因素都导致了燃气管道内燃气压力和流量的变化。
管内燃气沿程压力下降会引起燃气密度的减小。
但是在低压管道中燃气密度变化可以忽略不计。
所以,除了单位时间内输气量波动大的超高压天然气长输管线要用不稳定流进行计算外,在大多数情况下,设计燃气管道时都将燃气流动按稳定流计算。
此外,很多情况下,燃气管道内的流动可认为是等温的,其温度等于埋管周围土壤的温度。
燃气工程-第6章燃气管网水力计算
环状管网的计算步骤
3)按气流沿着最短路径从供气点流向零点(零 点是指各环中燃气沿顺时针流动与逆时针 流动的交汇点,此点为各环压力的最低点) 的原则,拟定环状管网燃气流动方向。但 在同一环内,必须有两个相反的流向。
4)根据拟定的气流方向,以∑Qi=0为条件, 从零点开始,设定流量的分配,逐一推算 每一根管道的初步计算流量。
水力平差计算
低压管网
水力平差计算
高、次高、中压管网
水力平差计算
首先计算各环的 Q ,进而才能求出考虑邻环影
响的 Q ,令
,以此校正每环各根管
段的计算流量。
若校正后闭合差仍未达到精度要求,则需再一 次计算校正流量 Q , Q 及 Q ,再作流量校 正、使之逐次逼近并达到允许的精度要求为止。
Q Ⅱ 0 .0 6 6 0 0 2 0 7 2 0 (m 3 /h ) Q Ⅲ 0 .0 6 6 0 0 2 4 8 6 4 (m 3/h )
(3)计算供气环周边的总长
L Ⅰ (3 0 0 6 0 0 ) 2 1 8 0 0 m
L Ⅱ (4 0 0 6 0 0 ) 2 2 0 0 0 m
1-4 Q 1 1 4 q Ⅰ q Ⅱ L 1 - 4 0 . 3 0 . 3 6 6 0 0 3 9 6 m 3 / h
4-3
Q 1 4 3 q Ⅰ L 4 - 3 0 .3 3 0 0 9 0 m 3 /h
同理,对于Ⅱ环:
Q14 1
Q43 2
1100=50 2
Q 45 2
0
(3)计算转输流量
Q16 2
Q16-5Q16-7Q178
城镇燃气管网水力计算
第二节 燃气管道计算压力降及其分配
பைடு நூலகம்
一、低压管网计算压力降的确定
用气概况
供配气量
2. 增大燃具的压力波动范围,可增大管网的计算压力降。
5 5
第二节 燃气管道计算压力降及其分配
二、高压、次高压、中压管网计算压力降的确定
高压、次高压管网:
始端压力:取决于上游管道的供气压力; 末端压力:取决于下游调压站的用最气低概进况口压力与安全附加值之供和配。气量
计算 公式
一、低压燃气管道摩阻损失:4-1
二、高压、次高压和中压燃气管道摩阻损失: 4-7、4-8
三、燃气管道水力计算图表:查表求压降
四、燃气管道的局部阻力:4-16
第二节 燃气管道计算压力降及其分配
燃气管道计算压力降 ❖ 在单位时间最大用气量发生时管网始、末两端的压力降。 管网始端压力:即设计压力,用气应概在况所需压力级制的供压配力气范量 围内 经技术、经济分析比较后确定 管网末端压力:取决于调压器最低进口压力或用户所需压力。
中压管网:
始端压力:取决于上游管道供气压力或上游管道调压站出口压力; 末端压力:取决于由中-低压调压站最低进口压力或用户中压燃烧器 所需压力确定。
6 6
7
城镇燃气管网水力计算
1 燃气管道使用水力计算公式
CONTENTS
2 燃气管道计算压力降及其分配
课前思考与问答
1. 燃气管径如何确定? 2. 燃气为有压输送,输送过程中是否有压降,压降发生在 哪些地方? 3. 各级管道(高、次高、中、低压管道)始端压力、末端 压力如何确定?
