同步发电机励磁系统原理

合集下载

图解发电机励磁原理(2024)

图解发电机励磁原理(2024)
对于要求高精度和快速响应的应用场合,应选择具有高性能的控制策略和优化方法,如最 优励磁控制策略结合遗传算法或粒子群优化算法等。
21
05
发电机励磁系统故障诊断与处理 措施
2024/1/26
22
常见故障类型及原因分析
励磁不足或失磁
可能是由于励磁电源故障、励磁 回路开路或接触不良、励磁绕组
匝间短路等原因导致。
应用范围
直流励磁方式和交流励磁方式适用于各种规模的发电机组和电力系统 ;永磁体励磁方式适用于小型风力发电、太阳能发电等领域。
13
03
发电机励磁调节器原理与结构
2024/1/26
14
调节器基本原理
2024/1/26
电磁感应原理
发电机励磁调节器通过电磁感应 原理,将输入的交流电转换为直 流电,为发电机的励磁绕组提供 励磁电流。
替换法
在怀疑某个元器件损坏时,可以用正 常的元器件替换后观察故障是否消除 ,以验证故障部位和原因。
2024/1/26
测量法
使用万用表、示波器等工具测量励磁 系统各点的电压、电流、波形等参数 ,与正常值进行比较分析,进一步确 定故障原因。
专家系统诊断
利用专家系统或故障诊断软件对励磁 系统故障进行自动诊断和分析,提高 故障诊断的准确性和效率。
性,但控制精度相对较低。
20
控制策略选择依据
2024/1/26
系统稳定性要求
对于要求较高的电力系统,应选择稳定性好的控制策略,如恒压控制策略或最优励磁控制 策略。
发电机运行工况
不同的运行工况下,应选择适合的控制策略。例如,在轻载或空载工况下,可采用恒功率 因数控制策略以提高运行效率。
控制精度和响应速度要求

同步发电机的励磁系统基础知识讲解

同步发电机的励磁系统基础知识讲解

由条件①、②共同得出:
(R k)I EE
LEE
dI EE dt
E0
时间常数为:
Tse
LEE Rk
二、交流励磁机系统 1、他励的交流励磁机系统
特点:容量较小,只占同步发电机容量的0.3%~0.5%;响应速度快;一 般
主励磁机的频率为100Hz或更高。 GE(100Hz)—— 主励磁机; MFG(500Hz)—— 付励磁机(中频发电机); AEEL —— 付励磁机励磁绕组。
E
Tt
I EE R
2)、自励直流励磁机的时间常数
①、由自励直流励磁机等效电路得:
I EE R LEE
dI EE dt
Ue
②、根据自励直流发电机端电压的建立过程
虚线(EEL的磁化曲线)上任何一点的 励磁机电动势为:
UeBiblioteka E0Ue E0 I EE.1
I EE
E0
kIEE
E0 —— 剩磁电势; Ue —— 励磁机工作电压。
完全不考虑励磁机的时间常数,励磁电压的建立速度快,时间常数小, 但对其容量要求较大。
2)、自励的交流励磁机系统之二
时间常数大,对其容量要求较小。 他励与自励系统均属静止励磁,只有通过滑环才能送入励磁回路。
3、无刷励磁系统 1)、可控硅不旋转系统(响应速度较慢)
2)、可控硅旋转系统
中频付励磁机MFG(书中ALG)→EEL供电,PG(脉冲触发器)的q、 d合成磁场在空间和时间上作着相角和大小的不同变化,从而达到控制励磁 机送至转子绕组的励磁电流的变化。
起励电源:解决交流励磁机的磁路经过交流电枢后,剩磁不如直流励 磁机那样高,不足以可靠的起动可控硅。中频发电机(MFG)可靠工作 后,退出。

