市政工程给水管道规范要求的水力计算
11-3给水管网的水力计算

v
求定管径。
流速:(1)干管、立管流速:0.8~1.0m/s;
(2)支管流速:0.6~0.8m/s。 (3)消火栓系统给水管道内水流速度不宜大 于2.5m/s。 (4)自动喷水系统给水管道内水流速度不宜 大于5.0m/s。
三、管网水头损失的计算 (1) 沿程水头损失 hl = i L 式中: hl——管段的沿程水头损失,kPa; L——计算管段长度,m; i-管道单位长度的水头损失,kPa/m。 (2) 局部水头损失
式中:U0——生活给水配水管道的最大用水时卫生器具 给水当量平均出流概率(%) q0——最高日用水定额(升/人· 日)按表11-3取用; m——每户用水人数(人) Kh——小时时变化系数按表11-3取用 Ng——每户设置的卫生器具给水当量数; 0.2——一个卫生器具给水当量的额定流量(l/s)。 使用该公式时应注意:q0应按当地实际使用情况,正确 选定;各建筑物的卫生器具给水当量最大用水时的平均 出流概率参考值见表 11-7。
∴ H =123.0 + 77.2 + 11.8 +15.0 = 227.0 kPa 市政管网供水压力为310kPa > 室内给水所需的压力 227.0 kPa,可以满足1~3层的供水要求。
附图1 1~3层给水管网水力计算用图
一、图纸组成
(一)设计说明及设备材料表 凡是图纸中无法表达或表达不清楚的而又必须为 施工技术人员所了解的内容,均应用文字说明。包括: • 所用的尺寸单位 • 施工时的质量要求 • 采用材料、设备的型号、规格 • 某些施工做法及设计图中采用标准图集的名称 为了使施工准备的材料和设备符合设计要求,便 于备料和进行概预算的编制,设计人员还需编制主要 设备材料明细表,施工图中涉及的主要设备、管材、 阀门、仪表等均应一一列入表中。 返回
水流量计算公式

水管网流量简单算法如下:自来水供水压力为市政压力大概平均为0.28mpa。
如果计算流量大概可以按照以下公式进行推算,仅作为推算公式,管径面积×经济流速(DN300以下管选1.2m/s、DN300以上管选1.5m/s)=流量如果需要准确数据应按照下文进行计算。
水力学教学辅导第五章有压管道恒定流【教学基本要求】1、了解有压管流的基本特点,掌握管流分为长管流动和短管流动的条件。
2、掌握简单管道的水力计算和测压管水头线、总水头线的绘制,并能确定管道的压强分布。
3、了解复杂管道的特点和计算方法。
【容提要和学习指导】前面几章我们讨论了液体运动的基本理论,从这一章开始将进入工程水力学部分,就是运用水力学的基本方程(恒定总流的连续性方程、能量方程和动量方程)和水头损失的计算公式,来解决实际工程中的水力学问题。
本章理论部分容不多,主要掌握方程的简化和解题的方法,重点掌握简单管道的水力计算。
有压管流水力计算的主要任务是:确定管路过的流量Q;设计管道通过的流量Q所需的作用水头H和管径d;通过绘制沿管线的测压管水头线,确定压强p沿管线的分布。
5.1 有压管道流动的基本概念(1)简单管道和复杂管道根据管道的组成情况我们把它分为简单管道和复杂管道。
直径单一没有分支而且糙率不变的管道称为简单管道;复杂管道是指由两根以上管道组成管道系统。
复杂管道又可以分为串联管道、并联管道、分叉管道、沿程泄流管和管网。
(2) 短管和长管在有压管道水力计算中,为了简化计算,常将压力管道分为短管和长管:短管是指管路中水流的流速水头和局部水头损失都不能忽略不计的管道;长管是指流速水头与局部水头损失之和远小于沿程水头损失,在计算中可以忽略的管道为,一般认为( )<(5~10)h f %可以按长管计算。