第一节 燃气管道实用水力计算公式
燃气管网水力计算
x
2
n
n
1 1.75(2
1)
x
0.66(2
1) 2
x
2
n
n
1 1.75(n
1
1)
x
0.66(n
1
1)2
x
2
n
n
(
n
1
)
1.75
x
(
1
2
n
)
0.66
x
2
(
12
22
n2
)
n
n
n( n 1 ) 2
1
1.75(1
1)
x
0.66(1
1) 2
x
2
n
n
1
1.75(2
1)
x
0.66(2
1) 2
x
2
n
n
1
1.75(n
1 1)
x
0.66(n
1 1)2
x
2
n
n
1 1.75(1
1)
x
0.66(1
1) 2
第六章 城市燃气管网的水力计算
燃气管网水力计算的任务: 1.根据燃气的计算流量和允许的压力损失计算管道
直径,以确定管道投资和金属消耗。 2.对已有管道进行流量和压力损失的验算,以充分
发挥管道的输气能力,或决定是否需要对原有管道进 行改造。
城市燃气输配_燃气管网水力计算
•图:燃气97 6-4、5
•计算图表的绘制条件:
•1、燃气密度按 度要进行修正。
计算,使用时不同的燃气密
•低压管道:
•高中压管道:
•2、运动粘度: •人工燃气: •天然气: •3、取钢管的当量绝对粗糙度:
•例 题 1:
•已知:人工燃气的密度 ,
运动粘度:
•15℃时燃气流经l=100m长
•的低压燃气钢管,当流量Q0=10Nm3/h时,管段压 力降为4Pa,求该管道管径。
•管道内流动气体上升时将产生一种升 力,下降时将增加阻力。
•管道内流动气体下降时将产生一种升 力,上升时将增加阻力。
某多层住宅,燃气室内立管终端标高17m,引入管始端
标高-0.6m,密度0.71kg/Nm3,计算附加压头;又已
知引入管起点压力P1=1000Pa,
80Pa,求P2
。
•P2 •17m
低压燃气管道阻力损失计算公式 高中压燃气管道阻力损失计算公式 燃气管道阻力损失计算图表 计算示例 附加压头 局部阻力
一、低压燃气管道水力计算公式
层流区(Re<2100): 临界区(Re=2100~3500) 紊流区(Re>3500)
钢管、塑料管: 铸铁管:
二、高中压燃气管道水力计算公式
L= L1 + L2 式中:L1 ------管道实际长度,m;
L2 ------管道上附件的当量长度,m。 实际管道计算长度L乘以该管段单位长度摩擦阻力损失,就
可得到该管段的压力损失。
第三节 燃气分配管道计算流量
燃气分配管网供气方式 燃气分配管道计算流量的确定 燃气分配管道途泄流量的确定 节点流量
•与管道途泄流量Q1相当的计算流量Q=αQ1,可由管道终端 节点流量为αQ1;始端节点流量为(1-α)Q1来代替。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《现代燃气工程》结课论文------------------------------------------------------------------------题目:燃气管网水力计算姓名:王朋飞学号:S2*******教师:范慧方引言随着能源结构的不断改变,燃气开发规模和应用规模的不断扩大。
城市燃气管网是现代化城市人民生活和工业生产的一种主要能源配送方式,燃气输配管网的设计和运行要求对系统进行水力计算,获取必要的参数。
燃气输配管网系统由高度整体化的管网所组成,在系统内燃气压力和流量变化很大,需要通过水力计算来确定管网中每一管段的尺寸(如管径、管径)、材质等参数以及压缩机的台数功率以保证既向用户合理地供应天然气,又能降低操作管理费用。
[1]同时,考虑在满足用户用气量的前提下,当某一条或几条管道的使用有一定的压力要求时,水力计算数据可确定在这种最大承受压力下管道各个节点的压力,从而保证管网的正常运行。
另外,水力计算也用于调整各个调压阀的出口压力来适应事故工况下输送压力的要求。
随着燃气事业的发展,燃气输配管网系统也日趋庞大和复杂,为了掌握燃气在管道内的运行规律,合理地确定管道系统的设计和改造方案,保证管道系统的优化运行,提高管道系统的调度管理水平,解决管网流动的动态特性,在一些比较大型的城市燃气管网的水力计算分析中,必须要依靠相关的计算分析软件进行,以减少手工量和人工误差。
1燃气管网水力计算燃气是可压缩流体,一般情况下管道内燃气的流动是不稳定流,由压送机站开动压缩机不同台数的工况以及用户用气量变化的工况,这些因素都导致了燃气管道内燃气压力和流量的变化。
