人教版高中数学必修一《集合的基本运算》同步练习(含答案)

合集下载

新编高一数学必修一课后练习:1.1.3 集合的基本运算 含答案

新编高一数学必修一课后练习:1.1.3 集合的基本运算 含答案

新编人教版精品教学资料1.1.3 集合的基本运算班级:__________姓名:__________设计人__________日期__________课后作业【基础过关】1.若,,,,则满足上述条件的集合的个数为A.5B.6C.7D.82.已知全集U={1,2,3,4,5,6,7,8},A={3,4,5}, B={1,3,6},那么集合{2,7,8}是A.A∪B B.A∩B C.(∁U A)∩(∁U B) D.(∁U A)∪(∁U B) 3.若集合P={x∈N|-1<x<3},Q={x|x=2a,a∈P},则P∩Q=A.⌀B.{x|-2<x<6}C.{x|-1<x<3}D.{0,2}4.设全集U=R,集合M={x|x>1或x<-1},N={x|0<x<2},则N∩(∁U M)=A.{x|-2≤x<1}B.{x|0<x≤1}C.{x|-1≤x≤1}D.{x|x<1} 5.某班共30人,其中15人喜爱篮球运动,10人喜爱乒乓球运动,8人对这两项运动都不喜爱,则喜爱篮球运动但不喜爱乒乓球运动的人数为.6.集合A={(x,y)|x+y=0},B={(x,y)|x-y=2},则A∩B=.7.设集合A={x|0<x-m<3},B={x|x≤0,或x≥3},分别求满足下列条件的实数m.(1)A∩B=⌀;(2)A∪B=B.8.已知集合A={x|2≤x<7},B={x|3<x<10},C={x|x<a}.(1)求A∪B,(∁R A)∩B;(2)若A∩C≠⌀,求a的取值范围.【能力提升】已知集合A={x|x2-3x+2=0},B={x|x2-ax+a-1=0},C={x|x2-x+2m=0}.(1)若A∪B=A,求a的值;(2)若A∩C=C,求m的取值范围.1.1.3 集合的基本运算课后作业·详细答案【基础过关】1.D2.C【解析】借助Venn图易得{2,7,8}=∁U(A∪B),即为(∁U A)∩(∁U B).3.D【解析】由已知得P={0,1,2},Q={0,2,4},所以P∩Q={0,2}. 4.B【解析】∁U M={x|-1≤x≤1},结合数轴可得N∩(∁U M)={x|0<x≤1}. 5.12【解析】设两项运动都喜爱的人数为x,依据题意画出Venn图,得到方程15-x+x+10-x+8=30,解得x=3,∴喜爱篮球运动但不喜爱乒乓球运动的人数为15-3=12.6.{(1,-1)}【解析】A∩B={(x,y)|}={(1,-1)}.7.因为A={x|0<x-m<3},所以A={x|m<x<m+3}.(1)当A∩B=⌀时,需,故m=0.即满足A∩B=⌀时,m的值为0.(2)当A∪B=B时,A⊆B,需m≥3,或m+3≤0,得m≥3,或m≤-3.即满足A∪B=B时,m的取值范围为{m|m≥3,或m≤-3}.8.(1)因为A={x|2≤x<7},B={x|3<x<10},所以A∪B={x|2≤x<10}.因为A={x|2≤x<7},所以∁R A={x|x<2,或x≥7},则(∁R A)∩B={x|7≤x<10}.(2)因为A={x|2≤x<7},C={x|x<a},且A∩C≠⌀,所以a>2.【能力提升】A={1,2}.(1)因为A∪B=A,所以B⊆A,故集合B中至多有两个元素1,2.而方程x2-ax+a-1=0的两根分别为1,a-1,注意到集合中元素的互异性,有①当a-1=2,即a=3时,B={1,2},满足题意;②当a-1=1,即a=2时,B={1},满足题意.综上可知,a=2或a=3.(2)因为A∩C=C,所以C⊆A.①当C=⌀时,方程x2-x+2m=0无实数解,因此其根的判别式Δ=1-8m<0,即m>.②当C={1}(或C={2})时,方程x2-x+2m=0有两个相同的实数解x=1(或x=2),因此其根的判别式Δ=1-8m=0,解得m=,代入方程x2-x+2m=0,解得x=,显然m=不符合要求.③当C={1,2}时,方程x2-x+2m=0有两个不相等的实数解x1=1,x2=2,因此x1+x2=1+2≠1,x1x2=2=2m,显然不符合要求.综上,m>.。

【人教A版高一数学试题】必修一1.1.3《集合的基本运算》 及答案解析

【人教A版高一数学试题】必修一1.1.3《集合的基本运算》     及答案解析

集合的基本运算1.设集合A ={x|2≤x <4},B ={x|3x -7≥8-2x},则A ∪B 等于( )A .{x|x ≥3}B .{x|x ≥2}C .{x|2≤x <3}D .{x|x ≥4}2.已知集合A ={1,3,5,7,9},B ={0,3,6,9,12},则A ∩B =( )A .{3,5}B .{3,6}C .{3,7}D .{3,9}3.50名学生参加甲、乙两项体育活动,每人至少参加了一项,参加甲项的学生有30名,参加乙项的学生有25名,则仅参加了一项活动的学生人数为________.4.已知集合A ={-4,2a -1,a 2},B ={a -5,1-a,9},若A ∩B ={9},求a 的值.一、选择题(每小题5分,共20分)1.集合A ={0,2,a},B ={1,a 2}.若A ∪B ={0,1,2,4,16},则a 的值为( ) A .0 B .1 C .2 D .4 2.设S ={x|2x +1>0},T ={x|3x -5<0},则S ∩T =( ) A .Ø B .{x|x<-12} C .{x|x>53} D .{x|-12<x<53}3.已知集合A={x|x>0},B={x|-1≤x≤2},则A∪B=()A.{x|x≥-1} B.{x|x≤2}C.{x|0<x≤2} D.{x|-1≤x≤2}4.满足M⊆{a1,a2,a3,a4},且M∩{a1,a2,a3}={a1,a2}的集合M的个数是()A.1 B.2 C.3 D.4二、填空题(每小题5分,共10分)5.已知集合A={x|x≤1},B={x|x≥a},且A∪B=R,则实数a的取值范围是________.6.满足{1,3}∪A={1,3,5}的所有集合A的个数是________.三、解答题(每小题10分,共20分)7.已知集合A={1,3,5},B={1,2,x2-1},若A∪B={1,2,3,5},求x及A∩B.8.已知A={x|2a≤x≤a+3},B={x|x<-1或x>5},若A∩B=Ø,求a 的取值范围.9.(10分)某班有36名同学参加数学、物理、化学课外探究小组,每名同学至多参加两个小组.已知参加数学、物理、化学小组的人数分别为26,15,13,同时参加数学和物理小组的有6人,同时参加物理和化学小组的有4人,则同时参加数学和化学小组的有多少人?集合的基本运算(答案解析)1.设集合A={x|2≤x<4},B={x|3x-7≥8-2x},则A∪B等于() A.{x|x≥3}B.{x|x≥2}C.{x|2≤x<3} D.{x|x≥4}【解析】B={x|x≥3}.画数轴(如下图所示)可知选B.【答案】 B2.已知集合A={1,3,5,7,9},B={0,3,6,9,12},则A∩B=()A.{3,5} B.{3,6}C.{3,7} D.{3,9}【解析】A={1,3,5,7,9},B={0,3,6,9,12},A和B中有相同的元素3,9,∴A∩B={3,9}.故选D.【答案】 D3.50名学生参加甲、乙两项体育活动,每人至少参加了一项,参加甲项的学生有30名,参加乙项的学生有25名,则仅参加了一项活动的学生人数为________.【解析】设两项都参加的有x人,则只参加甲项的有(30-x)人,只参加乙项的有(25-x)人.(30-x)+x+(25-x)=50,∴x=5.∴只参加甲项的有25人,只参加乙项的有20人,∴仅参加一项的有45人.【答案】454.已知集合A ={-4,2a -1,a 2},B ={a -5,1-a,9},若A ∩B ={9},求a 的值.【解析】 ∵A ∩B ={9},∴9∈A ,∴2a -1=9或a 2=9,∴a =5或a =±3. 当a =5时,A ={-4,9,25},B ={0,-4,9}. 此时A ∩B ={-4,9}≠{9}.故a =5舍去.当a =3时,B ={-2,-2,9},不符合要求,舍去. 经检验可知a =-3符合题意.一、选择题(每小题5分,共20分)1.集合A ={0,2,a},B ={1,a 2}.若A ∪B ={0,1,2,4,16},则a 的值为( ) A .0 B .1 C .2 D .4【解析】 ∵A ∪B ={0,1,2,a ,a 2},又A ∪B ={0,1,2,4,16}, ∴{a ,a 2}={4,16},∴a =4,故选D. 【答案】 D2.设S ={x|2x +1>0},T ={x|3x -5<0},则S ∩T =( ) A .Ø B .{x|x<-12} C .{x|x>53} D .{x|-12<x<53}【解析】 S ={x|2x +1>0}={x|x>-12},T ={x|3x -5<0}={x|x<53},则S ∩T ={x|-12<x<53}.故选D.【答案】 D3.已知集合A ={x|x>0},B ={x|-1≤x ≤2},则A ∪B =( ) A .{x|x ≥-1} B .{x|x ≤2}C.{x|0<x≤2} D.{x|-1≤x≤2}【解析】集合A、B用数轴表示如图,A∪B={x|x≥-1}.故选A.【答案】 A4.满足M⊆{a1,a2,a3,a4},且M∩{a1,a2,a3}={a1,a2}的集合M的个数是()A.1 B.2 C.3 D.4【解析】集合M必须含有元素a1,a2,并且不能含有元素a3,故M={a1,a2}或M={a1,a2,a4}.故选B.【答案】 B二、填空题(每小题5分,共10分)5.已知集合A={x|x≤1},B={x|x≥a},且A∪B=R,则实数a的取值范围是________.【解析】A=(-∞,1],B=[a,+∞),要使A∪B=R,只需a≤1.【答案】a≤16.满足{1,3}∪A={1,3,5}的所有集合A的个数是________.【解析】由于{1,3}∪A={1,3,5},则A⊆{1,3,5},且A中至少有一个元素为5,从而A中其余元素可以是集合{1,3}的子集的元素,而{1,3}有4个子集,因此满足条件的A的个数是4.它们分别是{5},{1,5},{3,5},{1,3,5}.【答案】 4三、解答题(每小题10分,共20分)7.已知集合A={1,3,5},B={1,2,x2-1},若A∪B={1,2,3,5},求x及A∩B.【解析】由A∪B={1,2,3,5},B={1,2,x2-1}得x2-1=3或x2-1=5.若x2-1=3则x=±2;若x2-1=5,则x=±6;综上,x=±2或±6.当x=±2时,B={1,2,3},此时A∩B={1,3};当x=±6时,B={1,2,5},此时A∩B={1,5}.8.已知A={x|2a≤x≤a+3},B={x|x<-1或x>5},若A∩B=Ø,求a 的取值范围.【解析】由A∩B=Ø,(1)若A=Ø,有2a>a+3,∴a>3.(2)若A≠Ø,如图:∴,解得-≤a≤2.综上所述,a的取值范围是{a|-≤a≤2或a>3}.9.(10分)某班有36名同学参加数学、物理、化学课外探究小组,每名同学至多参加两个小组.已知参加数学、物理、化学小组的人数分别为26,15,13,同时参加数学和物理小组的有6人,同时参加物理和化学小组的有4人,则同时参加数学和化学小组的有多少人?【解析】设单独参加数学的同学为x人,参加数学化学的为y人,单独参加化学的为z人.依题意⎩⎪⎨⎪⎧x +y +6=26,y +4+z =13,x +y +z =21,解得⎩⎪⎨⎪⎧x =12,y =8,z =1.∴同时参加数学化学的同学有8人,答:同时参加数学和化学小组的有8人.。