需要注意的是:长管和长管不是完全按管道的长短来区分的。
将有压管道按长管计算,可以简化计算过程。
但在不能判断流速水头与局部水头损失之和远小于沿程水头损失之前,按短管计算不会产生较大的误差。
第五章_给水管网水力分析

(3)必须至少有一个定压节点 )
• 管网中无定压节点(R=0)时,恒定流方程组无 管网中无定压节点( ) 解。 • 因为若 j*为方程组解, Hj* +∆H仍为方程组的 因为若H 为方程组解 为方程组解, 仍为方程组的 解,即方程组无解。 即方程组无解。
(H + ∆H ) − (H + ∆H ) = H − H = h
* Fi * Ti * Fi * Ti
* i
5.3 单定压节点树状管网水力分析
比较简单, 比较简单,管段流量可以由节点流量连续性方程 组直接求出,不要求解非线性的能量方程组。 组直接求出,不要求解非线性的能量方程组。 水力分析计算分两步(P89例题 ): 例题5.1): 水力分析计算分两步( 例题 • 1、用流量连续性条件计算管段流量,并计算出管 、用流量连续性条件计算管段流量, 段压降; 段压降; • 2、根据管段能量方程和管段压降,从定压节点出 、根据管段能量方程和管段压降, 发推求各节点水头。 发推求各节点水头。
可以看出:树状网中,各管段流量 可以看出:树状网中,各管段流量qi可以用节点流 表示出来。 量Qj表示出来。
5.1.2 管段能量方程(根据能量守恒定律) 根据能量守恒定律)
管段两端节点水头之差等于该管段的压降: 管段两端节点水头之差等于该管段的压降: HFi –HTi= hi i-1,2,…,M
HFi——管段 的上端点水头; 管段i的上端点水头 管段 的上端点水头; HTi——管段 的下端点水头; 管段i的下端点水头; 管段 的下端点水头 hi——管段 的压降; 管段i的压降 管段 的压降; M——管段模型中的管段总数。 管段模型中的管段总数。 管段模型中的管段总数
污水管水力计算

第2.2.1条 雨水设计流量按下式计算式中,Q=qψFQ--雨水设计流量(L/s);q--设计暴雨强度(L/s.ha);ψ--径流系数;F--汇水面积(ha)注:当有生产废水排入雨水管道时,应将其水量计算在内。
第2.2.2条 径流系数按下表采用。
平均径流系数可按加权平均计算。
径流系数ψ综合径流系数ψ第2.2.3条 设计暴雨强度(见专用表)第2.2.4条 雨水设计重现期:一般选用0.4~3a,重要干道、重要地区或短期积水即能引起较严重后果的地区,一般选用2~5a.第2.2.5条 设计降雨历时,按下式计算:t=t1+mt2式中,t--降雨历时(min);t1--地面集水时间(min),视距离长短、地形坡度和地面铺盖情况而定,一般采用5~15min;m--折减系数,暗管折减系数m=2,明渠折减系数m=1.2 ;t2--管渠内雨水流行时间(min)注:在陡坡地区,采用暗管时折减系数m=1.2~2.第2.3.1条 合流管道的总设计流量应按下式计算:第2.3.1条 合流管道的雨水重现期可适当高于同一情况下的雨水管道设计重现期。
第3.2.1条 排水管渠的流速,应按下式计算:V=(1/n) R2/3I1/2式中,V--流速 (m/s);R--水力半径(m);I--水力坡降;n--粗糙系数.第3.2.2条 管渠粗糙系数按下表选用:管渠粗糙系数 n第3.2.3条 排水管渠的最大设计充满度和超高,应遵守下列规定:一、污水管道应按不满流计算,其最大设计充满度应按下表采用。
最大设计充满度注:在计算污水管道充满度时,不包括淋浴或短时间内突然增加的污水量,但当管径小于或等于300mm时,应按满流复核.二、雨水管道和合流管道应按满流计算。
