统计学思考题

合集下载

统计学基础课后思考题答案(仅供参考)前六章

统计学基础课后思考题答案(仅供参考)前六章

第一章概论1、“统计”一词有统计工作、统计资料、统计学三种涵义。

统计资料是统计工作的成果,统计工作和统计资料是过程与成果的关系。

2、统计学的研究对象是客观现象(包括社会现象和自然现象)总体的数量方面。

它具有数量性、总体性、变异性、具体性、社会性的特点。

3、统计学的性质是属于方法论学科,统计学是一门研究客观现象总体数量方面的独立的方法论科学。

4、统计学的基本研究方法:大量观察法、统计分组法、综合指标法、统计模型法、归纳推断法。

5、统计学的基本职能有:信息职能、咨询职能、监督职能。

6、统计的基本任务:一方面是以国民经济和社会发展为统计调查的对象,在对其数量方面进行科学的统计分析的基础上,为党和国家制定政策、各部门编制计划,指导经济和社会发展及进行科学管理提供信息和咨询服务;另一方面则是对国民经济和社会的运行状态、国家政策,计划的执行情况等进行统计监督。

7、统计工作的过程包括:统计设计、统计调查、统计整理和统计分析。

8、统计总体是指客观存在的,在同一性质的基础上结合起来的许多个别事物构成的整体,简称总体。

总体单位是指构成总体的个别事物,简称个体。

总体和总体单位是整体与部分、集合与元素的关系,它们互为存在条件。

总体是界定总体单位的前提条件,总体单位是构成总体的基本元素。

9、标志按性质不同可分为品质标志和数量标志,按变异情况可分为不变标志和可变标志。

10、统计指标的特点:数量性、综合性、具体性。

统计指标按其说明总体特征的性质不同,可分为数量指标和质量指标;按表现形式不同,可分为总量指标、相对指标,平均指标;按计量单位的不同,可分为实物量指标、价值指标和劳动量指标;按指标功能的不同,可分为描述指标、评价指标和预警指标。

11、(简)指标与标志的联系,具有对应关系、汇总关系、转换关系;指标与标志的区别,说明对象范围的不同,具体表现形式不同。

(详)指标与标志有哪些区别及联系?区别:①指标和标志的概念明显不同,标志是说明个体特征的,一般不具有综合的特征:指标是说明总体特征的,具有综合的性质。

统计学思考题

统计学思考题

统计学思考题第一章思考题1.3统计学的类型和不同类型的特点统计数据;按所采用的计量尺度不同分;(定性数据)分类数据:只能归于某一类别的非数字型数据,它是对事物进行分类的结果,数据表现为类别,用文字来表述;(定性数据)顺序数据:只能归于某一有序类别的非数字型数据。

它也是有类别的,但这些类别是有序的。

(定量数据)数值型数据:按数字尺度测量的观察值,其结果表现为具体的数值。

统计数据;按统计数据都收集方法分;观测数据:是通过调查或观测而收集到的数据,这类数据是在没有对事物人为控制的条件下得到的。

实验数据:在实验中控制实验对象而收集到的数据。

统计数据;按被描述的现象与实践的关系分;截面数据:在相同或相似的时间点收集到的数据,也叫静态数据。

时间序列数据:按时间顺序收集到的,用于描述现象随时间变化的情况,也叫动态数据。

1.4解释分类数据,顺序数据和数值型数据答案同1.31.5举例说明总体,样本,参数,统计量,变量这几个概念对一千灯泡进行寿命测试,那么这千个灯泡就是总体,从中抽取一百个进行检测,这一百个灯泡的集合就是样本,这一千个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是参数,这一百个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是统计量,变量就是说明现象某种特征的概念,比如说灯泡的寿命。