同步发电机励磁方式

同步发电机励磁方式

同步发电机励磁方式引言:发电机是一种将机械能转化为电能的设备,而励磁则是保证发电机正常运行的重要环节。

在发电过程中,励磁方式的选择对于发电机的性能和稳定性至关重要。

本文将介绍常见的同步发电机励磁方式,以帮助读者更好地理解发电机的工作原理。

一、直流励磁方式1. 独立励磁方式独立励磁方式是指发电机独立设置励磁设备,通过直流电源提供励磁电流。

这种方式适用于小型发电机或需要灵活调节励磁电流的场合。

常见的励磁电源包括直流发电机、蓄电池和整流器等。

2. 自励励磁方式自励励磁方式是指发电机利用其自身产生的电动势通过励磁回路提供励磁电流。

这种方式适用于小型发电机或无法外接励磁电源的场合。

常见的自励方式包括串励、复励和混合励磁等。

二、交流励磁方式1. 恒压励磁方式恒压励磁方式是指通过稳定的电压源提供励磁电流,以保持发电机励磁电流的稳定。

这种方式适用于对励磁电流要求较高的场合,如高功率发电机和电力系统。

2. 恒流励磁方式恒流励磁方式是指通过稳定的电流源提供励磁电流,以保持发电机励磁电流的稳定。

这种方式适用于对励磁电流要求较高的场合,如大容量发电机和电力系统。

三、混合励磁方式混合励磁方式是指同时采用直流励磁和交流励磁的方式,以兼顾两种励磁方式的优点。

这种方式适用于对励磁电流和电压要求较高的场合,如大功率发电机和电力系统。

四、调速特性发电机的励磁方式不仅会影响其励磁电流和电压的稳定性,还会对其调速特性产生影响。

不同的励磁方式会导致发电机的励磁电流与转速之间的关系不同,从而影响发电机的输出电压和频率。

结论:同步发电机励磁方式的选择对于发电机的正常运行和性能有着重要的影响。

在实际应用中,需要根据发电机的类型、容量和工作环境等因素综合考虑,选择合适的励磁方式。

同时,还需要根据实际情况对励磁电流和电压进行调整,以保证发电机的稳定性和可靠性。

通过本文的介绍,相信读者对同步发电机励磁方式有了更深入的了解。

励磁方式的选择是发电机设计和运行中的重要问题,需要综合考虑多个因素。

发电机励磁系统-讲解

发电机励磁系统-讲解
发电机励磁系统
2013年07月
生产准备部金恩
粤电靖海电厂励磁控制柜 (美国GE公司)
华润电力(温州)有限公司生产准备部
发电机励磁系统基本原理
➢ 供给发电机励磁电流的电 源及其附属设备称为励磁 系统。
➢ 它分为励磁功率单元和励 磁调节器两个主要部分。
➢ 励磁功率单元向同步发电 机转子提供励磁电流;而 励磁调节器则根据输入信 号和给定的调节准则控制 励磁功率单元的输出。
间的自动跟踪 ➢ 自动和手动通道的双向自动跟踪 ➢ 恒无功或恒功率因素的控制 ➢ PSS电力系统稳定器。
测量单元板(MUB)
➢ 用于测量发电机定子侧信 号。它直接测量发电机的 三相电压和电流,并通过 这些量计算出其它信号: 如P(有功)、Q(无功)、 f(频率)等,同时提供了 强电参数和测量信号之间 的电气隔离。
扩展门极控制板(EGC)
➢ 作为双通道配置的后备通道使 用。
➢ EGC 连同COB、MUB一起安 装在同一个金属箱中,但在结 构上是独立的。
➢ EGC具有下列功能: 1、励磁电流调节 2、通道跟踪,以便在COB故障
时实现平稳切换 3、备用瞬时过电流保护继电器 4、备用反时限过电流继电器 5、直流侧短路保护
采用自然风冷(带冷却风机)的冷却方式,当励磁变温 度高至100℃时,冷却风扇自启;温度低至80℃时,风 扇自动停止。励磁变温度高至130℃时,发超温报警。
高压侧每相提供3组套管CT,两组用于保护,一组用于 测量。低压侧每相也提供3组CT,两组用于保护,一组 用于测量。
可控硅整流器
➢ 采用三相全波桥式整流,共有4个功率 柜组成。
灭磁要求: 1.灭磁时间尽可能的短(发电 机端电压由额定值Un降至5% Un所需的时 间称灭磁时间)2.励磁绕组两端的过电压 不超过允许值(通过跨接器来实现过压保 护的要求)。