三、明渠超高不得小于0.2m。
第3.2.4条 排水管道的最大设计流速应遵守下列规定:一、金属管道为10m/s;二、非金属管道为5m/s;第3.2.6条 排水管渠的最小设计流速应遵守下列规定:一、污水管道在设计充满度下为0.6m/s;二、雨水管道和合流管道在满流时为0.75m/s;三、明渠为0.4m/s。
管道直饮水工程设计计算

管道直饮水管网设计及工程实例二零壹壹年八月遵循规范1、建筑给排水设计规范2、管道直饮水系统技术规程3、室外给水设计规范4、饮用净水水质标准设计流量及设计管径——确定水站制水规模1、最高日用水量Qdmax=q*NQdmaxq---饮水定额,按规范选取N---用水人数饮水定额住宅、公寓:2~5L/人.d办公、教学楼:1~2L/人.d酒店、宾馆:2~3L/人.d体育馆、剧院等公共场所:0.2~0.5L/人.d设计流量及设计管径2、最大时用水量Qhmax ——确定市政管网供水管径Q hmax =Kh*Qdmax/TK h ---时变化系数,住宅可取2.5~4.0,公共建筑可取2.0~2.5T---用水时间,住宅、酒店为24h,办公楼、学校8-10h设计流量及设计管径3、瞬时高峰给水流量Qs ——确定小区室外及建筑物内部供水管道的管径根据规范中的概率公式查表计算。
详见规范。
直饮水龙头额定流量一般为40~60mL/s。
当n≤12时,按表6.0.3-1选取。
12<n≤500时,按表6.0.3-2选取N>500时,按规范公式6.0.3-2计算设计流量及设计管径4、管网回流流量qx ——确定小区室外及建筑物内部回水管道的管径,根据经验,设计中亦可按小于供水管管径1-2号确定。
(1)间歇回流q x =V/T1V——供回水管网总容量T1—设计回水时间,一般可取1~4小时(2)连续回流经验值,按供水流量的20%~30%计算供水方式设计供水方式1、变频调速供水系统供、回水共用一套水泵。
2、屋顶水箱重力式供水系统(设备房置于屋顶时),回水需要设水泵加压提升。
变频供水系统流量及扬程的计算及确定1、流量Q按瞬时高峰流量q s确定,可考虑1.1的安全系数,并按管网回流量校核。
2、扬程HH≥H1+H2+H3H1——最不利饮水点与净水箱最低水位的高程差H2——管路的全部水头损失(含泵损、管道沿程水头损失及局部水头损失),详见建筑给排水设计规范及设计手册。
水力计算

第4章
建筑内部给水系统的计算
4.1
设计秒流量 4.1.2 住宅建筑的生活给水管道的设计秒流量
总目录
4. 当给水干管连接有两条或两条以上给水支管, 而各个给水支管的最大用水时卫生器具给水当量平均出 流概率具有不同的数值时,该给水干管的最大用水时卫 生器具给水当量平均出流概率应按加权平均法计算:
U0
U N N
第4章
建筑内部给水系统的计算
4.0
概述 4.0 概述
总目录
如:住宅及一般建筑多为昼夜供水,T=24;若工业企业 为分班工作制,为每班用水时间;旅馆等建筑若为定时供水, 为每日供水时间。 —— 平均时用水量,又称平均小时用水量,为最 高日生活用水量在给水时间内以小时计的平 均值(L/h); —— 小时变化系数,最大日中最大小时用水量与 该日平均小时用水量之比。
第4章
建筑内部给水系统的计算
4.0
概述 4.0 概述
总目录
3. 最大小时用水量
Qd Qh K h Qp K h T
Qh Kh Qp
(2-3) (2-4)
—— 最大小时用水量(L/h)( ) 用水量最高时一个小时的用水量; —— 建筑物内每日或每班的用水时间(h),根 据建筑物的性质决定;
4.1
设计秒流量 4.1.2 住宅建筑的生活给水管道的设计秒流量