1.6变量的分类变量可以分为分类变量,顺序变量,数值型变量。

变量也可以分为随机变量和非随机变量。

经验变量和理论变量。

1.7举例说明离散型变量和连续性变量离散型变量,只能取有限个值,取值以整数位断开,比如“企业数”连续型变量,取之连续不断,不能一一列举,比如“温度”。

第二章思考题2.1什么是二手资料?使用二手资料应注意什么问题与研究内容有关,由别人调查和试验而来已经存在,并会被我们利用的资料为“二手资料”。

使用时要进行评估,要考虑到资料的原始收集人,收集目的,收集途径,收集时间使用时要注明数据来源。

2.2比较概率抽样和非概率抽样的特点,指出各自适用情况概率抽样:抽样时按一定的概率以随机原则抽取样本。

《统计学》课后思考题

《统计学》课后思考题

《统计学》课后思考题《统计学》课后思考题第⼀章导论1、解释描述统计和推断统计描述统计:研究的是数据收集、处理、汇总、图表描述、概括与分析等统计⽅法。

推断统计:研究如何利⽤样本数据来推断总体特征的统计⽅法。

2、统计数据可分为哪⼏个类型?不同类型的数据各有什么特点?3、举例说明总体、样本、参数、统计量、变量这⼏个概念总体:所研究的全部元素的集合,其中的每⼀个元素称为个体。

eg.要检验⼀批灯泡的使⽤寿命,这批灯泡构成的集合就是总体。

样本:从总体中抽取的⼀部分元素的集合。

eg.从⼀批灯泡中随机抽取100个,这100个灯泡就构成了⼀个样本。

参数:研究者想要了解的总体的某种特征值。

eg.总体平均数⽤µ表⽰,总体标准差⽤σ表⽰。

统计量:根据样本数据计算出来的⼀个量。

eg.样本标准差⽤s表⽰变量:说明现象某种特征的概念。

eg.商品销售额、受教育程度等第三章数据的图表展⽰1、分类数据和顺序数据的整理和图⽰⽅法各有哪些分类数据整理:频数、⽐例、百分⽐、⽐率图⽰:条形图、帕累托图、饼图、环形图顺序数据整理:累计频数、累计频率(累计百分⽐)图⽰:累计频数分布图和累计频率分布图分类数据的整理和图⽰⽅法同样适⽤于顺序数据2、茎叶图与直⽅图相⽐有什么优点?它们的应⽤场合是什么?茎叶图是由“茎”和“叶”两部分组成的、反映原始数据分布的图形,其图形是由数字组成的。

通过茎叶图,可以看数据的分布形状及数据的离散状况。

与直⽅图相⽐,茎叶图既能给出数据的分布状况,⼜能给出⼀个原始数值,即保留了原始数据的信息。

⽽直⽅图不能给出原始数值。

在应⽤⽅⾯,直⽅图⼀般适⽤于⼤批量数据,茎叶图通常适⽤于⼩批量数据。

第四章数据的概括性度量1、⼀组数据的分布特征可以从哪⼏个⽅⾯进⾏测度?⼀是分布的集中趋势,反映各数据向其中⼼值靠拢或聚集的程度;⼆是分布的离散程度,反映各数据远离其中⼼值的趋势;三是分布的形状,反映数据分布的偏态和峰态。

2、简述众数、中位数和平均数的特点和应⽤场合(1)众数特点:是⼀组数据分布的峰值,不受极端值影响。

统计学(第五版)贾俊平-课后思考题和练习题答案(完整版)

统计学(第五版)贾俊平-课后思考题和练习题答案(完整版)

统计学(第五版)贾俊平课后思考题和练习题答案(最终完整版)第一部分思考题第一章思考题1。

1什么是统计学统计学是关于数据的一门学科,它收集,处理,分析,解释来自各个领域的数据并从中得出结论.1.2解释描述统计和推断统计描述统计;它研究的是数据收集,处理,汇总,图表描述,概括与分析等统计方法。

推断统计;它是研究如何利用样本数据来推断总体特征的统计方法。

1。

3统计学的类型和不同类型的特点统计数据;按所采用的计量尺度不同分;(定性数据)分类数据:只能归于某一类别的非数字型数据,它是对事物进行分类的结果,数据表现为类别,用文字来表述;(定性数据)顺序数据:只能归于某一有序类别的非数字型数据。