高中数学必修一全册同步练习含参考答案

高中数学必修一全册同步练习含参考答案

高中数学必修一同步练习1.1.1 集合的含义与表示课后作业· 练习案【基础过关】1.若集合中只含一个元素1,则下列格式正确的是A.1=B.0C.1D.12.集合的另一种表示形式是A.{0,1,2,3,4}B.{1,2,3,4}C.{0,1,2,3,4,5}D.{1,2,3,4,5} 3.下列说法正确的有①集合,用列举法表示为{1,0,l};②实数集可以表示为或;③方程组的解集为.A.3个B.2个C.1个D.0个4.直角坐标系中,坐标轴上点的集合可表示为A.B.C.D.5.若集合含有两个元素1,2,集合含有两个元素1,,且,相等,则____. 6.已知集合,,且,则为 . 7.设方程的根组成的集合为,若只含有一个元素,求的值. 8.用适当的方法表示下列集合:(1)所有被3整除的整数;(2)满足方程的所有x的值构成的集合B.【能力提升】集合,,,设,则与集合有什么关系?详细答案【基础过关】1.D【解析】元素与集合之间只存在“∈”与“∉”的关系,故1∈A正确.2.B【解析】由x-2<3得x<5,又,所以x=1,2,3,4,即集合的另一种表示形式是{1,2,3,4}.3.D【解析】对于①,由于x∈N,而-1∉N,故①错误;对于②,由于“{ }”本身就具有“全部”、“所有”的意思,而且实数集不能表示为{R},故②错误;对于③,方程组的解集是点集而非数集,故③错误.4.C【解析】坐标轴上的点分为x轴、y轴上的点,在x轴上的点纵坐标为0,在y轴上的点横坐标为0.5.【解析】由于P,Q相等,故,从而.6.(2,5)【解析】∵a∈A且a∈B,∴a是方程组的解,解方程组,得∴a为(2,5).7.A中只含有一个元素,即方程(a∈R)有且只有一个实根或两个相等的实根.(1)当a=0时,方程的根为;(2)当a≠0时,有△=4-4a=0,即a=1,此时方程的根为.∴a的值为0或1.【备注】误区警示:初学者易自然认为(a∈R)是一元二次方程,而漏掉对a 的讨论,导致漏解.举一反三:若把“若A只含有一个元素”改为“若A含有两个元素”,则结论又如何?由题意知,a≠0,且△=4-4a>0,解得a<1.所以a<1且a≠0.8.(1){x|x=3n,n∈Z};(2)B={x|x=|x|,x∈R}.【能力提升】∵a∈P,b∈M,c=a+b,设,,,,∴,又∴c∈M.1.1.2集合间的基本关系班级:__________姓名:__________设计人__________日期__________课后练习【基础过关】1.设,,若,则的取值范围是A. B. C. D.2.设集合,,则A.M =NB.M⊆NC.M ND.N3.已知集合,,若,求实数的值.4.满足条件{1,2,3}M{1,2,3,4,5,6}的集合的个数是A.8B.7C.6D.55.设集合和,那么与的关系为 .6.含有三个实数的集合,既可表示成,又可表示成,则.7.设集合,,求A∩B.8.已知M={x | x2-2x-3=0},N={x | x2+ax+1=0,a∈R},且N M,求a的取值范围.【能力提升】已知,,是否存在实数,使得对于任意实数,都有?若存在,求出对应的的值;若不存在,说明理由.答案【基础过关】1.D【解析】∵,∴a≥22.D【解析】本题考查集合间的基本关系.,;而;即N.选D.3.由A=B,可得,解得x=1.4.C【解析】本题考查子集.由题意得M={1,2,3,4},{1,2,3,5},{1,2,3,6},{1,2,3,4,5},{1,2,3,4,6},{1,2,3,6,5}共6个.选C. 5.M=P【解析】∵xy>0,∴x,y同号,又x+y<0,∴x<0,y<0,即集合M表示第三象限内的点.而集合P表示第三象限内的点,故M=P.6.-1【解析】本题考查相等集合.由题意得,所以,即;此时,所以,,且,解得.所以.7.,解得;所以.【解析】本题考查集合的基本运算.8.解:M={x | x 2-2x -3=0}={3,-1};∵N M,当N=∅时,N M 成立,N={x | x 2+ax+1=0},∴a 2-4<0, ∴-2<a <2;当N≠∅时,∵N M, ∴3∈N 或 -1∈N;当3∈N 时,32-3a+1=0即a= -310,N={3,31},不满足N M;当-1∈N 时,(-1)2-a+1=0即a=2,N={-1},满足N M;∴a 的取值范围是-2<a ≤2.【解析】本题考查集合间的基本关系. 【能力提升】不存在.要使对任意的实数b 都有,则1,2是A 中的元素,又∵A ={a -4,a +4},∴或这两个方程组均无解,故这样的实数a 不存在.1.1.3 集合的基本运算班级:__________姓名:__________设计人__________日期__________课后作业【基础过关】1.若,,,,则满足上述条件的集合的个数为A.5B.6C.7D.82.已知全集U={1,2,3,4,5,6,7,8},A={3,4,5}, B={1,3,6},那么集合{2,7,8}是A.A∪BB.A∩BC.(∁U A)∩(∁U B)D.(∁U A)∪(∁U B)3.若集合P={x∈N|-1<x<3},Q={x|x=2a,a∈P},则P∩Q=A.⌀B.{x|-2<x<6}C.{x|-1<x<3}D.{0,2}4.设全集U=R,集合M={x|x>1或x<-1},N={x|0<x<2},则N∩(∁U M)=A.{x|-2≤x<1}B.{x|0<x≤1}C.{x|-1≤x≤1}D.{x|x<1}5.某班共30人,其中15人喜爱篮球运动,10人喜爱乒乓球运动,8人对这两项运动都不喜爱,则喜爱篮球运动但不喜爱乒乓球运动的人数为.6.集合A={(x,y)|x+y=0},B={(x,y)|x-y=2},则A∩B= .7.设集合A={x|0<x-m<3},B={x|x≤0,或x≥3},分别求满足下列条件的实数m.(1)A∩B=⌀;(2)A∪B=B.8.已知集合A={x|2≤x<7},B={x|3<x<10},C={x|x<a}.(1)求A∪B,(∁R A)∩B;(2)若A∩C≠⌀,求a的取值范围.【能力提升】已知集合A={x|x2-3x+2=0},B={x|x2-ax+a-1=0},C={x|x2-x+2m=0}.(1)若A∪B=A,求a的值;(2)若A∩C=C,求m的取值范围.详细答案【基础过关】1.D2.C【解析】借助Venn图易得{2,7,8}=∁U(A∪B),即为(∁U A)∩(∁U B).3.D【解析】由已知得P={0,1,2},Q={0,2,4},所以P∩Q={0,2}.4.B【解析】∁U M={x|-1≤x≤1},结合数轴可得N∩(∁U M)={x|0<x≤1}.5.12【解析】设两项运动都喜爱的人数为x,依据题意画出Venn图,得到方程15-x+x+10-x+8=30,解得x=3,∴喜爱篮球运动但不喜爱乒乓球运动的人数为15-3=12.6.{(1,-1)}【解析】A∩B={(x,y)|}={(1,-1)}.7.因为A={x|0<x-m<3},所以A={x|m<x<m+3}.(1)当A∩B=⌀时,需,故m=0.即满足A∩B=⌀时,m的值为0.(2)当A∪B=B时,A⊆B,需m≥3,或m+3≤0,得m≥3,或m≤-3.即满足A∪B=B时,m的取值范围为{m|m≥3,或m≤-3}.8.(1)因为A={x|2≤x<7},B={x|3<x<10},所以A∪B={x|2≤x<10}.因为A={x|2≤x<7},所以∁R A={x|x<2,或x≥7},则(∁R A)∩B={x|7≤x<10}.(2)因为A={x|2≤x<7},C={x|x<a},且A∩C≠⌀,所以a>2.【能力提升】A={1,2}.(1)因为A∪B=A,所以B⊆A,故集合B中至多有两个元素1,2.而方程x2-ax+a-1=0的两根分别为1,a-1,注意到集合中元素的互异性,有①当a-1=2,即a=3时,B={1,2},满足题意;②当a-1=1,即a=2时,B={1},满足题意.综上可知,a=2或a=3.(2)因为A∩C=C,所以C⊆A.①当C=⌀时,方程x2-x+2m=0无实数解,因此其根的判别式Δ=1-8m<0,即m>.②当C={1}(或C={2})时,方程x2-x+2m=0有两个相同的实数解x=1(或x=2),因此其根的判别式Δ=1-8m=0,解得m=,代入方程x2-x+2m=0,解得x=,显然m=不符合要求.③当C={1,2}时,方程x2-x+2m=0有两个不相等的实数解x1=1,x2=2,因此x1+x2=1+2≠1,x1x2=2=2m,显然不符合要求.综上,m>.1.2.1 函数的概念班级:__________姓名:__________设计人__________日期__________课后练习【基础过关】1.下列函数中,值域为(0,+∞)的是( )A.y=B.y=C.y=D.y=x2+12.下列式子中不能表示函数的是A. B. C. D.3.函数y=+的定义域是( )A.(-1,1)B.(-∞,-1)∪(1,+∞)C.(0,1)D.{-1,1}4.若满足,且,,则等于A. B. C. D.5.若为一确定区间,则的取值范围是 .6.函数的图象是曲线,其中点,,的坐标分别为(0,0),(1,2),(3,1),则的值等于 .7.求下列函数的定义域.(1);(2).8.已知.(1)求,的值;(2)求的值. 【能力提升】已知函数f(x)对任意实数a,b,都有f(ab)=f(a)+f(b)成立.(1)求f(0),f(1)的值;(2)若f(2)=p,f(3)=q(p,q为常数),求f(36)的值.答案【基础过关】1.B【解析】y=的值域为[0,+∞),y=的值域为(-∞,0)∪(0,+∞),y=x2+1的值域为[1,+∞).故选B.2.A【解析】一个x对应的y值不唯一.3.D【解析】要使函数式有意义,需满足,解得x=±1,故选D.4.B【解析】f(72)=f(8×9)=f(8)+f(9)=3f(2)+2f(3)=3p+2q.5.【解析】由题意3a-1>a,则.【备注】误区警示:本题易忽略区间概念而得出,则的错误.6.2【解析】由图可知f(3)=1,∴f[f(3)]=f(1)=2.【备注】误区警示:本题在求解过程中会因不理解f[f(3)]的含义而出错.7.(1)由已知得∴函数的定义域为.