总目录
应按下式计算:
qg 0.2 U N g ( L / s)
式中:
—— 计算管段设计秒流量(L/s); —— 计算管段的卫生器具给水当量同时出流概率(%) —— 计算管段的卫生器具给水当量总数。
第4章
建筑内部给水系统的计算
第4章
建筑内部给水系统的计算
给水系统计算范文

给水系统计算范文1.水负荷计算水负荷是指建筑物所需的饮用水总量,通常以单位时间内的水量表示,如每小时水量、每天水量等。
水负荷计算是给水系统设计的基础,需要考虑以下几个方面:(1)用水设备:根据建筑物的类型和规模,确定用水设备的种类和数量,如洗手盆、马桶、淋浴等。
(2)用水量:根据用水设备的标准用水量,结合建筑物的使用情况,估算各时段的用水量。
(3)峰值水量:根据建筑物的使用峰值,确定给水系统所需的最大供水能力,以保证在峰值时段饮用水的充足供应。
2.管道尺寸计算管道尺寸计算是根据建筑物的用水需求和给水系统的流量要求,确定每段管道的尺寸。
为了保证水流的畅通和减少压力损失,管道尺寸的计算需要考虑以下几个因素:(1)流量:以每段管道的预计流量为基础,结合所选用的管材和管道长度,计算出管道的内径或外径。
(2)压力损失:根据管道长度、流量速度和摩擦系数等参数,计算出管道的压力损失,以确保给水系统的压力稳定。
(3)支管尺寸:根据主管道的流量和分支管流量的比例,确定分支管道的尺寸,以满足各个用水点的需求。
3.水泵计算水泵计算是根据给水系统的峰值水量需求,选择适当的水泵容量,以保证饮用水的供应压力。
水泵计算需要考虑以下几个因素:(1)水泵流量:根据给水系统的峰值水量需求,结合系统的压力要求,确定水泵的设计流量。
(2)水泵扬程:根据所选用的水泵类型、管道长度和高度差等参数,计算出水泵所需的扬程。
(3)水泵功率:根据水泵的设计流量和扬程,结合水泵的效率,计算出水泵所需的功率。
4.水箱容量计算水箱容量计算是为了满足建筑物的不同用水时段之间的供需平衡,减少水泵频繁启停的次数。
水箱容量的计算需要结合建筑物的用水情况和给水系统的运行要求,确定合适的水箱容量。
(1)供水时间:根据建筑物的用水时间表,确定不同用水时段的持续时间和峰值水量,以及水箱的供水时间。
(2)水箱容量:根据供水时间和系统的流量要求,结合水箱容量与水平面变化之间的关系,计算出水箱的容量。
水流量计算公式

水流量计算公式水管网流量简单算法如下:自来水供水压力为市政压力大概平均为0.28mpa。
如果计算流量大概可以按照以下公式进行推算,仅作为推算公式,管径面积×经济流速(DN300以下管选1.2m/s、DN300以上管选1.5m/s)=流量如果需要准确数据应按照下文进行计算。
水力学教学辅导第五章有压管道恒定流【教学基本要求】1、了解有压管流的基本特点,掌握管流分为长管流动和短管流动的条件。
2、掌握简单管道的水力计算和测压管水头线、总水头线的绘制,并能确定管道内的压强分布。
3、了解复杂管道的特点和计算方法。
【内容提要和学习指导】前面几章我们讨论了液体运动的基本理论,从这一章开始将进入工程水力学部分,就是运用水力学的基本方程(恒定总流的连续性方程、能量方程和动量方程)和水头损失的计算公式,来解决实际工程中的水力学问题。
本章理论部分内容不多,主要掌握方程的简化和解题的方法,重点掌握简单管道的水力计算。
有压管流水力计算的主要任务是:确定管路中通过的流量Q ;设计管道通过的流量Q 所需的作用水头H 和管径d ;通过绘制沿管线的测压管水头线,确定压强p 沿管线的分布。
5.1 有压管道流动的基本概念(1) 简单管道和复杂管道根据管道的组成情况我们把它分为简单管道和复杂管道。
直径单一没有分支而且糙率不变的管道称为简单管道;复杂管道是指由两根以上管道组成管道系统。
复杂管道又可以分为串联管道、并联管道、分叉管道、沿程泄流管和管网。
(2) 短管和长管在有压管道水力计算中,为了简化计算,常将压力管道分为短管和长管:短管是指管路中水流的流速水头和局部水头损失都不能忽略不计的管道;长管是指流速水头与局部水头损失之和远小于沿程水头损失,在计算中可以忽略的管道为,一般认为( )<(5~10)hf %可以按长管计算。
需要注意的是:长管和长管不是完全按管道的长短来区分的。
将有压管道按长管计算,可以简化计算过程。
但在不能判断流速水头与局部水头损失之和远小于沿程水头损失之前,按短管计算不会产生较大的误差。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
市政工程给水管道规范要求的水力计算
市政工程中的给水管道是指用于供水的管道系统,它负责将水源从供水厂或其他水源输送到市区的各个用水点。
为了保证给水管道系统正常运行,规范要求对水力进行精确计算。
本文将介绍市政工程给水管道规范要求的水力计算的相关内容。
1. 水力计算的基本概念
水力计算是指根据给定的管道参数和流体性质,通过计算确定流体在管道中的流速、压力、流量等水力参数的过程。
市政工程给水管道水力计算的目的是为了确定管道的尺寸和流量,以保证供水的正常运输和供应。
2. 水力计算的方法
市政工程给水管道水力计算采用的主要方法有以下几种:
2.1 雷诺数法
雷诺数是描述流体在运动状态下的流态的重要参数,用于判断流态属于层流还是紊流。
在水力计算中,可以根据管道的雷诺数来确定流态,并借助此计算流体在管道中的流速和流量。
2.2 流体力学公式法
根据流体力学的基本原理和方程,可以通过计算来得到水力参数。
其中,包括流量公式、阻力公式、连续方程、动量方程等。
2.3 直接解法
直接解法是指利用数值方法和计算机模拟技术来解决复杂的水力计算问题。
通过建立数学模型和计算机仿真,可以获得更为准确的水力参数。
3. 水力计算的步骤
为了满足市政工程给水管道的规范要求,水力计算一般包括以下几个步骤:
3.1 收集基本数据
首先,需要收集与给水管道相关的基本数据,包括供水源、管道长度、管径、材料、地形条件等信息。
3.2 设计流量确定
根据给定的用水量和供水要求,确定给水管道的设计流量。
设计流量是给水系统中的水量,通常根据当地的用水量统计数据和供水规范来确定。
3.3 确定管道尺寸和水力参数
在知道设计流量后,可以通过水力计算方法,计算得到管道的水力参数,如管道的流速、流量和压力损失等。
3.4 确定管道材料和防腐措施
根据水力计算的结果,确定合适的管道材料和防腐措施,保证给水管道在运输过程中的安全和稳定。
4. 水力计算的注意事项
在进行市政工程给水管道规范要求的水力计算时,需注意以下几点:
4.1 流态判断准确
在选择水力计算方法时,要准确判断管道中的流态,以保证计算结
果的准确性。
4.2 管道材料选择合理
根据给水管道的使用环境和要求,选择合适的管道材料,以确保管
道的耐久性和安全性。
4.3 考虑压力损失
在水力计算过程中,需要考虑管道的阻力,即压力损失。
合理计算
压力损失,可以保证给水管道系统的正常供水。
5. 结论
市政工程给水管道规范要求的水力计算是保证供水管道系统正常运
行的关键环节。
通过准确的水力计算,可以确定合理的管道尺寸和流量,保障供水的稳定性和安全性。
在实际工程中,需根据具体情况和
规范要求,选择合适的水力计算方法,并严格按照规范进行计算和设计。
只有这样,才能确保市政工程给水管道系统的正常运行与供水安全。