它也是有类别的,但这些类别是有序的.(定量数据)数值型数据:按数字尺度测量的观察值,其结果表现为具体的数值。

统计数据;按统计数据都收集方法分;观测数据:是通过调查或观测而收集到的数据,这类数据是在没有对事物人为控制的条件下得到的。

实验数据:在实验中控制实验对象而收集到的数据。

统计数据;按被描述的现象与实践的关系分;截面数据:在相同或相似的时间点收集到的数据,也叫静态数据.时间序列数据:按时间顺序收集到的,用于描述现象随时间变化的情况,也叫动态数据。

1.4解释分类数据,顺序数据和数值型数据答案同1.31.5举例说明总体,样本,参数,统计量,变量这几个概念对一千灯泡进行寿命测试,那么这千个灯泡就是总体,从中抽取一百个进行检测,这一百个灯泡的集合就是样本,这一千个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是参数,这一百个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是统计量,变量就是说明现象某种特征的概念,比如说灯泡的寿命。

1。

6变量的分类变量可以分为分类变量,顺序变量,数值型变量。

变量也可以分为随机变量和非随机变量。

经验变量和理论变量。

1。

7举例说明离散型变量和连续性变量离散型变量,只能取有限个值,取值以整数位断开,比如“企业数"连续型变量,取之连续不断,不能一一列举,比如“温度”。

统计课后思考题答案

统计课后思考题答案

统计课后思考题答案统计课后思考题答案第一章思考题1.1什么是统计学统计学是关于数据的一门学科它收集处理分析解释来自各个领域的数据并从中得出结论。

1.3解释描述统计和推断统计描述统计它研究的是数据收集处理汇总图表描述概括与分析等统计方法。

推断统计它是研究如何利用样本数据来推断总体特征的统计方法。

1.5解释分类数据顺序数据和数值型数据统计数据按所采用的计量尺度不同分定性数据分类数据只能归于某一类别的非数字型数据它是对事物进行分类的结果数据表现为类别用文字来表述定性数据顺序数据只能归于某一有序类别的非数字型数据。

它也是有类别的但这些类别是有序的。

定量数据数值型数据按数字尺度测量的观察值其结果表现为具体的数值。

统计数据按统计数据都收集方法分观测数据是通过调查或观测而收集到的数据这类数据是在没有对事物人为控制的条件下得到的。

实验数据在实验中控制实验对象而收集到的数据。

统计数据按被描述的现象与实践的关系分截面数据在相同或相似的时间点收集到的数据也叫静态数据。

时间序列数据按时间顺序收集到的用于描述现象随时间变化的情况也叫动态数据。

1.6举例说明总体样本参数统计量变量这几个概念对一千灯泡进行寿命测试那么这千个灯泡就是总体从中抽取一百个进行检测这一百个灯泡的集合就是样本这一千个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是参数这一百个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是统计量变量就是说明现象某种特征的概念比如说灯泡的寿命。

1.7变量的分类变量可以分为分类变量顺序变量数值型变量。

变量也可以分为随机变量和非随机变量。

经验变量和理论变量。

1.8举例说明离散型变量和连续性变量离散型变量只能取有限个值取值以整数位断开比如“企业数”连续型变量取之连续不断不能一一列举比如“温度”。

1.8统计应用实例人口普查商场的名意调查等。

1.9统计应用的领域经济分析和政府分析还有物理生物等等各个领域。

第二章思考题2.4自填式面访式和电话式各自的长处和弱点自填式优点 1调查组织者管理容易2成本低可进行大规模调查3对被调查者可选择方便时间答卷减少回答敏感问题压力。

统计学贾俊平课后思考题和练习题

统计学贾俊平课后思考题和练习题

统计学(第五版)贾俊平课后思虑题和练习题答案(最后完好版)第一部分思虑题第一章思虑题什么是统计学统计学是对于数据的一门学科,它采集,办理,剖析,解说来自各个领域的数据并从中得出结论。