(2)由已知得:∵|x+2|-1≠0,∴|x+2|≠1,得x≠-3,x≠-1.∴函数的定义域为(-∞,-3)∪(-3,-1)∪(―1,+∞).8.(1),.(2)∵,∴==1+1+1++1(共2012个1相加)=2012.【能力提升】(1)令a=b=0,得f(0)=f(0)+f(0),解得f(0)=0;令a=1,b=0,得f(0)=f(1)+f(0),解得f(1)=0.(2)方法一令a=b=2,得f(4)=f(2)+f(2)=2p,令a=b=3,得f(9)=f(3)+f(3)=2q,令a=4,b=9,得f(36)=f(4)+f(9)=2p+2q.方法二因为36=22×32,所以f(36)=f(22×32)=f(22)+f(32)=f(2×2)+f(3×3)=f(2)+f(2)+f(3)+f(3)=2f(2)+2f(3)=2p+2q .【解析】题设只有一个函数方程,因此考虑特殊值0,1,通过解方程获解.1.2.2函数的表示法班级:__________姓名:__________设计人__________日期__________课后练习【基础过关】1.已知是反比例函数,当时,,则的函数关系式为A. B. C. D.2.已知函数若,则的取值范围是A. B.C. D.3.已知函数f(x)=,则函数f(x)的图象是( )A. B. C. D.4.已知则A.2B.-2C.D.5.已知函数,且,则 .6.已知函数f(x)对于任意实数x满足条件f(x+2)=,若f(1)=-5,则f[f(5)]= .7.已知,为常数,且,,,方程有两个相等的实数根.求函数的解析式.8.如图,是边长为2的正三角形,记位于直线左侧的图形的面积为,试求函数的解析式.【能力提升】下图是一个电子元件在处理数据时的流程图:(1)试确定y与x的函数关系式;(2)求f(-3), f(1)的值;(3)若f(x)=16,求x的值.答案【基础过关】1.C【解析】根据题意可设(k≠0),∵当x=2时,y=1,∴,∴k=2.2.D【解析】若x∈[-1,1],则有f(x)=2∉[-1,1],∴f(2)=2;若x∉[-1,1],则f(x)=x∉[-1,1],∴f[f(x)]=x,此时若f[f(x)]=2,则有x=2.【备注】误区警示:本题易将x∉[-1,1]的情况漏掉而错选B.3.A【解析】当x=-1时,y=0,即图象过点(-1,0),D错;当x=0时,y=1,即图象过点(0,1),C错;当x=1时,y=2,即图象过点(1,2),B错.故选A.4.C【解析】∵,∴.【备注】无5.【解析】,∴,∴,解得.6.-【解析】由已知条件f(x+2)=可得f(x+4)==f(x),所以f(5)=f(1)=-5,所以f[f(5)]=f(-5)=f(-1)===-.7.∵,且方程f(x)=x有两个相等的实数根,∴,∴b=1,又∵f(2)=0,∴4a+2=0,∴,∴.8.OB所在的直线方程为.当t∈(0,1]时,由x=t,求得,所以;当t∈(1,2]时,;当t∈(2,+∞)时,,所以【能力提升】(1)由题意知y=.(2)f(-3)=(-3)2+2=11, f(1)=(1+2)2=9.(3)若x≥1,则(x+2)2=16,解得x=2或x=-6(舍去);若x<1,则x2+2=16,解得x=(舍去)或x=-.综上可得,x=2或x=-.1.3.1单调性与最大(小)值班级:__________姓名:__________设计人__________日期__________课后练习【基础过关】1.若函数在区间上是增函数,在区间上也是增函数,则函数在区间上A.必是增函数B.必是减函数C.先增后减D.无法确定单调性2.下列函数在(0,1)上是增函数的是A. B. C. D.3.函数,在上是A.减函数B.增函数C.先减后增D.无单调性4.下面说法错误的是A.函数的单调区间一定是函数的定义域B.函数的多个单调增区间的并集不一定是其单调增区间C.具有奇偶性的函数的定义域关于原点对称D.关于原点对称的图象一定是奇函数的图象5.已知函数在区间上为减函数,则的取值范围是_____________.6.设奇函数f(x)的定义域为[-5,5],且当x∈[0,5]时,f(x)的图象如图所示,则不等式f(x)<0的解集是.7..已知函数,若.(l)求的值.(2)利用单调性定义证明函数在区间的单调性.8.首届世界低碳经济大会在南昌召开,大会以“节能减排,绿色生态”为主题.某单位在国家科研部门的支持下,进行技术攻关,采用了新工艺,把二氧化碳转化为一种可利用的化工产品.已知该单位每月的处理量最少为400吨,最多为600吨,月处理成本(元)与月处理量(吨)之间的函数关系可近似地表示为,且每处理一吨二氧化碳得到可利用的化工产品价值为100元.(1)该单位每月处理量为多少吨时,才能使每吨的平均处理成本最低?(2)该单位每月能否获利?如果获利,求出最大利润;如果不获利,则国家至少需要补贴多少元才能使该单位不亏损?【能力提升】函数f(x)的图象如图所示.(1)说出f(x)的单调区间,以及在每一个单调区间上它是增函数还是减函数;(2)依据图象说明函数的最值情况.答案【基础过关】1.D【解析】因为(a,b),(c,d)不是两个连续的区间,所以无法确定其单调性.2.B【解析】选项A中y=1-2x为减函数,C中y=5为常数函数,D中的定义域为[1,+∞).3.B【解析】解答本题可先画出函数图象,由图象分析.函数f(x)的图象如图所示,由图结合单调性的定义可知,此函数在R上是增函数.4.A【解析】单调区间是定义域的子集,不一定是定义域,当多个单调区间并起来时,由单调性定义知,不再是单调区间.具有奇偶性的函数的定义域关于原点对称,是函数奇偶性判定的要求.奇函数的图象关于原点对称,反之,关于原点对称的图象一定是奇函数的图象.5.(-∞,1]6.(-2,0)∪(2,5]【解析】由图可知在区间(2,5]上f(x)<0,因为奇函数的图象关于原点对称,所以在(-2,0)上也有f(x)<0.7.(1)由2f(2)=f(3)+5,得,解得a=2.(2)由(1)知.任取x1,x2∈(1,+∞)且x1<x2,,因为1<x1<x2,所以x1-1>0,x2-1>0,x2-x1>0.所以f(x1)-f(x2)>0,即f(x1)>f(x2).所以f(x)在(1,+∞)上是减函数.8.(1)由题意可知,二氧化碳的每吨平均处理成本为令,可以证明t(x)在(0,400)为减函数,在[400,+∞)上是增函数,故每月处理量为400吨时,才能使每吨的平均处理成本最低,最低成本为200元.(2)设该单位每月获利为S,则.因为400≤x≤600,所以当x=400时,S有最大值-40 000.故该单位不获利,需要国家每月至少补贴40 000元,才能不亏损.【能力提升】(1)由题图可知:函数f(x)的单调增区间为[0,];单调减区间为(-∞,0)和(,+∞).(2)观察图象可知,函数没有最大值和最小值.1.3.2奇偶性班级:__________姓名:__________设计人__________日期__________课后练习【基础过关】1.设在[-2,-1]上为减函数,最小值为3,且为偶函数,则在[1,2]上A.为减函数,最大值为3B.为减函数,最小值为-3C.为增函数,最大值为-3D.为增函数,最小值为32.已知函数是偶函数,其图象与轴有四个交点,则方程的所有实根之和是A.4B.2C.1D.03.函数是奇函数,图象上有一点为,则图象必过点A. B.C. D.4.设,其中为常数,若,则的值为A.-7B.7C.17D.-175.已知定义在上的奇函数,当时,,那么时,.6.若函数为区间[-1,1]上的奇函数,则;.7.作出函数的图象,并根据函数的图象找出函数的单调区间.8.已知函数是定义在R上的偶函数,且当时,该函数的值域为,求函数的解析式.【能力提升】已知函数f(x)=-x2+x,是否存在实数m,n(m<n),使得当x∈[m,n]时,函数的值域恰为[2m,2n]?若存在,求出m,n的值;若不存在,说明理由.答案【基础过关】1.D2.D3.C【解析】奇函数f(x)满足f(-x)=-f(x),故有f(-a)=-f(a).因为函数f(x)是奇函数,故点(a,f(a))关于原点的对称点(-a,-f(a))也在y=f(x)上,故选C.4.D【解析】∵,∴27a+3b=-12,∴f(3)=27a+3b-5=-17.5.-x2-|x|+16.0 07.当x-2≥0,即x≥2时,;当x-2<0,即x<2时,=.所以这是分段函数,每段函数图象可根据二次函数图象作出(如图),其中,[2,+∞)是函数的单调增区间;是函数的单调减区间.8.由f(x)为偶函数可知f(x)=f(-x),即,可得恒成立,所以a=c=0,故.当b=0时,由题意知不合题意;当b>0,x∈[1,2]时f(x)单调递增,又f(x)值域为[-2,1],所以当b<0时,同理可得所以或.【能力提升】假设存在实数m,n,使得当x∈[m,n]时,y∈[2m,2n],则在[m,n]上函数的最大值为2n.而f(x)=-x2+x=-(x-1)2+在x∈R上的最大值为,∴2n≤,∴n≤.而f(x)在(-∞,1)上是增函数,∴f(x)在[m,n]上是增函数,∴,即.结合m<n≤,解得m=-2,n=0.∴存在实数m=-2,n=0,使得当x∈[-2,0]时,f(x)的值域为[-4,0].2.1.1指数与指数幂的运算班级:__________姓名:__________设计人__________日期__________课后练习【基础过关】1.化简的结果为A. B. C.- D.2.计算的结果是A. B. C. D.3.设,则有A. B.C. D.4.下列说法中正确的个数是( )(1)49的四次方根为7; (2)=a(a≥0);(3)()5=a5; (4)=(-3.A.1B.2C.3D.45.若10m=2,10n=4,则= . 6.已知x=(2 01-2 01),n∈N*,则(x+)n的值为. 7.化简下列各式:(1)(·)÷;(2)()·(-3)÷().8.求下列各式的值:(1)2; (2)(; (3)+(-π0.【能力提升】已知+=3,求下列各式的值:(1)x+x-1;(2).答案【基础过关】1.A【解析】要使式子有意义,需,故x<0,所以原式.2.A【解析】本题考查指数运算.注意先算中括号内的部分。