同步发电机的原理

同步发电机的原理

同步发电机的原理
发电机的工作原理是利用电磁感应,将电能转换成机械能。

在发电机内,定子绕组通入三相交流电后,在定子铁芯中形成闭合磁路,在转子的内部,定子绕组通入三相交流电后,在转子内部形成闭合磁路。

电机工作时,随着转子旋转,在定子铁芯中产生感应电流,并在转子绕组中感应出电压。

同步发电机是一种以电力电子技术为基础的新型电机。

它的转子上装有两组互相正交的同步旋转的励磁装置,分别称为励磁电路。

当用一定频率的交流电通过励磁电路时,可使两个线圈产生感应电动势。

当再给励磁机加上一定频率的交流电时,转子产生感应电流。

感应电流产生磁场,使得励磁电路中的磁极相对于电网中其它相的电轴产生相对位移。

电轴和磁极相对于电网中其它相发生相对位移时,电轴和磁极之间便产生了一个电动势(电压),这个电动势(电压)就是发电机的工作电压。

发电机是根据电磁感应原理制成的。

在旋转磁场中有两个相互垂直、且同速转动的定子绕组。

—— 1 —1 —。

同步发电机工作原理

同步发电机工作原理

同步发电机工作原理
同步发电机是一种采用电磁转矩原理工作的发电设备。

它的工作原理可以通过以下几个步骤来描述。

1. 电场产生:发电机中的励磁绕组(通常是一组电磁铁)被直流电源电流激励,产生磁场。

这个磁场称为励磁磁场。

2. 磁场旋转:当励磁绕组产生磁场后,转速恒定的主轴开始旋转,使得励磁磁场也随之旋转。

3. 电磁感应:旋转的磁场切割通过发电机绕组中的导线,产生感应电动势。

这个电动势的大小与磁场强度、导线长度和速度等因素有关。

4. 输出电流:感应电动势驱动负载电流从绕组中流过,这样就实现了电能的转换。

同时,为了使发电机能持续地产生电能,感应电动势还需克服负载电流的阻力,并推动电流在绕组中流动。

5. 扩散磁场:发电机的旋转会导致励磁磁场受到有限的扩散,以保持与导线磁场的相对运动。

这种扩散过程消耗了一部分机械功,因此在发电机的使用中需要注意功率损失问题。

总的来说,同步发电机利用旋转的磁场与导线的相对运动产生感应电动势,从而将机械能转化为电能。

它的工作原理是基于电磁感应定律和电磁转矩原理,使得发电机能够稳定输出电能供应。

发电机励磁系统原理介绍


PID控制策略在励磁调节中应用
01
02
03
比例(P)控制
根据偏差的大小进行调节 ,快速减小偏差,但可能 产生超调。
积分(I)控制
消除静差,提高控制精度 ,但可能降低系统稳定性 。
微分(D)控制
预测偏差变化趋势,提前 进行调节,以改善系统动 态性能。
现代控制理论在励磁调节中应用
最优控制
01
基于优化算法,寻找最优控制策略,使得系统性能达到最优。
替换法
在怀疑某个部件出现故障时,可以用正常 的部件进行替换,观察系统运行状态是否 恢复正常,以验证故障部位。
维护保养建议和经验分享
定期检查
定期对励磁系统的各个部件进行检查,包括电源线路、传感器、调节 器等,确保其处于良好状态。
清洁保养
保持励磁系统的清洁,定期清理灰尘和杂物,防止对系统造成损害。
及时更换磨损件
励磁系统参数整定
根据实验数据,对励磁系统的控 制参数进行整定,以优化系统的 动态性能和稳态精度。
数字仿真技术在励磁系统验证中应用
建立数学模型 根据发电机的电磁特性和励磁系 统的工作原理,建立精确的数学 模型,包括电气方程、控制方程 等。
结果分析与优化 根据仿真结果,分析励磁系统的 性能表现,针对存在的问题进行 优化改进,提高系统的稳定性和 适应性。
03
04
交流励磁机
优点:交流励磁机具有效率高、体积小、 重量轻等优点,且可使用交流电源。
05
06
缺点:结构相对复杂,维护要求较高。
03
励磁调节器及控制策略
调节器类型及特点分析
模拟式调节器
基于模拟电路实现,具有简单、可靠的特点,但参数调整困难,且易受到环境 温度等因素的影响。