管内燃气沿程压力下降会引起燃气密度的减小。
但是在低压管道中燃气密度变化可以忽略不计。
所以,除了单位时间内输气量波动大的超高压天然气长输管线要用不稳定流进行计算外,在大多数情况下,设计燃气管道时都将燃气流动按稳定流计算。
此外,很多情况下,燃气管道内的流动可认为是等温的,其温度等于埋管周围土壤的温度。
燃气管网按照敷设形式可分为两大类:枝状管网和环状管网。
[2]下面就分别介绍两种形式的管网的水力计算特点和方法。
1.1枝状管网水力计算1.1.1枝状管网水力计算特点枝状管网是由输气管段和节点组成。
任何形状的枝状管网,其管段数P 和节点数m 的关系均符合:1P m =-燃气在枝状管网中从气源至各节点只有一个固定流向,输送至某管段的燃气只能由一条管道供气,流量分配方案也是唯一的,枝状管道的转输流量只有一个数值,任意管段的流量等于该管段以后(顺气流方向)所有节点流量之和,因此每一管段只有唯一的流量值,如图1所示。
管段3-4的流量为:10985443q q q q q Q ++++=-管段4-8的流量为:109884q q q Q ++=-此外,枝状管网中变更某一管段的直径时,不影响管段的流量分配,只导致管道终点压力的改变。
因此,枝状管网水力计算中各管段只有直径i d 与压力降i P ∆两个未知数。
1.1.2枝状管网水力计算步骤⑴ 对管网的节点和管段编号。
⑵ 确定气流方向,从主干线末梢的节点开始,利用0=∑i Q 的关系,求得管网各管段的计算流量。
⑶ 根据确定的允许压力降,计算管线单位长度的允许压力降。
⑷ 根据管段的计算流量及单位长度允许压力降预选管径。
⑸ 根据计算选定的标准管径,求摩擦阻力损失和局部阻力损失,计算总的压力降。
⑹ 检查计算结果。
若总的压力降超出允许的精度范围,则适当变动管径,直至总压力降小于并趋近于允许值为止。
1.1.3摩擦阻力损失,局部阻力损失和附加压头的计算方法一、摩擦阻力损失的计算方法根据《城镇燃气设计规范》(GB50028-93,2003版)附录A 燃气管道摩擦阻力计算:1、低压燃气管道根据燃气在管道中不同的运动状态,其单位长度的摩擦阻力损失采用下列各式计算:(1)层流状态 :2100Re ≤Re64=λ 04101013.1T T dQ l P νρ⨯=∆(2)临界状态:3500~2100Re =510Re 652100Re 03.0--+=λ 052546)10231078.111(109.1T T dQ d Q d Q l P ρνν-⨯-+⨯=∆ (3)湍流状态:3500Re >1)钢管:25.0)Re68(11.0+=d K λ 05225.06)2.192(109.6T T d Q Q d d K l P ρν+⨯=∆ 2)铸铁管:284.0)51581(102236.0Qd d νλ+= 052284.06)51581(104.6T T d Q Q d d l P ρν+⨯=∆ 2、中压燃气管道根据燃气在管道中不同的材质,其单位长度的摩擦阻力损失采用下列各式计算:1)钢管:25.0)Re68(11.0+=d K λ 05225.092221)2.192(104.1T T dQ Q d d K L P P ρν+⨯=- 2)铸铁管:284.0)51581(102236.0Qd d νλ+= 052284.092221)51581(103.1T T d Q Q d d L P P ρν+⨯=- 根据《聚乙烯燃气管道工程技术规程》(CJJ63-95)知,聚乙烯燃气管道单位长度的摩擦阻力计算和钢管公式一样,只是K=0.01.而钢管K=0. 15.二、局部阻力损失的计算方法当燃气流经三通、弯头、变径管、阀门等管道附件时,由于几何边界的急剧改变,燃气流线的变化,必然产生额外的压力损失,称之为局部阻力损失。
在进行城市燃气管网的水力计算时,管网的局部阻力损失一般不逐项计算,可按然气管道摩擦阻力损失的5%~10%进行估算。
对于庭院管和室内管道及厂、站区域的燃气管道,由于管路附件较多,局部阻力损失所占比例较大,常需逐一计算。
局部阻力损失,可用下式求得:ρζ22u P ∑=∆ 式中 P ∆—局部阻力的压力损失(Pa );ζ∑—计算管段中局部阻力系数的总和;u —管段中燃气流速(s m /); ρ—燃气的密度(3/m kg )。
局部阻力损失也可用当量长度来计算,各种管件折成相同管径管段的当量长度2L ,各种管件当量长度2L 查《燃气热力工程常用数据手册》,实际工程中通常按当量长度计算局部阻力。