人教B版高中数学必修第一册 同步练习 集合的基本运算

人教B版高中数学必修第一册 同步练习 集合的基本运算

1.1.3 集合的基本运算最新课程标准:(1)理解两个集合的并集与交集的含义,能求两个集合的并集与交集.(2)在具体情境中,了解全集的含义.(3)理解在给定集合中一个子集的补集的含义,能求给定子集的补集.(4)能使用Venn 图表达集合的基本关系与基本运算,体会图形对理解抽象概念的作用.第1课时交集与并集知识点一交集自然语言一般地,给定两个集合A、B,由既属于集合A又属于集合B的所有元素(即A和B 的公共元素)组成的集合,称为A与B的交集符号语言A∩B={x|x∈A且x∈B}(读作“A交B”)图形语言知识点二并集自然语言一般地,给定两个集合A、B,由这两个集合的所有元素组成的集合,称为集合A与B的并集符号语言A∪B={x|x∈A,或x∈B}(读作“A并B”)图形语言状元随笔 1.两个集合的并集、交集还是一个集合.2.对于A∪B,不能认为是由A的所有元素和B的所有元素所组成的集合,因为A与B可能有公共元素,每一个公共元素只能算一个元素.3.A∩B是由A与B的所有公共元素组成,而非部分元素组成.[基础自测]1.已知集合A={0,2},B={-2,-1,0,1,2},则A∩B=( )A.{0,2} B.{1,2}C.{0} D.{-2,-1,0,1,2}解析:本题主要考查集合的基本运算.∵A={0,2},B={-2,-1,0,1,2},∴A∩B={0,2},故选A.答案:A2.已知集合M={-1,0,1},N={0,1,2},则M∪N=( )A.{-1,0,1} B.{-1,0,1,2}C.{-1,0,2} D.{0,1}解析:M∪N表示属于M或属于N的元素组成的集合,故M∪N={-1,0,1,2}.答案:B3.设集合A={1,2},则满足A∪B={1,2,3}的集合B的个数是( )A.1 B.3C.4 D.8解析:因为A={1,2},A∪B={1,2,3}.所以B={3}或{1,3}或{2,3}或{1,2,3},故选C. 答案:C4.设集合A={x|2≤x<5},B={x|3x-7≥8-2x},则A∩B=________.解析:∵A={x|2≤x<5},B={x|3x-7≥8-2x}={x|x≥3},∴A∩B={x|3≤x<5}.答案:{x|3≤x<5}题型一交集的运算[经典例题]例1 (1)已知集合A={1,3,5,7},B={2,3,4,5},则A∩B=( )A.{3} B.{5}C.{3,5} D.{1,2,3,4,5,7}(2)已知集合A={x|x-1≥0},B={0,1,2},则A∩B=( )A.{0} B.{1}C.{1,2} D.{0,1,2}【解析】(1)本题主要考查集合的运算.由题意得A∩B={3,5},故选C.找出A、B的公共元素求A∩B.(2)本题考查集合的运算.∵A={x|x-1≥0}={x|x≥1},B={0,1,2},∴A∩B={1,2},故选C.先求A,再求A∩B.【答案】(1)C (2)C方法归纳求交集的基本思路首先要识别所给集合,其次要化简集合,使集合中的元素明朗化,最后再依据交集的定义写出结果,有时要借助于Venn图或数轴写出交集.借助于数轴时要注意数轴上方“双线”(即公共部分)下面的实数组成了交集.跟踪训练1 (1)已知集合A={x||x|<2},B={-2,0,1,2},则A∩B=( )A.{0,1} B.{-1,0,1}C.{-2,0,1,2} D.{-1,0,1,2}(2)若集合A={x|-5≤x≤5},B={x|x≤-2或x>3},则A∩B=________.解析:(1)本题主要考查集合的运算.化简A={x|-2<x<2},∴A∩B={0,1},故选A.先求A再求A∩B.(2)在数轴上表示出集合A与B,如下图.由交集的定义可得A∩B={x|-5≤x≤-2或3<x≤5}.利用数轴求A∩B.答案:(1)A (2){x|-5≤x≤-2或3<x≤5}题型二并集的运算[教材P17例3]例2 已知区间A=(-3,1),B=[-2,3],求A∩B,A∪B.【解析】在数轴上表示出A和B,如图所示.由图可知A∩B=[-2,1),A∪B=(-3,3].状元随笔(1)由并集定义A∪B是由A、B中所有元素组成的.(2)利用数轴求并集更直观.教材反思(1)在求两个集合的并集时,它们的公共元素在并集中只能出现一次.(2)此类题目首先应看清集合中元素的范围,简化集合,若是用列举法表示的数集,可以根据并集的定义直接观察或用Venn图表示出集合运算的结果;若是用描述法表示的数集,可借助数轴分析写出结果,此时要注意当端点不在集合中时,应用“空心点”表示.跟踪训练 2 (1)已知集合A={1,3,4,7},B={x|x=2k+1,k∈A},则集合A∪B中元素的个数为________.(2)已知集合P={x|-1<x<1},Q={x|0<x<2},那么P∪Q=( )A.{x|-1<x<2} B.{x|0<x<1}C.{x|-1<x<0} D.{x|1<x<2}解析:(1)∵A={1,3,4,7},B={x|x=2k+1,k∈A},∴B={3,7,9,15},∴A∪B={1,3,4,7,9,15}.∴集合A∪B中元素的个数为6.(2)因为P={x|-1<x<1},Q={x|0<x<2},画数轴如图,所以P∪Q={x|-1<x<2}.答案:(1)6 (2)A状元随笔(1)找出集合A,B中出现的所有元素,写出A∪B,求元素个数.(2)画数轴,根据条件确定P∪Q.题型三交集、并集性质的运用[经典例题]例3 已知A={x|x2-ax+a2-19=0},B={x|x2-5x+8=2},C={x|x2+2x-8=0},若∅(A∩B),且A∩C=∅,求a的值.【解析】A={x|x2-ax+a2-19=0},B={2,3},C={-4,2}.因为∅(A∩B),且A∩C=∅,那么3∈A,故9-3a+a2-19=0.即a2-3a-10=0.所以a=-2或a=5.当a=-2时A={x|x2+2x-15=0}={3,-5},符合题意.当a=5时A={x|x2-5x+6=0}={2,3},不符合A∩C=∅.综上知,a=-2.状元随笔审结论 (明解题方向)审条件 (挖解题信息)求a 的值,需建立关于a 的方程 (1)集合A,B,C 是由相应方程的解构成的,先要解方程求B,C.(2)由∅(A∩B),知A∩B≠∅,结合A∩C=∅,可确定集合A 中的元素,建立关于a 的方程.建关系——找解题突破口∅(A∩B),A∩C=∅→确定集合A 中的元素→建立关于a 的方程→检验集合中元素的互异性. 方法归纳(1)连续数集求交、并集借助数轴采用数形结合法.(2)利用A∩B=A ⇔A ⊆B,A∪B=A ⇔B ⊆A 可实现交、并运算与集合间关系的转化. 注意事项:(1)借助数轴求交、并集时注意端点的实虚. (2)关注Venn 图在解决复杂集合关系中的作用.跟踪训练3 已知集合A ={x|x<-1或x>4},B ={x|2a≤x≤a+3},若A∩B=B,求实数a 的取值范围. 解析:①当B =∅时,只需2a>a +3,即a>3; ②当B≠∅时,根据题意作出如图所示的数轴,可得⎩⎪⎨⎪⎧a +3≥2a,a +3<-1或⎩⎪⎨⎪⎧a +3≥2a,2a>4,解得a<-4或2<a≤3.综上可得,实数a 的取值范围为(-∞,-4)∪(2,+∞). 由A∩B=B 得B ⊆A,B 分2类,B =∅,B≠∅,再利用数轴求.课时作业 3一、选择题1.已知集合M ={x|-3<x<1},N ={-3,-2,-1,0,1},则M∩N=( ) A .{-2,-1,0,1} B .{-3,-2,-1,0}C.{-2,-1,0} D.{-3,-2,-1}解析:运用集合的运算求解.M∩N={-2,-1,0},故选C.答案:C2.已知集合A={x|x≥-3},B={x|-5≤x≤2},则A∪B=( )A.{x|x≥-5} B.{x|x≤2}C.{x|-3<x≤2} D.{x|-5≤x≤2}解析:结合数轴(图略)得A∪B={x|x≥-5}.答案:A3.设集合A={1,2,3,4},B={-1,0,2,3},C={x∈R|-1≤x<2},则(A∪B)∩C=( )A.{-1,1} B.{0,1}C.{-1,0,1} D.{2,3,4}解析:本题主要考查集合的运算.由题意得A∪B={1,2,3,4,-1,0},∴(A∪B)∩C={1,2,3,4,-1,0}∩{x∈R|-1≤x<2}={-1,0,1}.故选C.答案:C4.设集合A={x|-1≤x<2},B={x|x<a},若A∩B≠∅,则a的取值范围是( )A.a<2 B.a>-2C.a>-1 D.-1<a≤2解析:在数轴上表示出集合A,B即可得a的取值范围为a>-1.答案:C二、填空题5.定义A-B={x|x∈A,且x∉B},若M={1,2,3,4,5},N={2,3,6},则N-M=________.解析:关键是理解A-B运算的法则,N-M={x|x∈N,且x∉M},所以N-M={6}.答案:{6}6.设集合A={1,2,a},B={1,a2},若A∩B=B,则实数a允许取的值有________个.解析:由题意A∩B=B知B⊆A,所以a2=2,a=±2, 或a2=a,a=0或a=1(舍去),所以a=±2,0,共3个.答案:37.已知集合A={x|x≤1},B={x|x≥a},且A∪B=R,则实数a的取值范围为________.解析:由A∪B=R,得A与B的所有元素应覆盖整个数轴.如图所示:所以a 必须在1的左侧,或与1重合,故a≤1. 答案:(-∞,1] 三、解答题8.设A ={x|-1<x<2},B ={x|1<x<3},求A∪B ,A∩B. 解析:如图所示:A∪B={x|-1<x<2}∪{x|1<x<3}={x|-1<x<3}. A∩B={x|-1<x<2}∩{x|1<x<3}={x|1<x<2}.9.已知A ={x|a<x≤a+8},B ={x|x<-1,或x>5}.若A∪B=R,求a 的取值范围. 解析:在数轴上标出集合A,B,如图.要使A∪B=R,则⎩⎪⎨⎪⎧a +8≥5,a<-1,解得-3≤a<-1.综上可知,a 的取值范围为-3≤a<-1. [尖子生题库]10.集合A ={x|-1≤x<3},B ={x|2x -4≥x-2}. (1)求A∩B;(2)若集合C ={x|2x +a>0},满足B∪C=C,求实数a 的取值范围. 解析:(1)∵B={x|x≥2}, ∴A∩B={x|2≤x<3}.(2)C =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x>-a2, B∪C=C ⇒B ⊆C, ∴-a2<2,∴a>-4.即a 的取值范围为a>-4.。