同步发电机励磁系统基本原理讲座


式中
δ— 发电机的功率角; Xd— 发电机直轴电抗。
同步发电机励磁系统基本原理介绍
因为发电机端电压UG为定值,所以发电机励磁电流的变化只是改变了机组 的无功功率和功率角δ值的大小。 由此可见与无穷大母线并联运行的机组,调 节它的励磁电流可以改变发电机无功功率的数值。 在实际运行中,与发电机并联运行的母线并不是无限大母线,即系统等值阻 抗并不等于零,母线的电压将随着负荷波动而改变;电厂输出无功电流与它的母 线电压水平有关,改变其中一台发电机的励磁电流不但影响自身电压和无功率, 而且也将影响与之并联运行机组的无功功率,其影响程度与系统情况有关。因 此,同步发电机励磁的自动控制系统还负担着并联运行机组间无功功率合理分配 的任务。
• 2.3.3 国家电网公司企业标准(一个PSS整定试验导则)
• 2.3.3.1 《电力系统稳定器整定试验导则》 Q/GDW 143-2006
同步发电机励磁系统基本原理介绍
• 2.3.4 励磁系统的主要技术参数指标
• • • • • • • • • •

2.3.4.1 励磁系统性能指标 ① 当发电机的励磁电压和电流不超过额定励磁电压和电流的1.1倍时,励磁 系统保证连续运行。 ② 励磁系统顶值电压倍数 ≮ 1.6~1.8 (2.0) ③ 励磁系统允许强励时间 ≮ 10s (20s) ④ 励磁系统电压响应比(电压上升速度) “自并激”系统 ≮ 3.5 “三机”系统 ≮ 1.6~1.8 (2.0) ⑤ 电压调整范围 70~110% ⑥ 电压调整精度 ≤± 0.5 % (0.25%) ⑦ 调差范围 ±10 % (15%)
ΔφG— 转子磁通增量;
K— 与转子参数有关的常数。
同步发电机励磁系统基本原理介绍
• 2.3 励磁系统国家和行业标准 • 2.3.1 中华人民共和国国家标准

同步发电机励磁自动控制系统

同步发电机励磁自动控制系统在现代电力系统中,同步发电机励磁自动控制系统扮演着至关重要的角色。

它如同电力生产的“智慧大脑”,时刻精准调控着发电机的运行状态,确保电力的稳定供应和优质输出。

要理解同步发电机励磁自动控制系统,首先得明白励磁是什么。

简单来说,励磁就是给同步发电机的转子提供直流电流,从而在转子周围产生磁场。

这个磁场与定子绕组相互作用,就能产生电能。

而励磁自动控制系统呢,就是能够根据电力系统的运行状况和需求,自动调整这个励磁电流的大小和方向,从而实现对发电机输出电压、无功功率等重要参数的控制。

那么,为什么需要这样一个自动控制系统呢?这是因为电力系统的运行状态是时刻变化的。

比如,当系统中的负载突然增加时,如果不及时调整励磁电流,发电机的输出电压就会下降,可能导致电力质量下降,甚至影响到用电设备的正常运行。

反之,当负载突然减少时,若不加以控制,输出电压又会升高,可能损坏设备。

同步发电机励磁自动控制系统主要由励磁功率单元和励磁调节器两大部分组成。

励磁功率单元负责向发电机转子提供直流励磁电流,它就像是“动力源”,要保证有足够的能量和稳定的输出。

而励磁调节器则是整个系统的“指挥中心”,通过采集发电机的各种运行参数,如端电压、定子电流、无功功率等,然后按照预定的控制规律进行计算和分析,最终输出控制信号来调节励磁功率单元的输出。

在实际运行中,励磁自动控制系统有着多种控制方式。

其中,恒机端电压控制是最为常见的一种。

它的目标是保持发电机端电压恒定,无论系统中的负载如何变化。

通过不断监测端电压,并与设定的电压值进行比较,然后调整励磁电流,从而使端电压始终稳定在设定值附近。

这种控制方式能够有效地保证电力质量,满足用户对电压稳定性的要求。

另一种常见的控制方式是恒无功功率控制。

在某些情况下,电力系统需要发电机输出特定的无功功率,以维持系统的电压水平和功率因数。

此时,励磁自动控制系统就会根据无功功率的设定值来调整励磁电流,确保发电机输出的无功功率符合要求。

同步发电机励磁系统介绍


智能控制技术的应用
要点一
智能控制算法
随着智能控制算法的发展,如模糊控制、神经网络等,励 磁系统的智能化水平得到了显著提升。这些算法可以对励 磁系统进行自适应控制,自动调整励磁电流的参数,提高 发电机的运行效率和稳定性。
要点二
应用优势
智能控制技术的应用,使得励磁系统的自适应能力和鲁棒 性得到了增强。同时,通过智能控制算法,可以实现对励 磁系统的优化控制,降低发电机的运行成本和维护成本。
系统的寿命也得到了延长。
数字化控制技术的应用
数字化控制器
随着数字信号处理器(DSP)和可编程逻辑控制器(PLC)等数字化控制技术的发, 励磁系统的控制精度和响应速度得到了显著提升。数字化控制器可以对励磁电流进行快
速、准确的调节,提高发电机的动态性能和稳定性。
应用优势
数字化控制技术的应用,使得励磁系统的控制策略更加灵活和智能化。通过数字化控制 器,可以实现对励磁系统的远程监控和故障诊断,提高励磁系统的可靠性和可维护性。
高性能永磁材料的应用
永磁材料
随着高性能永磁材料的出现,如稀土永磁材 料,励磁系统的性能得到了显著提升。这些 材料具有高磁能积和矫顽力,可以替代传统 的电磁铁,减小励磁系统的体积和重量,提 高励磁系统的效率和可靠性。
应用优势
高性能永磁材料的应用,使得励磁系统在小 型化和高效化方面取得了重要突破。同时, 由于永磁材料的耐腐蚀和抗氧化性能,励磁
励磁系统的组成
励磁电源
提供励磁电流的电源设备,通常为直流电源 或交流电源。
励磁线圈
安装在发电机转子上的线圈,用于产生励磁 磁场。
励磁控制器
用于控制励磁电流的调节器,根据发电机运 行状态和电网需求进行自动调节。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