解说描绘统计和推测统计描绘统计;它研究的是数据采集,办理,汇总,图表描绘,归纳与剖析等统计方法。

推测统计;它是研究如何利用样本数据来推测整体特色的统计方法。

统计学的种类和不一样种类的特色统计数据;按所采纳的计量尺度不一样分;(定性数据)分类数据:只好归于某一类其余非数字型数据,它是对事物进行分类的结果,数据表现为类型,用文字来表述;(定性数据)次序数据:只好归于某一有序类其余非数字型数据。

它也是有类其余,但这些类型是有序的。

(定量数据)数值型数据:按数字尺度丈量的察看值,其结果表现为详细的数值。

统计数据;按统计数据都采集方法分;观察数据:是经过检查或观察而采集到的数据,这种数据是在没有对事物人为控制的条件下获取的。

实验数据:在实验中控制实验对象而采集到的数据。

统计数据;按被描绘的现象与实践的关系分;截面数据:在相同或相像的时间点采集到的数据,也叫静态数据。

时间序列数据:准时间次序采集到的,用于描绘现象随时间变化的状况,也叫动向数据。

解说分类数据,次序数据和数值型数据答案同举例说明整体,样本,参数,统计量,变量这几个看法对一千灯泡进行寿命测试,那么这千个灯泡就是整体,从中抽取一百个进行检测,这一百个灯泡的会合就是样本,这一千个灯泡的寿命的均匀值和标准差还有合格率等描绘特色的数值就是参数,这一百个灯泡的寿命的均匀值和标准差还有合格率等描绘特色的数值就是统计量,变量就是说明现象某种特色的看法,比方说灯泡的寿命。

变量的分类变量能够分为分类变量,次序变量,数值型变量。

变量也能够分为随机变量和非随机变量。

经验变量和理论变量。

举例说明失散型变量和连续性变量失散型变量,只好取有限个值,取值以整数位断开,比方“公司数”连续型变量,取之连续不停,不可以一一列举,比方“温度”。

最新统计学(第五版)贾俊平-课后思考题和练习题答案(最终完整版)

最新统计学(第五版)贾俊平-课后思考题和练习题答案(最终完整版)

统计学(第五版)贾俊平课后思考题和练习题答案(最终完整版)整理by__kiss-ahuang第一部分思考题第一章思考题1.1什么是统计学统计学是关于数据的一门学科,它收集,处理,分析,解释来自各个领域的数据并从中得出结论。

1.2解释描述统计和推断统计描述统计;它研究的是数据收集,处理,汇总,图表描述,概括与分析等统计方法。

推断统计;它是研究如何利用样本数据来推断总体特征的统计方法。

1.3统计学的类型和不同类型的特点统计数据;按所采用的计量尺度不同分;(定性数据)分类数据:只能归于某一类别的非数字型数据,它是对事物进行分类的结果,数据表现为类别,用文字来表述;(定性数据)顺序数据:只能归于某一有序类别的非数字型数据。

它也是有类别的,但这些类别是有序的。

(定量数据)数值型数据:按数字尺度测量的观察值,其结果表现为具体的数值。

统计数据;按统计数据都收集方法分;观测数据:是通过调查或观测而收集到的数据,这类数据是在没有对事物人为控制的条件下得到的。

实验数据:在实验中控制实验对象而收集到的数据。

统计数据;按被描述的现象与实践的关系分;截面数据:在相同或相似的时间点收集到的数据,也叫静态数据。

时间序列数据:按时间顺序收集到的,用于描述现象随时间变化的情况,也叫动态数据。

1.4解释分类数据,顺序数据和数值型数据答案同1.31.5举例说明总体,样本,参数,统计量,变量这几个概念对一千灯泡进行寿命测试,那么这千个灯泡就是总体,从中抽取一百个进行检测,这一百个灯泡的集合就是样本,这一千个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是参数,这一百个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是统计量,变量就是说明现象某种特征的概念,比如说灯泡的寿命。

1.6变量的分类变量可以分为分类变量,顺序变量,数值型变量。

变量也可以分为随机变量和非随机变量。

经验变量和理论变量。

1.7举例说明离散型变量和连续性变量离散型变量,只能取有限个值,取值以整数位断开,比如“企业数”连续型变量,取之连续不断,不能一一列举,比如“温度”。

统计学案例与思考题

统计学案例与思考题

《统计学》案例与思考【案例1-1】应届本科毕业生就业状况的调研就业竞争越来越激烈,大学毕业生的就业问题已经越来越受到全社会关注。

很多大学专门成立了毕业生就业指导机构,这些机构常常需要对大学生的求职与就业的状况进行调查和分析研究,以及时了解学生们的就业意愿、择业倾向、求职经历、主要困难和障碍等相关状况,调查目的是为高校有针对性地做好大学生就业指导工作、完善学校教育改革、及时采取促进就业的必要措施提供科学的参考信息。

为了搞好大学生求职与就业状况的统计调查和分析,必须首先明确统计总体、总体单位,设计有关的标志、变量、统计指标和统计指标体系,理解它们之间的关系和它们在统计研究中的作用。

思考与讨论问题:1.若要对某高校应届本科毕业生的就业状况进行调研,统计总体和总体单位分别是什么?2.研究者需要了解哪些信息?这些信息具体用哪些指标来反映?3.为了得到研究者所需信息就必须对每个总体单位调查哪些项目?其中哪些是数量标志、哪些是品质标志?4.上述指标与标志之间存在什么样的联系?5.这项调查研究所关注的变量有哪些?其中哪些是定量变量、哪些是定性变量?在定性变量中又有哪些是分类变量、哪些是顺序变量?【案例1-2】新世纪实现新跨越新征程谱写新篇章①党的十六大以来的十年,是我国经济社会发展进程中极不平凡的十年,是积极应对国际形势深刻调整,国内发展日新月异的十年,是战胜各种风险、困难和挑战,经济总量实现历史跨越的十年。

十年来,在以胡锦涛同志为总书记的党中央的正确领导下,全国各族人民坚持以邓小平理论和“三个代表”重要思想为指导,深入贯彻落实科学发展观,全面推进改革开放和现代化建设,切实转变经济发展方式,国民经济快速增长,人民生活明显改善,社会事业全面进步,国际地位显著提高,经济社会发展取得举世瞩目的辉煌成就。

一、国民经济连上新台阶,社会生产力和综合国力显著提升经济持续较快发展。

2003-2011年,国内生产总值年均实际增长10.7%,其中有六年实现了10%以上的增长速度,在受国际金融危机冲击最严重的2009年依然实现了9.2%的增速。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

编辑版word 第一章 导论 1、统计数据可分为哪几种类型?不同类型的数据各有什么特点? 按照所采用的计量尺度的不同,可以将统计数据分为分类数据、顺序数据和数值型数据。按照统计数据的收集方法,可以将其分为观测数据和实验数据。按照被描述的现象与时间的关系,可以将统计数据分为截面数据和时间序列数据。 分类数据是只能归于某一类别的非数字型数据,它是对事物进行分类的结果,数据表现为类别,是用文字来表述的。 顺序数据是只能归于某一有序类别的非数字型数据。顺序数据虽然也是类别,但这些类别是有序的,是用文字来表述的。 数值型数据是按数字尺度测量的观察值,其结果表现为具体的数值。现实中处理的大多数都是数值型数据。 2、解释分类数据、顺序数据和数值数据的意义。 对分类数据,我们通常计算出各组的频数或频率,计算其众数和异众比率,进行列联表分析和x2检验等;对顺序数据,可以计算其中位数和四分位差,计算等级相关系数等;对数值型数据,可以用更多的统计方法进行分析,如计算各种统计量,进行参数估计和检验等 3、举例说明总体、样本、参数、统计量、变量这几个概念。 总体:是包含所研究的全部个体的集合,它通常由所研究的一些个体组成。如多个企业构成的集合,多个居民户构成的集合,多个人构成的集合 样本:是从总体中抽出的一部分元素的集合。如从一批灯泡中随机抽取100个,这100个灯泡就构成了一个样本。 参数:是用来描述总体特征的概括性数字度量,它是研究者想要了解的总体的某种特征值。在统计中,总体参数通常用希腊字母表示,如,总体平均数用u(miu)表示,总体标准差用(sigma)表示,总体比例用(pai)表示,等。 统计量:是用来描述样本特征的概括性数字度量,它是根据样本数据计算出来的一个量,由于抽样是随机的,因此统计量是样本的函数。样本统计量通常用英文字母来表示。如,样本平均数用(x-bar)表示,样本标准车用s表示,样本比例用p表示,等。 变量:是说明现象某种特征的概念。如,商品销售额,受教育程度,产品的质量等级等。 4、变量可分为哪几类? 变量可以分为分类变量、顺序变量、数值型变量,数值型变量根据其取值的不同,又可分为离散型变量和连续型变量。分类变量是说明事物类别的一个名称,顺序变量是说明事物有序类别的一个名称,数值型变量是说明事物数字特征的一个名称。 5、举例说明离散型变量和连续性变量。 离散型变量是只能取可数值的变量,只能取有限个值,而且其取值都以整位数断开,可以一一列举,如,企业量,产品数量;连续型变量是可以在一个或多个区间中取任何值的变量。它的取值是连续不断的,不能一一列举,如,年龄,温度,零件尺寸的误差等。 第二章 数据的搜集 1、比较概率抽样和非概率抽样的特点。举例说明什么情况下适合采用概率抽样,什么情况下适合采用非概率抽样。 概率抽样也称随机抽样,是指遵守随机原则进行的抽样,总体中每个单位都有一定的机会被选入样本。它具有以下几个特点:首先,抽样时是按一定的概率以随机抽样原则抽取样本;其次,每个单位被抽中的概率是已知的,或是可以计算出来的;最后,当用样本对总体目标量进行估计时,要考虑到每个样本单位被抽中的概率。 非概率抽样是相对于概率抽样而言的,指抽取样本时不是依据随机原则,而是根据研究目的对数据的要求,采用某种方式从总体中抽出部分单位对其实施调查。 如果调查的目的在于掌握研究对象总体的数量特征,根据调查的结果对总体参数进行评估,得到总体参数的置信区间,就应当采用概率抽样的方法。非概率抽样适合探索性的研究,调查的结果用于发现问题,为更深入的数量分析做好准备。非抽样调查也适合市场调查中概念测试,如产品包装测试、广告测试等。 第三章 数据的图表表示 1、分类数据和顺序数据的整理和图示方法各有那些? 分类数据的整理方法有频数和频数分布,图示方法有条形图、帕累托图、饼图、环形图;顺序数据的整理方法有累积频数和累积频率,图示方法有累积频数分布和频率图。 2、数值型数据的分组方法有哪些?简述组距分组的步骤。 数据分组的方法有单变量值分组和组距分组。 组距分组的步骤:(1)确定组数,一般数据所分组数不应少于5组且不多于15组;(2)确定各组的组距,组距=(最大值-最小值)/组数,组距宜取5或10的倍数;(3)确定上下限,第一组的下限应低于最小变量值,最后一组的上限应高于最大变量值。 3、直方图与条形图有何区别? 直方图与条形图不同。首先,条形图是用条形的长度表示各类别频数的多少,其宽度则是固定的;直方图是用面积表示各组频数的多少,矩形的高度表示每一组的频数或频率,宽度则表示各组的组距,因此其高度与宽度均有意义。其次,由于分组数据具有连续性,直方图的各矩形通常是连续排列,而条形图则是分开排列。最后,条形图主要用于展示分类数据,而直方图则主要用于展示数值型数据。 第四章 数据的概括性变量 1、一组数据的分布特征可以从那几个方面进行测度? 一组数据的分布特征可以从三个方面进行测度和描述:一是分布的集中趋势,反映各数据向其中心值靠拢或聚集的程度;二是分布的离散程度,反映各数据远离其中心值的趋势;三是分布的形状,反映数据分布的偏态和峰态。 2、对于比率数据的平均为什么采用几何平均? 3、简述众数、中位数、和平均数的特点和应用场合。 众数是一组数据分布的峰值,不受极端值的影响。其缺点是具有不唯一性,一组数据可能有一个众数,也可能有两个或多个众数,也可能没有众数。众数只有在数据量较多时才有意义,当数据量较少时,不宜采用众数。众数主要适合作为分类数据的集中趋势测度值。 中位数是一组数据中间位置上的代表值,不受数据极端值的影响。当一组数据的分布偏斜程度较大时,使用中位数也许是一个好的选择。中位数主要适合作为顺序数据的集中趋势测度值。 平均数是针对数值型数据计算的,而且利用了全部数据信息,它是实际中应用最广泛的集中趋势测度值。当数据呈对称分布或接近对称分布时,3个代表值相等或接近相等时,这时则应选择平均数作为集中趋势的测度值。但平均数的主要缺点是易受数据极端值的影响,对于偏态分布的数据,平均数的代表性较差。因此,当数据为偏态分布,特别是偏斜程度较大时,可以考虑选择中位数或众数,这时它们的代表性要比平均数好。 4、为什么要计算离散系数? 方差和标准差是反映数据离散程度的绝对值,其数值的大小一方面受原变量值自身水平高低的影响,也就是与变量的平均数大小有关,变量值绝对水平高的,离散程度的测度值自然也就大,绝对水平低的离散程度的测度值自然也就小;另一方面,它们与原变量值的计量单位相同,采用不同计量单位计量的变量值,其离散程度的测度值也就不同。因此,对于平均水平不同或计量单位不同的不同组别的变量值,是不能用标准差直接比较其离散程度的,为消除变量值水平高低和计量单位不同对离散程度测度值的影响,需要计算离散系数。 离散系数也成为变异系数,它是一组数据的标准差与其相应的平均数之比,其计算公式为:vs=s/(x-bar),离散系数是测度数据离散程度的相对统计量,主要是用于比较不同样本数据的离散程度。离散系数大,说明数据的离散程度也大;离散系数小,说明数据的离散程度也小。 第五章 参数估计

1、怎样理解置信区间? 在区间估计中,由样本统计量所构造的总体参数的估计区间称为置信区间,其中区间的最小值称为置信下限,最大值称为置信上限,由于统计学家在某种程度上确信这个区间会包含真正的总体参数,所以给它取名为置信区间。 2、解释95%的置信区间 如果抽取了许多不同的样本,比如说抽取了100个样本,根据每一个样本构造一个置信区间,这样,由100个样本构造的总体参数的100个置信区间中,有95%的区间包含了总体参数的真值,而5%则没包含,则95%这个值称为置信水平。一般地,如果将构造置信区间的步骤重复多次,置信区间中包含总体参数真值的次数所占的比例成为置信水平,也称为置信度或置信系数。 第六章 假设检验

1、什么是假设检验中的显著性水平?统计显著是什么意思? 通常把(a-er-fa)称为显著性水平,显著性水平是一个统计专有名词,在假设检验中,它的含义是当原假设正确时却被拒绝的概率或风险,其实这就是前面所说假设检验中犯弃真错误的概率,它是由人们根据检验的要求确定的,通常取0.05或0.01.

2、什么是假设检验中的两类错误? 对于原假设提出的命题,我们需要做出判断,这种判断可以用“原假设正确”或“原假设错误”来表述。当然,这是依据样本提供的信息进行判断的,也就是由部分来推断,总体。因而判断有可能正确,也有可能错误,也就是说,我们面临着犯错误的可能。所犯的错误有两种类型,第一类错误是原假设H0为真却被我们拒绝了,犯这种错误的概率用(a-er-fa)表示所以成为其真错误;第二类错误是原假设为伪我们却没有拒绝,犯这类错误的概率用(bei-ta)表示,所以成为取伪错误。 3、解释假设检验中的P值。 P值就是当原假设为真时所得到的样本观察结果或更极端结果出现的概率。如果P值很小,说明这种情况发生的概率很小,而如果出现了,根据小概率原理,我们就有理由拒绝原假设,P值越小,我们拒绝原假设的理由就越充分。 第七章 方差分析

1、什么是方差分析?它研究的是什么? 方差分析就是通过检验各总体的均值是否相等来判断分类型自变量对数值型隐变量是否有显著影响。 方差分析是检验多个总体均值是否相等的统计方法,但本质上它所研究的是分类型自变量对数值型因变量的影响。 2、简述方差分析的基本思想。 为了研究分类型自变量对对数值型因变量的影响,需要从对数据误差来源的分析入手,误差主要分为组内误差和组间误差,组内误差只包含随机误差,而组间误差除了包含随机误差,还会包含系统误差。 3、解释组内误差和组间误差的含义。 组内误差(SSE):反映组内误差大小的平方和,也称为残差平方和,是由于抽样的随机性所造成的随机误差。它反映了每个样本内各观测值之间的离散状况。 组间误差(SSA):反映组间误差大小的平方和,也称为因素平方和,是随机误差和系统误差的总和。它反映了样本均值之间的差异程度。 4、解释则内方差和组间方差的含义。 组间误差和组内误差经过平均后的数值称为均方或方差。 组间方差(MSA)=组间平方和/自由度(SSA/k-1) 组内误差(MSE)=组内平方和/自由度(SSE/n-k) 5、简述方差分析的基本步骤。 1、提出假设;2、构造检验的统计量;(1)计算各样本的均值(2)计算全部观测值的总均值(3)计算各误差平方和(4)计算统计量3、统计决策;4、方差分析表;5、用Excel进行方差分析。 第八章 一元线性回归

1、解释相关关系的含义,说明相关系的特点。 相关关系1)变量间关系不能用函数关系精确表达;2)一个变量的取值不能由另一个变量唯一确定;3)当变量 x 取某个值时,变量 y 的取值可能有几个。 2、相关分析主要解决那些问题? 相关分析就是对两个变量之间线性关系的描述和度量,它要解决的问题包括:(1)变量之间是否存在关系;(2)如果存在关系,它们之间是什么样的关系;(3)变量之间的关系强度如何;(4)样本之间的变量关系是否能代表总体变量之间的关系? 3、解释回归模型、回归方程、估计的回归方程的含义。 回归模型:描述因变量y如何依赖于自变量x和误差项ε的方程。 回归方程:描述因变量y的期望值如何依赖于自变量x的方程。 估计的回归方程:根据样本数据求出的回归方程的估计。 4、解释总平方和、回归平方和、残差平方和的含义,并说明它们之间的联系。 总平方和(SST):是全部观测值Xij与总均值x-两bar的误差平方和。 残差平方和(SSE):反映组内误差大小的平方和。 回归平方和(SSR):反映了y的总变差中由于x与y之间的线性关系引起的y的变化部分。 SST=SSR+SSE 5、解释判定系数(R2)的含义和作用。 含义:判定系数是对估计的回归方程拟合优度的度量。判定系数等于相关系数的平方,即r2=(r)2 作用:反映回归直线的拟合程度;R2越接近1,说明回归方程拟合的越好;R2越接近0,说明回归方程拟合的越差。 6、在回归分析中,F检验和t检验各有什么作用? F检验是检验自变量和因变量之间的线性关系是否显著,或者说,它们之间能否用一个线性模型y= 来表示。 t检验的显著性检验是要检验自变量对因变量的影响是否显著。在一元线性回归模型y= 中,如果白塔1=0,则回归线是一条水平线,表面因变量y的取值不依赖与自变量x,即两个变量之间没有线性关系。 7、简述线性关系检验和回归系数检验的具体步骤。 线性关系检验:1、提出假设,H0:回归系数等于0,两个变量之间的线性关系不显著;2、计算检验统计量F=(SSR/1)/(SSE/(n-2));3、做出决策,根据显著性水平,分子自由度和分母自由度查F分布表,找到相应的临界值,比较与F的大小,判断是否拒绝原假设

相关文档
最新文档