2019-2020学年高中数学人教B版(2019)必修第一册同步学典:(3)集合的基本运算 Word版含答案

2019-2020学年高中数学人教B版(2019)必修第一册同步学典:(3)集合的基本运算 Word版含答案

2019-2020学年人教B 版(2019)高中数学必修第一册同步学典(3)集合的基本运算1、已知集合222{|190},{|560}A x x ax a B x x x =-+-==-+=,2{|280}C x x x =+-=,关于下列命题正确的是:( )A.{2}B C ⋂=B.若则3a =-或5C. 若{2}A C ⋂=则3a =-或5D.{2,3,4}B C ⋂=2、已知集合2{3,1,0,1,3},{30}A B x x x =--=+=,则A B ⋂=( )A .{3,0,3}-B .{3,0}-C .{0,3}D .{3,1,0,1,3}--3、已知集合2{42},{60}M x x N x x x =-<<=--<,则M N ⋂=( ) A.{43}x x -<< B.{42}x x -<<- C.{22}x x -<< D. {23}x x <<4、设集合{}{}22|20,R ,|20,R M x x x x N x x x x =+=∈=-=∈,则M N ⋃=( )A.{}0B.{}0,2C.{}2,0-D.{}2,0,2-5、设全集{}{}1,2,3,4,5,2,4U U M N M N =⋃=⋂=ð,则N =( )A.{}1,2,3B.{}1,3,5C.{}1,4,5D.{}2,3,46、已知全集{}{}{}21,2,23,1,,3U U a a A a A =-+==ð,则实数a 等于( )A.0或2B.0C.1或2D.27、已知集合2{|230}A x x x =--<,集合1{|21}x B x +=>,则B A =ð( )A. [3,)+∞B. (3,)+∞C. (,1][3,)-∞-+∞D. (,1)(3,)-∞-+∞8、已知全集{}N 9U x x +=∈<,(){}1,6U A B ⋂=ð,(){}2,3U A B ⋂=ð,(){}5,7,8U A B ⋃=ð则 B =( )A.{}2,3,4B.{}1,4,6C.4,5,{7,8}D.{}1,2,3,69、已知全集1,2,3,4,57{},6,U =,集合{3,4,5},{1,3,6}A B ==,则()U A B ⋂=ð( )A .{4,5}B .{2,4,5,7}C .{1,6}D .{3}10、已知集合{}2|10A x x =+=,若R A ⋂=∅,则实数m 的取值范围为( )A.{}|04m m ≤≤B.{}|4m m <C.{}|04m m <<D.{}|04m m ≤< 11、已知集合{1,2},{2,3,4},{(,)|,},{(,)|,}A B M x y x A y B N x y x x A y B ===∈∈=-∈∈,则M N = .12、已知全集U ,集合{}1,3,5,7,9A =,{}2,4,6,8U A =ð,{}1,4,6,8,9U B =ð,则集合B =___________.13、下列四个推理:①()a A B a A ∈⋃⇒∈;②a ()()a A B a A B ∈⋂⇒∈⋃;③A B A B B ⊆⇒⋃=;④A B A A B B ⋃=⇒⋂=.其中正确的为 .14、设{}R,0U M x x ==<,{}11N x x =-≤≤,则U M N ð是___________.15、设全集R I =,已知集合{}{}22|(3)0,|60M x x N x x x =+≤=+-=.(1)求()I M N ⋂ð;(2)记集合()I A M N =⋂ð,已知集合{}|15,R B x a x a a =-≤≤-∈,若A B A ⋃=,求实数a 的取值范围.答案以及解析1答案及解析:答案:A,C解析:2答案及解析:答案:B解析:3答案及解析:答案:C解析: ∵{23}N x x =-<<,{42}M x x =-<<, ∴{22}M N x x ⋂=-<<,故选C.4答案及解析:答案:D解析:{}{}{}{}22|20,R 0,2,|20,R 0,2M x x x x N x x x x =+=∈=-=-=∈=,故{}2,0,2M N ⋃=-,故选D.5答案及解析:答案:B解析:如下图,可知{}1,3,5N =.∵全集{1,2,3,4,5},{2,4}U U M N M N =⋃=⋂=ð,∴集合,M N 对应的韦恩图为所以{}1,3,5N =故选B.6答案及解析:答案:D解析:由题意,知22233a a a =⎧⎨-+=⎩得2a =.7答案及解析:答案:A解析:8答案及解析:答案:B解析:9答案及解析:答案:A解析:10答案及解析:答案:D解析:∵R A ⋂=∅,∴A =∅,关于x 的方程210x +=无实根,即40m ∆=-<.又0m ≥,∴04m ≤<,故选D.11答案及解析:答案:{(1,2),(1,3),(2,2)}解析:由题,可知{(1,2),(1,3),(1,4),(2,2,),(2,3),(2,4)}M =,{(1,1),(1,2),(1,3),(2,0),(2,1),(2,2)}N =,所以{(1,2),(1,3),(2,2)}M N =12答案及解析:答案:{}2,3,5,7解析:因为U A A U⋃=ð,所以{}1,2,3,4,5,6,7,8,9U =,因为{}1,4,6,8,9U B =ð,所以{}2,3,5,7B =.13答案及解析:答案:②③④解析:①错误,因为由()a A B ∈⋃可推出a A ∈或a B ∈但不一定能推出a A ∈.14答案及解析:答案:[0,1]解析:15答案及解析:答案:(1)因为{}{}2|(3)03M x x =+≤=-,所以{}|R 3I M x x x =∈≠-且ð.又{}{}2|603,2N x x x =+-==-,所以{}()2I M N ⋂=ð.(2)由(1),知{}()2I A M N =⋂=ð.因为A B A ⋃=,所以B A ⊆,所以B =∅或{}2B =.当B =∅时,15a a ->-,得3a >;当{}2B =时,1252a a -=⎧⎨-=⎩,解得3a =. 综上,实数a 的取值范围为{}|3a a ≥.解析:。

人教版高中数学必修1学案《集合的基本运算》(含答案)

人教版高中数学必修1学案《集合的基本运算》(含答案)