三、附加压头的计算方法由于燃气与空气的密度不同,当管段始末段存在标高差值时,在燃气管道中将产生附加压头,其值由下式确定:H g P g a ∆-=∆)(ρρ式中 P ∆—附加压头(Pa );g —重力加速度;a ρ—空气的密度(3/Nm kg ); g ρ—燃气的密度(3/Nm kg ); H ∆—管段终端和始端的标高差值(m )。
计算室内燃气管道及地面标高变化相当大的室外或厂区的低压燃气管道,应考虑附加压头。
1.2环状管网的水力计算1.2.1环状管网的水力计算特点环状管网是由一些封闭成环的输气管段与节点组成。
任何形式的环状管网,其管段数P 、节点数m 和环数n 的关系均符合下式:1P m n =+-环状管网任何一个节点均可由两向或多向供气,输送至某管段的燃气同时可由一条或多条管道供气,可以有不同的流量分配方案。
此外,环状管网中变更某一管段的直径时,就会引起管段流量的重新分配,并改变管段各节点的压力值。
因此,环状管网水力计算中各管段有三个未知量:直径i d 与压力降i P ∆以及流量i Q ,这与之前枝状管网的流动特点不一样,因而水力计算也不一样。
1.2.2水力计算基本方程1、连续方程气体被视为连续介质,在气体流动时总是连续地充满它所占据的空间,不出现空隙。
这样根据质量守恒定律,流入节点的流体质量必然等于流出节点的流体质量,又由于假设气体稳定流动,所以体积流量也相等。
也可以说连接于任何节点的所有管段流量,其代数和为零。
用方程表示为:0i Q i =1,2,...m-1∑= ()2、压降方程(能量方程)气体在管线中流动将产生摩阻损失,长输管线的摩阻损失一般包括两部分,一是气体通过直管段所产生的沿程摩阻;二是气体通过各种阀件、管件所产生的局部摩阻。
压降方程反应的就是管段流量与压力损失之间的关系,可用下面的表达式来描述:K j j j j j Q P l j =1,2,...P d αβ∆= ()式中α和β值与燃气流动状况及管道粗糙度有关,而常数K j 则与燃气性质有关。
3、回路方程回路方程表示的是每个基环中各管段的压力损失代数和为零。
即0n P n=1,2,...n∑∆= () 上述的三个方程构成的联立方程组亦称为管网的基本方程。
现在已有的天然气水力计算方法和计算机软件都是对这三个方程的联立求解。
1.2.3环状管网的水力计算方法一般地,天然气管网稳态分析是指:己知管径D 、压力损失P ∆、摩阻系数f 以及配气站或控制点的压力和节点流量,求出各管段的流量和各节点的压力。
当管道中的气体为等温流动时,可以用流量Q 、压力损失P ∆、管径D 、管长L 和摩阻系数f 来描述其流动状态。
当D 、L 、f 为已知时,只有Q 、P ∆为未知数时,而Q 和P ∆的关系可以用压降方程来表示。
根据求解的未知量不同,可以将管网分析方法分为:(1)通过天然气管网基本方程,将P ∆消去,以Q 为未知量的计算方法,称为流量法,根据方程组的构造方法又可将其分为解环方程法和解管段方程法。
[3](2)通过天然气管网基本方程,将Q 消去,以P ∆为未知量的计算方法,称为节点压力法。
下面将分别介绍这三种方法。
1、环方程法环方程法的基本思想是:在满足节点连续性条件下,由能量方程组成非线性方程组,引进环修正流量概念,以此修正流量为未知数,将非线性方程组线性化来求解,方程组的个数为管网基环数。
解环方程的主导思想是在满足连续性方程的前提下,逐步修正管段流量减小环闭合差,从而最后满足压降方程。
环方程法的典型算法有牛顿—拉夫逊(Newton-RaphSon)法和哈迪—克劳斯法等。
国内学者李德波(2005年)基于哈迪一克劳斯法原理,通过严密的数学推导,给出了节点流量修正量的一般表达式,从而解决了复杂管网的流量分配问题,是改进目前大城市复杂环状管网水力计算的一种有效方法。
[4]2、管段方程法管段方程法的基本思想是:将能量方程线性化处理,与节点连续方程联立形成以管段流量为未知数的线性方程组来求解,方程个数为管网管段数。
由于其原理主要是将非线性的能量方程线性化,故也可称之为线性化方法。
其具体过程是,先将回路方程线性化,然后结合连续性方程组成线性方程组进行迭代求解。
田贯三等学者(2002年)总结了城镇燃气管网稳态分析管段方程法的基本原理及其数学推导过程,并对管网稳态分析几种常用方法进行了系统的研究与比较,在计算工作量、计算精度、收敛速度等方面做出了综合评价,为提高编程质量提供了理论依据[5]。