定义:励磁装置是指同步发电机的励磁系统中除励磁电源以外的对励磁电流能起控制和调节
作用的电气调控装置。励磁系统是电站设备中不可缺少的部分。励磁系统包括励磁电源和励
磁装置,其中励磁电源的主体是励磁机或励磁变压器;励磁装置则根据不同的规格、型号和
使用要求,分别由调节屏、控制屏、灭磁屏和整流屏几部分组合而成。 励磁装置的使用,
是当电力系统正常工作的情况下,维持同步发电机机端电压于一给定的水平上,同时,还具
有强行增磁、减磁和灭磁功能。对于采用励磁变压器作为励磁电源的还具有整流功能。励磁
装置可以单独提供,亦可作为发电设备配套供应。
励磁系统的主要作用有:1)根据发电机负荷的变化相应的调节励磁电流,以维持机端电压
为给定值;2)控制并列运行各发电机间无功功率分配;3)提高发电机并列运行的静态稳定
性;4)提高发电机并列运行的暂态稳定性;5)在发电机内部出现故障时,进行灭磁,以减
小故障损失程度;6)根据运行要求对发电机实行最大励磁限制及最小励磁限制。
原理:利用导线切割磁力线感应出电势的电磁感应原理,将原动机的机械能变为电能输出。
同步发电机由定子和转子两部分组成。定子是发出电力的电枢,转子是磁极。定子由电枢铁
芯,均匀排放的三相绕组及机座和端盖等组成。转子通常为隐极式,由励磁绕组、铁芯和轴、
护环、中心环等组成。汽轮发电机的极数多为两极的,也有四极的。转子的励磁绕组通入直
流电流,产生接近于正弦分布磁场(称为转子磁场),其有效励磁磁通与静止的电枢绕组相
交链。转子旋转时,转子磁场随同一起旋转、每转一周,磁力线顺序切割定子的每相绕组,
在三相定子绕组内感应出三相交流电势。发电机带对称负载运行时,三相电枢电流合成产生
一个同步转速的旋转磁场。定子磁场和转子磁场相互作用,会产生制动转矩。从汽轮机输入
的机械转矩克服制动转矩而作功。发电机可发出有功功率和无功功率。所以,调整有功功率
就得调节汽机的进汽量。转子磁场的强弱直接影响定子绕组的电压,所以,调发电机端电压
或调发电机的无功功率必须调节转子电流。发电机的有功功率和无功功率几何相加之和称为
视在功率。有功功率和视在功率之比称为发电机的功率因数(力率),发电机的额定功率因
数一般为0.85。供给发电机转子直流建立转子励磁的系统称为发电机励磁系统。
大型发电机励磁方式分为:①它励励磁系统;②自并激励磁系统。它励励磁是由一台与发电
机同轴的交流发电机产生交流电,经整流变成直流电,给发电机转子励磁。自并激励磁是将
来自发电机机端的交流电经变压器降压,再整流变成直流电,作为发电机转子的励磁。
励磁系统对提高电力系统稳定的作用,一直是人们关心的课题和努力的方向,长期以来已经
进行了大量的工作。励磁系统是发电机的重要组成部份,它对电力系统及发电机本身的安全
稳定运行有很大的影响。 优良的励磁控制系统不仅可以保证发电机可靠运行,提供合格
的电能,而且还可以有效地提高系统的技术指标,保证电网的电压水平在一定的范围。 在
一定的条件下,励磁自动控制系统如果能按照要求进行某种适当的控制,同样可以改善电力
系统暂态稳定性。 当电力系统由于种种原因,出现短时的低电压时,励磁自动控制系统
可以发挥其调节功能,即大幅度的增加励磁以提高系统电压。 目前广泛采用的励磁方
式有两种: 他励励磁系统的特点是用同轴的交流励磁机作为主整流器的电源。这种励磁
方式具有励磁电流独立,工作比较可靠和减少自用电消耗量等优点,是过去发电机主要励磁
方式,具有较成熟的运行经验。缺点是励磁调节速度较慢,维护工作量大。 自励励磁系
统的特点是励磁电源取自发电机自身,用励磁变压器或与励磁变流器共同供给整流装置变换
成直流后,再供给发电机本身,这种励磁系统具有结简单,设备少,投资省和维护工作量少
等优点。缺点是稳定性不够好。
励磁系统对提高电力系统稳定的作用,一直是人们关心的课题和努力的方向,长期以
来已经进行了大量的工作。励磁系统是发电机的重要组成部份,它对电力系统及发电机本身
的安全稳定运行有很大的影响。 优良的励磁控制系统不仅可以保证发电机可靠运行,提
供合格的电能,而且还可以有效地提高系统的技术指标,保证电网的电压水平在一定的范围。
在一定的条件下,励磁自动控制系统如果能按照要求进行某种适当的控制,同样可以改善电
力系统暂态稳定性。 当电力系统由于种种原因,出现短时的低电压时,励磁自动控制系
统可以发挥其调节功能,即大幅度的增加励磁以提高系统电压。 目前广泛采用的励磁
方式有两种: 他励励磁系统的特点是用同轴的交流励磁机作为主整流器的电源。这种励
磁方式具有励磁电流独立,工作比较可靠和减少自用电消耗量等优点,是过去发电机主要励
磁方式,具有较成熟的运行经验。缺点是励磁调节速度较慢,维护工作量大。 自励励磁
系统的特点是励磁电源取自发电机自身,用励磁变压器或与励磁变流器共同供给整流装置变
换成直流后,再供给发电机本身,这种励磁系统具有结简单,设备少,投资省和维护工作量
少等优点。缺点是稳定性不够好。

相关文档
最新文档