1.1.3集合的基本运算(二)自主学习1.理解在给定集合中一个集合的补集的含义,会求给定子集的补集.2.能运用Venn图及补集知识解决有关问题.1.一般地,如果一个集合含有我们所研究问题中涉及的所有元素,那么就称这个集合为全集,通常记作U.2.对于一个集合A,由全集U中不属于集合A的所有元素组成的集合称为集合A相对于全集U的补集,简称为集合A的补集,记作∁U A,即∁U A={x|x∈U,且x A}.3.补集与全集的性质(1)∁U U=∅;(2)∁U∅=U;(3)∁U(∁U A)=A;(4)A∪∁U A=U;(5)A∩∁U A=∅.4.已知全集U={1,2,3,4,5,6,7},A={2,4,5},B={1,3,5,7},则A∩(∁U B)={2,4};(∁U A)∩(∁B)={6}.U对点讲练补集定义的应用【例1】已知全集U,集合A={1,3,5,7,9},∁U A={2,4,6,8},∁U B={1,4,6,8,9},求集合B.解如图所示,借助Venn图,得U={1,2,3,4,5,6,7,8,9},∵∁U B={1,4,6,8,9},∴B={2,3,5,7}.规律方法根据补集定义,借助Venn图,可直观地求出全集,此类问题,当集合中元素个数较少时,可借助Venn图;当集合中元素无限时,可借助数轴,利用数轴分析法求解.变式迁移1 设U=R,A={x|a≤x≤b},∁U A={x|x>4或x<3},求a,b的值.解∵A={x|a≤x≤b},∴∁U A={x|x>b或x<a}.又∁U A={x|x>4或x<3},∴a=3,b=4.交、并、补的综合运算【例2】已知全集U={x|x≤4},集合A={x|-2<x<3},B={x|-3<x≤3}.求∁U A,A∩B,∁U(A∩B),(∁U A)∩B.解把全集U和集合A,B在数轴上表示如下:由图可知∁U A={x|x≤-2或3≤x≤4},A∩B={x|-2<x<3},∁U(A∩B)={x|x≤-2或3≤x≤4},(∁U A)∩B={x|-3<x≤-2或x=3}.规律方法求解用不等式表示的数集间的集合运算时,一般要借助于数轴,此法的特点是简单直观,同时要注意各个端点的画法及取到与否.变式迁移2 已知全集U={x|-5≤x≤3},A={x|-5≤x<-1},B={x|-1≤x<1}.求∁U A,∁U B,(∁U A)∩(∁U B),(∁U A)∪(∁U B),∁U(A∩B),∁U(A∪B),并指出其中相等的集合.解∁U A={x|-1≤x≤3},∁U B={x|-5≤x<-1或1≤x≤3},(∁U A)∩(∁U B)={x|1≤x≤3},(∁U A)∪(∁U B)={x|-5≤x≤3},∁U(A∩B)={x|-5≤x≤3},∁U(A∪B)={x|1≤x≤3},相等的集合:(∁U A)∩(∁U B)=∁U(A∪B),(∁U A)∪(∁U B)=∁U(A∩B).利用集合间的关系求参数【例3】 (1)已知全集U ={1,2,3,4,5},A ={x |x 2-5x +q =0,x ∈U },求∁U A ; (2)设U ={2,3,a 2+2a -3},A ={b,2},∁U A ={5},求实数a 和b 的值. (1)解 设x 1、x 2为方程x 2-5x +q =0的两根, 则x 1+x 2=5,∴x 1≠x 2(否则x 1=x 2=52∉U ,这与A ⊆U 矛盾).而由A ⊆U 知x 1、x 2∈U ,又1+4=2+3=5,∴q =4或q =6. ∴∁U A ={2,3,5}或∁U A ={1,4,5}. (2)分析 由题目可获得以下主要信息: ①全集U 中有元素2,A 中有元素2. ②∁U A ={5},∴5∈U 且5∉A . ③3∈U 但3∉(∁U A ),∴3∈A .解答本题可根据∁U A ={5},得出⎩⎪⎨⎪⎧a 2+2a -3=53=b解出a 、b 即可. 解由题意,利用Venn 图, 可得方程组⎩⎪⎨⎪⎧b =3 ①a 2+2a -3=5 ② 将②式变形为a 2+2a -8=0, 解得a =-4或a =2.∴⎩⎪⎨⎪⎧ a =-4b =3或⎩⎪⎨⎪⎧a =2b =3为所求. 规律方法 符号∁U A 存在的前提是A ⊆U ,这也是解有关补集问题的一个隐含条件,充分利用题目中的隐含条件也是我们解题的一个突破口,若x ∈U ,则x ∈A 和x ∈∁U A 二者必居其一,不仅如此,结合Venn 图及全集与补集的概念,不难得到如下性质:A ∪(∁U A )=U ,A ∩(∁U A )=∅,∁U (∁U A )=A .变式迁移3 已知U =R ,A ={x |x 2+px +12=0},B ={x |x 2-5x +q =0},若(∁U A )∩B ={2},(∁U B )∩A ={4},求A ∪B . 解 ∵(∁U A )∩B ={2},∴2∈B 且2∉A . ∵A ∩(∁U B )={4},∴4∈A 且4∉B .分别代入得⎩⎪⎨⎪⎧42+4p +12=022-5×2+q =0,∴p =-7,q =6,∴A ={3,4},B ={2,3}, ∴A ∪B ={2,3,4}.1.补集与全集是两个密不可分的概念,同一个集合在不同的全集中补集是不同的,不同的集合在同一个全集中的补集也不同.另外全集是一个相对概念.2.符号∁U A 存在的前提是A ⊆U ,这也是解有关补集问题的一个隐含条件,充分利用题目中的隐含条件也是我们解题的一个突破口. 3.补集的几个性质: ∁U U =∅,∁U ∅=U ,∁U (∁U A )=A .课时作业一、选择题 1.已知集合A ={1,3,5,7,9},B ={0,3,6,9,12},则A ∩∁N B 等于( ) A .{1,5,7} B .{3,5,7} C .{1,3,9} D .{1,2,3} 答案 A解析 ∵A ={1,3,5,7,9},B ={0,3,6,9,12}, ∴∁N B ={1,2,4,5,7,8,…}. ∴A ∩∁N B ={1,5,7}.2.已知U 为全集,集合M 、N 是U 的子集,若M ∩N =N ,则( )A .(∁U M )⊇(∁U N )B .M ⊆(∁U N )C .(∁U M )⊆(∁U N )D .M ⊇(∁U N ) 答案 C解析 利用Venn ,如图所示:可知(∁U M )⊆(∁U N ).3.已知U ={x |-1≤x ≤3},A ={x |-1<x <3},B ={x |x 2-2x -3=0},C ={x |-1≤x <3},则下列关系正确的是( )A .∁U A =B B .∁U B =C C .∁U A ⊇CD .A ⊇C 答案 A解析 B ={-1,3},∁U A ={-1,3}.4.图中阴影部分可用集合M 、P 表示为( )A .(M ∩P )∪(M ∪P )B .[(∁U M )∩P ]∪[M ∩(∁U P )]C .M ∩∁U (M ∩P )D .P ∪∁U (M ∩P ) 答案 B5.已知集合A ={x |x <a },B ={x |1<x <2},且A ∪(∁R B )=R ,则实数a 的取值范围是( ) A .a ≤2 B .a <1 C .a ≥2 D .a >2 答案 C解析 ∵B ={x |1<x <2}, ∴∁R B ={x |x ≥2或x ≤1}.如图,若要A ∪(∁R B )=R ,必有a ≥2. 二、填空题6.若A ={x ∈Z |0<x <10},B ={1,3,4},C ={3,5,6,7},则∁A B =______,∁A C =______. 答案 {2,5,6,7,8,9} {1,2,4,8,9}解析 ∵A ={1,2,3,…,9},B ={1,3,4},C ={3,5,6,7}, ∴∁A B ={2,5,6,7,8,9},∁A C ={1,2,4,8,9}.7.若全集I ={(x ,y )|x ,y ∈R },集合M =⎩⎨⎧⎭⎬⎫(x ,y )|y -3x -2=1,N ={(x ,y )|y ≠x +1},则(∁I M )∩(∁I N )=________. 答案 {(2,3)}解析 集合M ,N 都是点集,集合M 中的关系式可变为y =x +1(x ≠2),它的几何意义是直线y =x +1上去掉点(2,3)后所有点的集合;集合N 表示直线y =x +1外所有点的集合.可知∁I M ={(x ,y )|y ≠x +1}∪{(2,3)},表示直线y =x +1外所有点及直线上点(2,3)的集合;∁I N ={(x ,y )|y =x +1},表示直线y =x +1上所有点的集合.从而可得(∁I M )∩(∁I N )只有一个元素(2,3).8.设全集U ={x ||x |<4且x ∈Z },S ={-2,1,3},若∁U P ⊆S ,则这样的集合P 共有________个. 答案 8解析 ∵集合P 与∁U P 个数相同,又∁U P ⊆S , 而S 的子集个数为8,∴∁U P 个数也为8, ∴P 的个数也为8.三、解答题9.已知全集U =R ,集合A ={x |-1≤x ≤2},B ={x |4x +p <0},且B ⊆∁U A ,求实数p 的取值范围.解 ∁U A ={x |x <-1或x >2}, B =⎩⎨⎧⎭⎬⎫x |x <-p 4.∵B ⊆∁U A ,∴-p4≤-1∴p ≥4,即p 的取值范围是{p |p ≥4}.10.已知全集U =R ,集合A ={x |x <1,或x >2},集合B ={x |x <-3,或x ≥1},求∁R A ,∁R B ,A ∩B ,A ∪B . 解 借助于数轴,如图可知∁R A ={x |1≤x ≤2};∁R B ={x |-3≤x <1}; A ∩B ={x |x <-3,或x >2};A ∪B =R . 【探究驿站】11.(1)若实数集R 为全集,集合P ={x |f (x )=0},Q ={x |g (x )=0},H ={x |h (x )=0},则方程f 2(x )+g 2(x )h (x )=0的解集是( )A .P ∩Q ∩(∁R H )B .P ∩QC .P ∩Q ∩HD .P ∩Q ∪H(2)50名学生中,会讲英语的有36人,会讲日语的有20人,既不会讲英语也不会讲日语的有8人,则既会讲英语又会讲日语的人数为( ) A .20 B .14 C .12 D .10 答案 (1)A (2)B解析 (1)由f 2(x )+g 2(x )=0知,f (x )=0与g (x )=0同时成立,且h (x )≠0. (2)如图所示,至少会讲英语、日语中一种语言的学生有50-8=42(人),不妨设A ={会讲英语的学生},B ={会讲日语的学生},则有card(A )=36,card(B )=20,card(A ∪B )=42,故既会讲英语又会讲日语的学生人数为card(A ∩B )=36+20-42=14.。

【人教版】必修一数学:04-集合的基本关系及运算:知识讲解和巩固练习_集合基本关系运算(提高版,含答案)

集合的基本关系及运算【学习目标】1.理解集合之间包含与相等的含义,能识别一些给定集合的子集.在具体情境中,了解空集和全集的含义.2.理解两个集合的交集和并集的含义,会求两个简单集合的交集与并集.理解在给定集合中一个子集的补集的含义,会求给定子集的补集. 【要点梳理】要点一、集合之间的关系1.集合与集合之间的“包含”关系集合A 是集合B 的部分元素构成的集合,我们说集合B 包含集合A ;子集:如果集合A 的任何一个元素都是集合B 的元素,我们说这两个集合有包含关系,称集合A 是集合B 的子集(subset).记作:A B(B A)⊆⊇或,当集合A 不包含于集合B 时,记作A B ,用Venn 图表示两个集合间的“包含”关系:A B(B A)⊆⊇或要点诠释: (1)“A 是B 的子集”的含义是:A 的任何一个元素都是B 的元素,即由任意的x A ∈,能推出x B ∈. (2)当A 不是B 的子集时,我们记作“A ⊆B (或B ⊇A )”,读作:“A 不包含于B ”(或“B 不包含A ”).真子集:若集合A B ⊆,存在元素x ∈B 且x A ∉,则称集合A 是集合B 的真子集(proper subset).记作:A B(或B A)规定:空集是任何集合的子集,是任何非空集合的真子集. 2.集合与集合之间的“相等”关系A B B A ⊆⊆且,则A 与B 中的元素是一样的,因此A=B要点诠释:任何一个集合是它本身的子集,记作A A ⊆.要点二、集合的运算 1.并集一般地,由所有属于集合A 或属于集合B 的元素所组成的集合,称为集合A 与B 的并集,记作:A ∪B 读作:“A 并B ”,即:A ∪B={x|x ∈A ,或x ∈B}Venn 图表示:要点诠释:(1)“x ∈A ,或x ∈B ”包含三种情况:“,x A x B ∈∉但”;“,x B x A ∈∉但”;“,x A x B ∈∈且”.(2)两个集合求并集,结果还是一个集合,是由集合A 与B 的所有元素组成的集合(重复元素只出现一次).2.交集一般地,由属于集合A 且属于集合B 的元素所组成的集合,叫做集合A 与B 的交集;记作:A ∩B ,读作:“A 交B ”,即A ∩B={x|x ∈A ,且x ∈B};交集的Venn 图表示:要点诠释:(1)并不是任何两个集合都有公共元素,当集合A 与B 没有公共元素时,不能说A 与B 没有交集,而是A B =∅.(2)概念中的“所有”两字的含义是,不仅“A ∩B 中的任意元素都是A 与B 的公共元素”,同时“A 与B 的公共元素都属于A ∩B ”.(3)两个集合求交集,结果还是一个集合,是由集合A 与B 的所有公共元素组成的集合. 3.补集全集:一般地,如果一个集合含有我们所研究问题中所涉及的所有元素,那么就称这个集合为全集,通常记作U.补集:对于全集U 的一个子集A ,由全集U 中所有不属于集合A 的所有元素组成的集合称为集合A 相对于全集U 的补集(complementary set),简称为集合A 的补集,记作:U U A A={x|x U x A}∈∉;即且;痧补集的Venn 图表示:要点诠释:(1)理解补集概念时,应注意补集U A ð是对给定的集合A 和()U A U ⊆相对而言的一个概念,一个确定的集合A ,对于不同的集合U ,补集不同.(2)全集是相对于研究的问题而言的,如我们只在整数范围内研究问题,则Z 为全集;而当问题扩展到实数集时,则R 为全集,这时Z 就不是全集.(3)U A ð表示U 为全集时A 的补集,如果全集换成其他集合(如R )时,则记号中“U ”也必须换成相应的集合(即R A ð).4.集合基本运算的一些结论A B A A B B A A=A A =A B=B A ⋂⊆⋂⊆⋂⋂∅∅⋂⋂,,,,A AB B A B A A=A A =A A B=B A ⊆⋃⊆⋃⋃⋃∅⋃⋃,,,,U U (A)A=U (A)A=⋃⋂∅,痧 若A ∩B=A ,则A B ⊆,反之也成立 若A ∪B=B ,则A B ⊆,反之也成立若x ∈(A ∩B),则x ∈A 且x ∈B 若x ∈(A ∪B),则x ∈A ,或x ∈B求集合的并、交、补是集合间的基本运算,运算结果仍然还是集合,区分交集与并集的关键是“且”与“或”,在处理有关交集与并集的问题时,常常从这两个字眼出发去揭示、挖掘题设条件,结合Venn 图或数轴进而用集合语言表达,增强数形结合的思想方法. 【典型例题】类型一、集合间的关系例1. 集合{}|2,A a a k k N ==∈,集合21|1(1)(1),8n B b b n n N ⎧⎫⎡⎤==--⋅-∈⎨⎬⎣⎦⎩⎭,那么,A B 间的关系是( ).A.A B B.B A C. A =B D.以上都不对 【答案】B【解析】先用列举法表示集合A 、B ,再判断它们之间的关系.由题意可知,集合A 是非负偶数集,即{}0,2,4,6,8,A =⋅⋅⋅.集合B 中的元素211(1)(1)8n b n ⎡⎤=--⋅-⎣⎦0()1(1)(1)()4n n n n ⎧⎪=⎨+-⎪⎩为非负偶数时,为正奇数时.而1(1)(1)4n n +-(n 为正奇数时)表示0或正偶数,但不是表示所有的正偶数,即1,3,5,7,n =⋅⋅⋅.由1(1)(1)4n n +-依次得0,2,6,12,⋅⋅⋅,即{}0261220B =⋅⋅⋅,,,,,. 综上知,B A ,应选B .【总结升华】判断两个集合间的关系的关键在于:弄清两个集合的元素的构成,也就是弄清楚集合是由哪些元素组成的.这就需要把较为抽象的集合具体化(如用列举法来表示集合)、形象化(用Venn 图,或数形集合表示).举一反三:【变式1】若集合{}{}|21,,|41,A x x k k z B x x l l z ==-∈==±∈,则( ). A.A B B.B A C. A =B D.A B Z =【答案】C例2. 写出集合{a ,b ,c}的所有不同的子集.【解析】不含任何元素子集为∅,只含1个元素的子集为{a},{b},{c},含有2个元素的子集有{a ,b},{a ,c},{b ,c},含有3个元素的子集为{a ,b ,c},即含有3个元素的集合共有23=8个不同的子集.如果集合增加第4个元素d ,则以上8个子集仍是新集合的子集,再将第4个元素d 放入这8个子集中,会得到新的8个子集,即含有4个元素的集合共有24=16个不同子集,由此可推测,含有n 个元素的集合共有2n个不同的子集.【总结升华】要写出一个集合的所有子集,我们可以按子集的元素个数的多少来分别写出.当元素个数相同时,应依次将每个元素考虑完后,再写剩下的子集.如本例中要写出2个元素的子集时,先从a 起,a 与每个元素搭配有{a ,b},{a ,c},然后不看a ,再看b 可与哪些元素搭配即可.同时还要注意两个特殊的子集:∅和它本身.举一反三:【变式1】已知{},a b A ⊆{},,,,a b c d e ,则这样的集合A 有 个.【答案】7个【变式2】同时满足:①{}1,2,3,4,5M ⊆;②a M ∈,则6a M -∈的非空集合M 有( ) A. 16个 B. 15个 C. 7个 D. 6个 【答案】C【解析】3a =时,63a -=;1a =时,65a -=;2a =时,64a -=;4a =时,62a -=;5a =时,61a -=;∴非空集合M 可能是:{}{}{}{}{}{}3,1,5,2,4,1,3,5,2,3,4,1,2,4,5,{}1,2,3,4,5共7个.故选C.例3.集合A={x|y=x 2+1},B={y|y=x 2+1},C={(x,y)|y=x 2+1},D={y=x 2+1}是否表示同一集合? 【答案】以上四个集合都不相同【解析】集合A={x|y=x 2+1}的代表元素为x ,故集合A 表示的是函数y=x 2+1中自变量x 的取值范围,即函数的定义域A=(,)-∞+∞;集合B={y|y=x 2+1}的代表元素为y ,故集合B 表示的是函数y=x 2+1中函数值y 的取值范围,即函数的值域B=[1,)+∞;集合C={(x,y)|y=x 2+1}的代表元素为点(x ,y ),故集合C 表示的是抛物线y=x 2+1上的所有点组成的集合;集合D={y=x 2+1}是用列举法表示的集合,该集合中只有一个元素:方程y=x 2+1.【总结升华】认清集合的属性,是突破此类题的关键.首先应当弄清楚集合的表示方法,是列举法还是描述法;其次对于用描述法表示的集合一定要认准代表元素,准确理解对代表元素的限制条件.举一反三:【变式1】 设集合{(,)|34}M x y y x ==+,{(,)|32}N x y y x ==--,则M N =( )A. {1,1}-B. {1,1}x y =-=C.(1,1)-D. {(1,1)}- 【答案】D【解析】排除法:集合M 、N 都是点集,因此MN 只能是点集,而选项A 表示二元数集合,选项B表示二元等式集合,选项C 表示区间(1,1)-(无穷数集合)或单独的一个点的坐标(不是集合),因此可以判断选D .【变式2】 设集合{|21,}M x y x x Z ==+∈,{|21,}N y y x x Z ==+∈,则M 与N 的关系是( ) A. N M Ü B. M N Ü C. N M = D. N M =∅【答案】A【解析】集合M 表示函数21,y x x Z =+∈的定义域,有{}M =整数;集合N 表示函数21,y x x Z =+∈的值域,有{}N =奇数,故选A.【高清课堂:集合的概念、表示及关系 377430 例2】【变式3】 设M={x|x=a 2+1,a ∈N +},N={x|x=b 2-4b+5,b ∈N +},则M 与N 满足( ) A. M=N B. M N C. N M D. M ∩N=∅【答案】B【解析】 当a ∈N +时,元素x=a 2+1,表示正整数的平方加1对应的整数,而当b ∈N +时,元素x=b 2-4b+5=(b-2)2+1,其中b-2可以是0,所以集合N 中元素是自然数的平方加1对应的整数,即M 中元素都在N 中,但N 中至少有一个元素x=1不在M 中,即M N ,故选B.【高清课堂:集合的概念、表示及关系 377430 例3】 例4.已知},,,0{},,,{y x N y x xy x M =-=若M =N ,则+++2()(x y x )()1001002y x y +++ = .A .-200B .200C .-100D .0【思路点拨】解答本题应从集合元素的三大特征入手,本题应侧重考虑集合中元素的互异性. 【答案】D【解析】由M=N ,知M ,N 所含元素相同.由O ∈{0,|x|,y}可知O ∈若x=0,则xy=0,即x 与xy 是相同元素,破坏了M 中元素互异性,所以x ≠0.若x ·y=0,则x=0或y=0,其中x=0以上讨论不成立,所以y=0,即N 中元素0,y 是相同元素,破坏了N 中元素的互异性,故xy ≠00,则x=y ,M ,N 可写为M={x ,x 2,0},N={0,|x|,x}由M=N 可知必有x 2=|x|,即|x|2=|x| ∴|x|=0或|x|=1若|x|=0即x=0,以上讨论知不成立 若|x|=1即x=±1当x=1时,M 中元素|x|与x 相同,破坏了M 中元素互异性,故 x ≠1 当x=-1时,M={-1,1,0},N={0,1,-1}符合题意,综上可知,x=y=-1∴+++2()(x y x )()1001002y x y +++ =-2+2-2+2+…+2=0【总结升华】解答本题易忽视集合的元素具有的“互异性”这一特征,而找不到题目的突破口.因此,集合元素的特征是分析解决某些集合问题的切入点.举一反三:【变式1】设a ,b ∈R ,集合b{1,a+b,a}={0,,b}a,则b-a=( ) 【答案】2【解析】由元素的三要素及两集合相等的特征:b1{0,,b},0{1,a+b,a}a 0a b=0a∈∈≠∴+,又,∴当b=1时,a=-1,b{0,b}={0,-1,1}a∴,当b=1a时,∴b=a 且a+b=0,∴a=b=0(舍) ∴综上:a=-1,b=1,∴b-a=2. 类型二、集合的运算例 5. 设集合{}{}|3,,|31,A x x k k Z B y y k k Z ==∈==+∈,{}|32,C z z k k Z ==+∈,{}|61,D w w k k Z ==+∈,求,,,A B A C B C B D .【答案】AB AC B C ===∅,BD D =【解析】先将集合A 、B 、C 、D 转化为文字语言叙述,以便弄清楚它们的构成,再求其交集即可.集合{}|3,A x x k k Z ==∈表示3的倍数所组成的集合;集合{}|31,B x x k k Z ==+∈表示除以3余1的整数所组成的集合; 集合{}|32,C x x k k Z ==+∈表示除以3余2的整数所组成的集合; 集合{}|61,D x x k k Z ==+∈表示除以6余1的整数所组成的集合;A B A C B C ∴===∅,B D D =.【总结升华】求两个集合的交集或并集,关键在于弄清两个集合由哪些元素所构成的,因而有时需要对集合进行转化,或具体化、形象化.如本例中转化为用自然语言来描述这些集合,有利于弄清集合的元素的构成.类似地,若一个集合元素的特征由不等式给出时,利用数轴就能使问题直观形象起来.举一反三:【变式1】已知集合M={y|y=x 2-4x+3,x ∈R },N={y|y=-x 2-2x+8,x ∈R },则M ∩N 等于( ) A. ∅ B. R C. {-1,9} D. [-1,9] 【答案】D【解析】集合M 、N 均表示构成相关函数的因变量取值范围,故可知:M={y|y ≥-1},N={y|y ≤9},所以M ∩N={y|-1≤y ≤9},选D.例6. 设集合M={3,a},N={x|x 2-2x<0,x ∈Z},M ∩N={1},则M ∪N 为( ) A. {1,3,a} B. {1,2,3,a} C. {1,2,3} D. {1,3} 【思路点拨】先把集合N 化简,然后再利用集合中元素的互异性解题. 【答案】D【解析】由N={x|x 2-2x<0,x ∈Z}可得:N={x|0<x<2,x ∈Z}={1},又由M ∩N={1},可知1∈M ,即a=1,故选D.举一反三:【变式1】(1)已知:M={x|x ≥2},P={x|x 2-x-2=0},求M ∪P 和M ∩P ;(2)已知:A={y|y=3x 2}, B={y|y=-x 2+4}, 求:A ∩B ,A ∪B ;(3)已知集合A={-3, a 2 ,1+a}, B={a-3, a 2+1, 2a-1}, 其中a ∈R ,若A ∩B={-3},求A ∪B. 【答案】(1){x|x ≥2或x=-1},{2};(2){y|0≤y ≤4},R ;(3){-4,-3,0,1,2}. 【解析】(1)P={2,-1},M ∪P={x|x ≥2或x=-1},M ∩P={2}.(2)∵A={y|y ≥0}, B={y|y ≤4}, A ∩B={y|0≤y ≤4}, A ∪B=R . (3)∵A ∩B={-3},-3∈B ,则有:①a-3=-3⇒a=0, A={-3,0,1}, B={-3,1,-1}⇒A ∩B={-3,1},与已知不符,∴a ≠0;②2a-1=-3⇒a=-1, ∴ A={-3,1,0}, B={-4,2,-3}, 符合题设条件,∴A ∪B={-4,-3,0,1,2}.【总结升华】此例题既练习集合的运算,又考察了集合元素的互异性.其中(1)易错点为求并集时,是否意识到要补上孤立点-1;而(2)中结合了二次函数的值域问题;(3)中根据集合元素的互异性,需要进行分类讨论,当求出a 的一个值时,又要检验是否符合题设条件.【高清课堂:集合的运算 377474 例5】【变式2】设集合A={2,a 2-2a ,6},B={2,2a 2,3a-6},若A ∩B={2,3},求A ∪B. 【答案】{2,3,6,18}【解析】由A ∩B={2,3},知元素2,3是A ,B 两个集合中所有的公共元素,所以3∈{2,a 2-2a ,6},则必有a 2-2a=3,解方程a 2-2a-3=0得a=3或a=-1当a=3时,A={2,3,6},B={2,18,3}∴A ∪B={2,3,6}∪{2,18,3}={2,3,6,18} 当a=-1时,A={2,3,6},B={2,2,-9}这既不满足条件A ∩B={2,3},也不满足B 中元素具有互异性,故a=-1不合题意,应舍去. 综上A ∪B={2,3,6,18}例7.已知全集{}{}21,2,3,4,5,|40U A x x px ==++=,求C u A.【思路点拨】C u A 隐含了A U ⊆,对于A U ⊆,注意不要忘记A =∅的情形.【答案】 当44p -<<时,C u A={}1,2,3,4,5;当4p =-时,C u A={}1,3,4,5;当5p =-时,C u A={}2,3,5. 【解析】当A =∅时,方程240x px ++=无实数解. 此时2160,44p p ∆=-<-<<.C u A=U当A ≠∅时,二次方程240x px ++=的两个根12,x x ,必须属于U . 因为124x x =,所以只可能有下述情形:当122x x ==时,4p =-,此时{}2,A = C u A={}1,3,4,5; 当121,4x x ==时,5p =-,此时{}1,4,A = C u A={}2,3,5. 综上所述,当44p -<<时,C u A={}1,2,3,4,5;当4p =-时,C u A={}1,3,4,5; 当5p =-时,C u A={}2,3,5.【总结升华】求集合A 的补集,只需在全集中剔除集合A 的元素后组成一个集合即可.由于本题中集合A 的元素不确定,因此必须分类讨论才行.举一反三:【变式1】 设全集U={x ∈N +|x ≤8},若A ∩(C u B)={1,8},(C u A)∩B={2,6},(C u A)∩(C u B)={4,7},求集合A ,B.【答案】{1,3,5,8},{2,3,5,6}. 【解析】全集U={1,2,3,4,5,6,7,8}由A ∩(C u B)={1,8}知,在A 中且不在B 中的元素有1,8;由(C u A)∩B={2,6},知不在A 中且在B 中的元素有2,6;由(C u A)∩(C u B)={4,7},知不在A 中且不在B 中的元素有4,7,则元素3,5必在A ∩B 中.由集合的图示可得A={1,3,5,8},B={2,3,5,6}. 类型三、集合运算综合应用例8.已知全集A={x|-2≤x ≤4}, B={x|x>a}. (1)若A ∩B ≠∅,求实数 a 的取值范围; (2)若A ∩B ≠A ,求实数a 的取值范围;(3)若A ∩B ≠∅且A ∩B ≠A ,求实数a 的取值范围. 【思路点拨】(1)画数轴;(2)注意是否包含端点. 【答案】(1)a<4;(2)a ≥-2;(3)-2≤a<4. 【解析】(1)∵A={x|-2≤x ≤4}, B={x|x>a},又A ∩B ≠∅,如图,a<4; (2)画数轴同理可得:a ≥-2;(3)画数轴同理可得:如图,-2≤a<4. 【总结升华】此问题从题面上看是集合的运算,但其本质是一个定区间,和一个动区间的问题.思路是,使动区间沿定区间滑动,数形结合解决问题.举一反三:【变式1】已知集合P={x ︱x 2≤1},M={a }.若P ∪M=P,则a 的取值范围是( ) A .(-∞, -1] B .[1, +∞) C .[-1,1] D .(-∞,-1] ∪[1,+∞) 【答案】C【解析】P ={x ︱11x -≤≤}又 P M P =, ∴M P ