喹诺酮类抗菌药物耐药机制
喹诺酮类药物的作用与应用原理

喹诺酮类药物的作用与应用原理1. 引言喹诺酮类药物是一类广泛应用于临床的抗菌药物,具有广谱、高效、低毒副作用等特点,常用于治疗多种感染性疾病。
本文将介绍喹诺酮类药物的作用和应用原理。
2. 喹诺酮类药物的作用喹诺酮类药物主要通过以下几种方式发挥其作用:•DNA酶抑制:喹诺酮类药物能够与细菌DNA酶结合,抑制其活性,使细菌无法合成新的DNA链。
这会导致细菌的DNA损伤和细胞死亡。
•DNA绕组酶抑制:喹诺酮类药物还能够抑制DNA绕组酶的活性,导致DNA在细胞内不能正常进行复制和转录。
•DNA复制终止:喹诺酮类药物能够在细菌DNA链上结合并与酵素复合物形成稳定的结构,从而阻止DNA链的继续复制,导致细菌细胞死亡。
•细菌蛋白质合成抑制:喹诺酮类药物还能够抑制细菌蛋白质合成,阻断细菌的生物活动,从而导致细菌的死亡。
3. 喹诺酮类药物的应用原理喹诺酮类药物在临床上的应用原理主要包括以下几个方面:•抗菌谱广泛:喹诺酮类药物对细菌的抗菌谱非常广泛,可用于治疗多种细菌感染,包括革兰氏阳性菌、革兰氏阴性菌等。
•高效低毒副作用:喹诺酮类药物具有较高的抗菌活性,能够迅速降低细菌数量,并且副作用相对较少。
常见副作用包括恶心、呕吐、头痛等,但一般不会对身体造成长期影响。
•口服方便:喹诺酮类药物通常是口服给药,患者可以自行服用,不需要特殊的给药设备或技术。
•药物浓度易于调节:喹诺酮类药物的体内浓度易于调节,可以根据临床需要进行剂量调整。
这对于治疗不同严重程度的感染非常重要。
•治疗疗程短:由于喹诺酮类药物的高效性,通常只需要较短的疗程即可达到治疗效果。
4. 喹诺酮类药物的不足之处虽然喹诺酮类药物在临床上有很好的应用前景,但也存在一些不足之处:•易产生耐药性:长期或滥用喹诺酮类药物容易导致细菌对其产生耐药性,这使得喹诺酮类药物在某些疾病的治疗上失去了效果。
•不适用于儿童和孕妇:喹诺酮类药物可能对儿童和孕妇的发育产生不良影响,因此在这些人群中的应用有限。
喹诺酮类药物研究进展

喹诺酮类药物研究进展喹诺酮类药物及其研究进展摘要:喹诺酮类药物系一类人工合成抗菌药。
自第一个此类药物萘啶酸问世以来,该类药物发展迅速,成为目前抗菌药物研究的热点。
本文从作用机制、药代动力学、抗菌效果及不良反应与结构的关系、临床应用等方面的研究进展对该类药物作一综述,以便读者对其发展有更全面的了解。
关键词:喹诺酮,研究进展,作用机制,药代动力学,抗生素后效应,构效关系,光毒性1 药理药效特征1.1作用机制大量研究证实,氟喹诺酮类的作用机制主要是拮抗细菌的DNA回旋酶(gyr),阻碍细菌DNA合成导致细菌死亡。
DNA 回旋酶由A、B两个亚型分子构成。
较早开发的氟喹诺酮类药物主要通过抑制DNA回旋酶A亚单位(gyrA)的切割及封口活性。
近来研究发现,新氟喹诺酮类药物可能同时作用于gyrA和gyrB,只是作用机制可能不同。
其依据为B亚型的突变可改变细菌对新氟喹诺酮类药物的敏感性。
此外,当RNA或蛋白质的合成受到抑制时,氟喹诺酮类药物的杀菌活性会降低。
1.2 药代动力学氟喹诺酮类药物口服吸收好,组织分布广,可分布于各种组织体液和器官,特别在肾、肝、肺及皮肤组织中分布良好。
口服后1~2h达到血药峰浓度,较早开发的该类药物血浆清除半衰期一般在3~8h,需每日2~3次给药。
近年研发的新药中t1/2呈延长的趋势。
延长t1/2可减少用药次数,方便患者,提高用药依从性。
如盐酸莫西沙星半衰期12~15.2h,每日1次服药。
研究表明,氟喹诺酮类药物为浓度依赖型,其对致病菌的杀菌作用取决于峰浓度,而与作用时间关系不密切。
用来评价浓度依赖型药物杀菌效果的PK/PD参数主要有AUC24h/MIC和C max/MIC。
氟喹诺酮类药物同样如此。
近年来对氟喹诺酮类药物的PK/PD研究表明,AUC24h/MIC对临床有效率有很强的预见性,并建议AUC24h/MIC>125为临床药物应达到的目标。
如环丙沙星,当AUC24h/MIC<125时,临床有效率为42%,细菌清除率仅为26%,而当AUC24h/MIC>125时,临床有效率为80%,细菌清除率达82%。
药物化学-喹诺酮类抗菌药

氯喹(先导化合物)
Cl N
O
O
N
O
O OH
O O
O
OH
N
OH O
H3C
N
N CH3
N
N CH3
N
N
CH3
萘啶酸1962
吡咯酸
西诺沙星
第二代 喹诺酮类抗菌药物
吡哌酸,1974年上市,7位引入哌嗪基, 使抗革兰氏阴性菌活性增加;耐药性降低, 对萘啶酸和吡咯酸耐药菌株也有抑制作用, 但随着第三代喹诺酮类抗菌药物的出现, 它目前也已被淘汰
6
5
4 3
7 8
1
2
诺氟沙星是第一个上市的氟喹诺酮类药物,基本 上为喹啉羧酸类,其它氟喹诺酮类主要改造部位在 1位、5位或8位,也可以在7位上进行较小的改变。
第四代喹诺酮类药物
第四代喹诺酮类药物在抗菌活性、药动 学性质及半衰期上有明显提高,增加 对厌氧菌的抗菌活性是第四代的重要 特征。代表药物有莫西沙星、加替沙 星等。
喹诺酮类药物能否影响人体DNA复制?
由于哺乳动物细胞中不含螺旋酶
和拓扑异构酶Ⅳ,而是通过其它途径 进行DNA的复制,故喹诺酮类对细菌
的选择性高,而对人体的不良反应少。
细菌的耐药性
细胞膜对药物的通透性降低 细菌DNA螺旋酶结构改变 细菌产生药泵
喹诺酮类药物分类(根据结构)
萘啶(氮杂萘核)羧酸类
H 3C
Pefloxacin 培氟沙星
NH 2 O F N F CH 3 N COOH
HN
Rufloxacin
氟罗沙星 Fleroxacin
司帕沙星 Sparfloxacin
结构特点
O O
F
OH HN N N
喹诺酮类抗菌药物:分类与作用机制

靶向细菌DNA逆转录酶
喹诺酮类抗菌药物的作用机制主要是通过,抑制DNA的复制和细胞增殖。此类药物通常会与细菌DNA 逆转录酶结合,抑制酶的活性,从而影响其复制和转录。这样可以有效地杀灭多种细菌,包括革兰阳 性和革兰阴性细菌。此外,喹诺酮类抗菌药物还可以对细胞壁合成和蛋白质合成产生影响,以及干扰 DNA的拓扑结构,从而进一步增强其抗菌作用。
抑制DNA合成
1. 作用机制:喹诺酮类抗菌药物主要通过抑制革兰氏阳性菌和阴性菌的DNA拓 扑 异 构 酶 ( D N A g y r a s e ) 和 D N A 拓 扑 异 构 酶 I V ( To po i s o m e r a s e I V ) 的 活 性来干扰DNA复制和维持细胞生存。 2. 抑菌谱:喹诺酮类抗菌药物对革兰氏阴性菌(如大肠杆菌、克雷伯菌等)和 一些革兰氏阳性菌(如金黄色葡萄球菌、链球菌等)有很好的抑菌作用,但对革 兰氏阳性球菌(如肺炎球菌、链球菌等)的抑菌活性较低。 3. 应用临床:喹诺酮类抗菌药物的临床应用广泛,包括治疗呼吸道、泌尿道、 肠道和皮肤软组织等感染症,特别适用于治疗耐多种药物的革兰氏阴性菌感染。 但是,由于其在长期使用中可能导致耐药性和副作用的发生,应慎重使用。
谢谢
2023/5/2 |
logo/company
喹诺酮类抗菌药物:分类与作用机制
Quinolone antibiotics: Classification and mechanism of action. 汇报人: 2023/5/2 ·
Contents
喹诺酮类抗菌药物基础知识 第一代喹诺酮类药物 第二代喹诺酮类药物 第三代喹诺酮类药物 喹诺酮类药物作用机制 喹诺酮类药物用途与应用限制
PART 03
第二代喹诺酮类药 物 Second-generation quinolone drugs.
喹酮类药物抗菌作用及应用

喹酮类药物抗菌作用及应用喹酮类药物是一类广谱抗菌药物,具有抗细菌、抗病毒和抗寄生虫的作用。
其作用机制主要是通过干扰细菌DNA复制和细胞分裂来发挥抗菌作用。
喹酮类药物主要包括喹诺酮类和氟喹诺酮类。
喹诺酮类药物包括氧氟沙星、环丙沙星、诺氟沙星和左氧氟沙星等;氟喹诺酮类药物包括莫西沙星和加替沙星等。
这些药物在临床上广泛应用于治疗泌尿系统感染、呼吸道感染、胃肠道感染、皮肤软组织感染等。
喹酮类药物的抗菌机制主要通过抑制DNA合成和细胞分裂来发挥作用。
喹酮类药物通过与双链DNA结合,抑制DNA甲基酶的活性,从而妨碍DNA甲基化修饰和其他DNA调控途径的进行。
此外,喹酮类药物还可以阻碍DNA超螺旋的形成,降低DNA酶的活性,从而影响DNA的正常复制和修复。
喹酮类药物具有广谱的抗菌活性,可对革兰阴性菌、革兰阳性菌和一些肺炎支原体等病原体起到很好的治疗作用。
临床上常见的应用包括:泌尿系统感染,主要用于治疗尿路感染、前列腺炎等;呼吸道感染,可用于治疗细菌性肺炎、支气管炎等;胃肠道感染,可用于治疗细菌性胃肠炎、痢疾等;皮肤组织感染,可用于治疗真菌感染、表皮葡萄球菌感染等。
喹酮类药物具有广谱的抗菌活性,且通过口服给药可以迅速吸收。
这些药物主要通过肝脏代谢,通过肾脏排泄体外。
在使用这类药物时需要注意药物的剂量和用药时间,避免超剂量或过长时间的使用,以免引起细菌耐药性的产生。
除了抗菌作用,喹酮类药物还具有抗病毒和抗寄生虫的作用。
喹酮类药物可以通过抑制病毒RNA和DNA合成来发挥抗病毒作用,临床上常用于治疗呼吸道病毒感染等。
此外,喹酮类药物还可以通过抑制寄生虫的DNA和RNA合成来发挥抗寄生虫作用,临床上可用于治疗疟疾等寄生虫感染。
综上所述,喹酮类药物是一类广谱抗菌药物,具有抗细菌、病毒和寄生虫的作用。
其作用机制主要是通过干扰DNA合成和细胞分裂来发挥抗菌作用。
临床上广泛应用于泌尿系统感染、呼吸道感染、胃肠道感染和皮肤软组织感染等疾病的治疗。
喹诺酮抗菌药物临床选择特点

静脉滴注
250mg或500mg或750mg,qd
剂量调整
肾功能不全患 根据肌酐清除率(Ccr)调整剂量 肌酐清除率≥ 50 mL/min时不需调整用量。
正常剂量 750mg
500mg
肌酐清除率20-49mL/min 每48小时750mg
• 首剂500mg,今 后每二十四小时
肌酐清除率10-19mL/min
浓度旳2-5倍; 5)本品不被血液透析和腹膜透析清除。
21
喹诺酮类抗菌药物制剂特点和临床选择特点
莫西沙星
1)对肠杆科菌属有良好抗菌活性; 2) 对甲氧西林敏感旳葡萄球菌,肺炎链球菌,化脓性链球菌,有高度活
性; 3)对铜绿假单胞菌旳作用较环丙沙星略差; 4)对支原体,衣原体,军团菌有高度活性,对厌氧菌有良好旳抗菌作用; 5)对肺炎链球菌旳活性是环丙沙星和左氧氟沙星活性旳4-64 倍;对金
因为某些喹诺酮类药物受半衰期和毒性旳限制,不宜采用一日剂量单次给药旳 措施来提升Cmax/MIC。可采用AUC0-24h/MIC来评估和预测临床疗效。
治疗肺炎链球菌理想旳AUC0-24h/MIC应到达30-40,G-杆菌或铜绿假单胞菌理想 旳AUC0-24h/MIC则应到达100以上。
18
喹诺酮类抗菌药物制剂特点和临床选择特点
• 十分常见(≥10%) • 常见(≥1%,<10%) • 偶见(≥0.1%,<1%) • 罕见(≥0.01%,<0.1%) • 十分罕见(<0.01%)
29
喹诺酮类抗菌药物旳不良反应
1.胃肠道症状:(2%~20%)
体现:恶心、呕吐、上腹部隐痛。 机制:喹酸对消化道旳化学性刺激所致。 排序:发生机率氟罗沙星>曲伐沙星>司帕沙星>培氟沙星>环丙沙星、左氧氟 沙星>诺氟沙星>氧氟沙星。 处理:防止空腹服用喹诺酮类药物。
铜绿假单胞菌对喹诺酮类抗菌药物的耐药机制

铜绿假单胞菌对喹诺酮类抗菌药物的耐药机制刘文广【摘要】Pseudomonas aeruginosa is an important opportunistic pathogen in nosocomial infection, the resistance of which to quinolones is becoming more and more serious. The main mechanisms of pseudomonas aeruginosa to quinolone resistance are: change of antibacterial drag target site structure to avoid the effect of antibacterial drags; efflux pump system makinge the drag excreted out of bacteria. There are many problems to be further explored for the mechanisms of Pseudomonas aeruginosa resistance to quinolones. Here is to make a review on the research progress.%铜绿假单胞菌是一种重要的医院内感染条件致病菌,对喹诺酮类药物耐药日趋严重.目前发现铜绿假单胞菌对喹诺酮类药物耐药的主要机制为:改变抗菌药物作用的靶位点结构,从而逃避抗菌药物的作用;主动泵出系统使药物排出细菌体外.有关铜绿假单胞菌对喹诺酮类药物的耐药机制,仍存在许多问题有待进一步探索.现就铜绿假单胞菌对喹诺酮类药物的耐药机制研究进展进行综述.【期刊名称】《医学综述》【年(卷),期】2012(018)011【总页数】3页(P1650-1652)【关键词】铜绿假单胞菌;喹诺酮类;耐药性【作者】刘文广【作者单位】湖南省益阳市中心医院呼吸内科,湖南,益阳,413000【正文语种】中文【中图分类】R378.991铜绿假单胞菌(Pseudomonas aeruginosa,PA)属革兰阴性杆菌,是最严重的院内获得性感染条件致病菌之一。
喹诺酮类抗菌药物的合理应用

喹诺酮类抗菌药物的合理应用摘要】通过探讨喹诺酮类药物的药理作用、适应症、药代动力学特点、禁忌、不良反应及注意事项,为临床合理用药提供依据,保证药品安全、有效使用。
【关键词】喹诺酮抗菌药物合理用药喹诺酮类抗菌药物是一类以4-喹诺酮为基本结构的人工合成抗菌药物,其抗菌谱广,抗菌作用强,口服吸收好,体内分布广、血浆蛋白结合率低、组织浓度高,与其他抗菌药物无交叉耐药性、不良反应少等优点,已成为治疗各种感染的常用药物。
1 喹诺酮类药物的抗菌机制喹诺酮类又称吡酮酸类或吡啶酮酸类,是一类合成抗菌药[1],为杀菌剂,杀菌浓度与抑菌浓度相同或为抑菌浓度的2-4倍,抗菌机制主要是抑制细菌DNA的回旋酶和拓扑异构酶IV,真核细胞不含NDA回旋酶,故对细菌作用选择性高。
虽与其他抗菌药物无交叉耐药性,但同类药物间有交叉耐药性。
2 分类喹诺酮类按发明先后及其抗菌性能的不同,分为四代[2]。
第一代以萘啶酸为代表,抗菌谱窄,抗菌作用弱,口服难吸收,喹诺酮类,对革兰阳性菌和铜绿假单胞菌无抗菌活性,现已被淘汰。
第二代以吡哌酸为代表,抗菌谱由革兰阴性菌扩大到部分革兰阳性菌,虽抗菌活性有了提高,但血浆浓度低,仅限于治疗肠道和尿道感染,现已很少应用。
第三代喹诺酮类药物在母核6位碳上引入了氟原子,在侧链上引入哌嗪环或甲基噁唑换,使血浆浓度提高,组织分布广,半衰期延长,抗菌谱扩大到革兰阳性菌、支原体、衣原体、军团菌及结核杆菌、肠杆菌、铜绿假单胞菌、不动杆菌属,使氟喹诺酮类药物成为近年临床应用热点。
常用药物有诺氟沙星、氧氟沙星、左氧氟沙星、环丙沙星等。
第四代喹诺酮类抗菌谱广、抗菌活性强、组织渗透性好保留了第三代的特点,增加了抗厌氧菌活性,且对革兰氏阳性菌和厌氧菌的活性作用显著强于第三代。
临床疗效甚至超过了一些β-内酰胺类抗生素。
3 临床应用3.1泌尿生殖道感染喹诺酮类抗菌药物可用于治疗肠杆菌科(敏感大肠埃希菌)、变形杆菌属、铜绿假单胞菌等所致的上、下尿路感染。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
喹诺酮类抗菌药物的分类、药效和临床应用1喹诺酮类抗菌药物的临床分类1.1第一代喹诺酮类1.1.1第一代喹诺酮类的抗菌特点:第一代喹诺酮类药物奈啶酸、吡咯酸等,因其抗菌谱窄,仅对大肠杆菌、变形杆菌属、沙门菌属、志贺菌属的部分菌株具有抗菌作用,且作用弱,对敏感菌株的MIC90也多在4mgL-1以上;对绿脓杆菌、不动杆菌属、葡萄球菌属等均无抗菌作用。
1.1.2第一代喹诺酮类的常见品种及临床应用:第一代喹诺酮类常见品种有奈啶酸、噁喹酸及吡咯酸等,主要用于敏感细菌所致的尿路感染。
目前此类药物已被抗菌作用强、毒性低的其他抗菌药物所替代。
1.2第二代喹诺酮类1.2.1第二代喹诺酮类的抗菌特点:第二代喹诺酮类较第一代喹诺酮类抗菌活性强,对革兰阴性杆菌作用包括了部分绿脓杆菌,可达到有效尿药浓度,临床应用不良反应明显较第一代喹诺酮类少见。
1.2.2第二代喹诺酮类的常见品种及临床应用:第二代喹诺酮类有新噁酸、噻喹酸、噁噻喹酸、吡喹酸、吡哌酸等。
临床上主要用于肾盂肾炎、尿路感染及肠道感染的治疗。
1.2.3典型药物实例:吡哌酸(吡卜酸,Pipemidic Acid,Dolcol,Pipram,PPA)抗菌谱较广,对革兰阴性杆菌如大肠杆菌、绿脓杆菌、变形杆菌、痢疾杆菌等有较好的抗菌作用,对绿脓杆菌、变形杆菌的抗菌作用比对奈啶酸、头孢氨苄及羧苄西林强;作用机制是抑制细胞DNA的复制和转录。
吡哌酸一般采用口服给药,口服后部分吸收,成人单次口服0.5g和 1.0g后,血药峰浓度为 3.8mgL-1和5.4mgL-1,半衰期为3.1h;本品吸收后可分布于肾、肝等组织,胆汁中药物浓度高于血浆浓度;本品主要经肾排泄,给药后24h58%~68%的药物从尿液中排出,部分自粪便排出。
吡哌酸在临床主要用于尿路感染和肠道感染的治疗,本品与庆大霉素、卡那霉素、多黏菌素、青霉素等抗生素联用有协同作用,对绿脓杆菌、大肠杆菌、变形杆菌的作用增强。
1.3第三代喹诺酮类第三代喹诺酮类是20世纪70年代后期以后开发上市的药物,为一系列新型氟取代的4-氟喹诺酮类结构类似物。
第三代喹诺酮类药物的分子中均有氟原子,因此称为氟喹诺酮类。
在化学结构上,基本母环的3位有一个羧基,6位通常由氟取代,多数7位有一个哌嗪环。
1.3.1第三代喹诺酮类的抗菌特点:第三代喹诺酮类药物抗菌谱较第一,第二代药物有很大拓宽,抗菌作用显著增强,对肺炎克雷伯菌、产气杆菌、阴沟杆菌、变形杆菌属、沙门菌属、志贺菌属、枸橼酸杆菌属和沙雷菌属等肠杆菌科细菌有强大抗菌作用,MIC90为0.03~2mgL-1。
流感杆菌也对此类药物高度敏感,MIC90多低于0.06mgL-1。
对不动杆菌属和绿脓杆菌等假单胞菌的抗菌作用较对肠杆菌科细菌为差,但仍优于吡哌酸,MIC90多在0.5mg~8mgL-1之间。
氟喹诺酮类对革兰阳性球菌亦有抗菌作用,但其抗菌活性明显较对肠杆菌科细菌为差。
在几种氟喹诺酮类药物中仍以左旋氧氟沙星抗菌活性相对较强,环丙沙星和氧氟沙星相似或稍弱,其他几种氟喹诺酮类药物均弱于上述3个品种。
本类药物对某些厌氧菌、支原体也有效,且不易产生耐药性,口服吸收完全,不良反映轻微。
1.3.2第三代喹诺酮类常见药物:诺氟沙星、培氟沙星(Pefloxacin,甲氟哌酸)、依诺沙星(Enoxacin,氟啶酸)、氧氟沙星(ofloxacin,氟嗪酸)、环丙沙星(Ciprofloxacin,环丙氟哌酸)、洛美沙星(Lomefloxacin)、氟罗沙星(Fleroxacin,多氟哌酸)、司帕沙星(Sparfloxacin,世保扶)、左氧氟沙星(Levofloxacin)、那氟沙星(Nadifloxacin)、妥舒沙星(Tosufloxacin,多氟啶酸)、芦氟沙星(Rufloxacin)、氨氟沙星(Amifloxacin)等。
1.3.3第三代喹诺酮类体内过程的特点:由于该类药物结构中含氟原子,使其对细胞、组织的穿透力增强。
因此大多数品种口服吸收良好,生物利用度高,血药浓度相对较高,血半衰期多在3~7h;血浆蛋白结合率低,大多为14%~30%;体内分布广泛,组织体液药物浓度常等于或高于血药浓度,在该处可达到有效治疗水平。
1.3.4第三代喹诺酮类药动学:比较诺氟沙星、培氟沙星、依诺沙星、氧氟沙星、左旋氧氟沙星、环丙沙星、洛美沙星、氟罗沙星8种氟喹诺酮类的体内过程,在单剂量口服相仿剂量(400mg,左旋氧氟沙星为200mg,环丙沙星500mg)时,血药峰浓度以氟罗沙星为最高,诺氟沙星最低;清除半衰期氟罗沙星最长,相对最短者为诺氟沙星和环丙沙星。
口服后的生物利用度除诺氟沙星吸收最差、环丙沙星吸收不完全外,其余药物吸收均达到给药量的80%~100%。
氧氟沙星、左旋氧氟沙星、洛美沙星、氟罗沙星和依诺沙星主要自肾排出,而环丙沙星、培氟沙星、诺氟沙星和依诺沙星则部分在体内生物转化,部分自粪便排出;胆汁药物浓度均较高,体内分布均广泛。
氧氟沙星、左旋氧氟沙星、氟罗沙星、洛美沙星、培氟沙星和依诺沙星口服一般治疗剂量后,大多在组织和体液中可达到杀菌浓度;环丙沙星静滴给药或口服较高治疗剂量亦可在组织体液中达到有效浓度;诺氟沙星因口服吸收差,在大多数组织和体液中难以达到杀菌浓度。
在几种氟喹诺酮类药物中以培氟沙星、氟罗沙星和环丙沙星的口服制剂所致不良反应较多见,主要为消化道反应,其次为神经系统反应。
1.3.5第三代喹诺酮类的临床应用:(1)泌尿生殖系统感染:包括单纯性尿路感染、复杂性尿路感染、细菌性前列腺炎、淋球菌尿路炎或宫颈炎(包括产酶株所致者)。
(2)胃肠道感染:包括细菌性痢疾、中性粒细胞减少症并发肠炎。
(3)耐药菌株所致伤寒和其他沙门菌属感染。
(4)呼吸系统感染:革兰阴性杆菌肺炎或气管感染。
(5)骨骼系统感染:革兰阴性杆菌骨骼炎或关节感染。
(6)革兰阴性杆菌所致皮肤软组织感染:包括五官科和外科伤口感染。
在喹诺酮类药物目前应用品种中,应根据病种、病情加以选用。
口服吸收差的诺氟沙星仅适用于单纯性下尿路感染及肠道感染,而不宜用于下呼吸道、上尿路、腹腔、胆管等感染;环丙沙星口服吸收亦较差,但其抗菌活性高,因此可用于尿路感染以外的其它感染,但治疗下呼吸道等感染时剂量宜略大。
氟喹诺酮类药物用于治疗重症感染如败血症、腹膜炎、重症肺炎等时,均以静脉给药为宜,病情基本控制后可改为口服给药。
1.4第四代喹诺酮类1.4.1第四代喹诺酮类的抗菌特点:与前三代喹诺酮类相比,第四代喹诺酮类药的主要特征是对厌氧菌的作用上,作用靶点有所不同。
增加了对革兰阳性菌耐药菌的抗菌能力,降低了耐药菌株的突变,进一步扩大了抗菌谱,增加了作用强度,延长了半衰期。
1.4.2第四代喹诺酮类常见品种:加替沙星(Gatifloxacin)、曲伐沙星(Trovafloxacin)、莫西沙星(Moxifloxacin)、克林沙星(Clinafloxacin)、西他沙星(Sitafloxacin)。
临床上用于敏感菌引起的各种感染症。
20世纪90年代上市的新喹诺酮类抗菌药药物名称英文名开发单位首先上市国年份洛美沙星lomefloxacin 日本北陆制药阿根廷1990妥舒沙星tosufloxacin 日本富山化学日本1990芦氟沙星rufloxacin Mediolanum 意大利1992司帕沙星sparfloxacin 日本杏林制药瑞典1992那地沙星nadifloxacin 大日本制药日本1993左氧氟沙星levofloxacin 日本第一制药日本1994格帕沙星grepafloxacin 大冢制药德国1997曲伐沙星trovafloxacin pfizer公司美国1997莫西沙星moxifloxacin 德国拜耳公司德国1999加替沙星gatifloxacin 日本杏林公司美国1999吉米沙星gemifloxacin 美国史克必成公司美国1999近几年上市的新喹诺酮类药物的药代动力学参数药物名称给药剂量(mg/次)Tax(h) T1/2(h)代谢途径排泄途径格帕沙星200~400 2~3 15 肝脏胆汁曲伐沙星100~300 ——10~12 肝脏胆汁莫西沙星400 2~4 12~15.2肝脏肾脏胆汁加替沙星400 1.98 8.41 肝脏肾脏吉米沙星200~300 ————肝脏——2氟喹诺酮类药物的作用机制细菌DNA拓扑异构酶分两大类:第1类有拓扑异构酶Ⅰ、Ⅲ,主要参与DNA 的松解;第2类包括,其中拓扑异构酶Ⅱ又称DNA促旋酶,参与DNA超螺旋的形成,拓扑异构酶Ⅳ则参与细菌子代染色体分配到子代细菌中。
氟喹诺酮类的主要作用靶位是DNA促旋酶和拓扑异构酶Ⅳ,革兰氏阴性菌以DNA促旋酶为第1靶位,而在革兰氏阳性菌中主要作用靶位是拓扑异构酶Ⅳ。
人体细胞缺乏这些靶体酶,因此喹诺酮类药物对细菌细胞具有选择性。
DNA促旋酶催化DNA负超螺旋和连锁的分离,复制姐妹染色体,对DNA的复制和转录及复制的染色体的分离很重要。
在复制循环的末尾,拓扑异构酶Ⅳ通过解开姐妹复制子连环体,分离染色体,而引起超螺旋DNA的松解。
DNA促旋酶和拓扑异构酶Ⅳ都是细菌生长所必须的酶,其中任一种酶受到抑制都将使细胞生长被抑制,最终导致细胞死亡。
暂时切断DNA双链,氟喹诺酮类药物通过嵌入断裂DNA链中间,形成DNA-拓扑异构酶-氟喹诺酮类三者复合物,阻止DNA拓扑异构变化,妨碍细菌DNA复制、转录、以达到杀菌目的。
深入研究发现,细菌DNA被切断后,末端与酶第122位珞氨酸结合,该位点在空间上与第88位氨基酸相邻,第88位氨基酸与周边氨基酸共同构成氟喹诺酮类药物结合位点,该区域被称为喹诺酮类耐药决定区(QRDR)。
3铜绿假单胞菌对氟喹诺酮类药物的耐药机制3.1药物靶位及编码基因的突变3.1.1DNA促旋酶DNA促旋酶由两对亚基GyrA和GyrB组成,分别由gyrA 和gyrB基因编码,GyrA参与DNA的断裂与重新连接,而GyrB则参与ATP酶水解,提供反应的能量,其中任一亚基的基因发生突变均可引起氟喹诺酮类的耐药。
Kukeishi等首先报道了gyrA基因的突变,发现GyrA的序列有以下3种突变方式:Asp-87→Asn、Asp-87→Tyr及Thr-83→Ile。
Yonezawa等又发现了3种新的双点突变现象,即Thr-83→Ile和Asp-87→Gly、Thr-83→Ile和Asp-87→Asn、Thr-83→Ile和Asp-87→His。
之后Takenouchi等发现了gyrA的7种错义方式,其中有2种新的双点突变,即Ala-67→Ser和Asp-87→Gly、Ala-84→Pro和Gln106→Leu。
但Thr-83→Ile仍为最主要的突变方式,并与氟喹诺酮类的高度耐药有关。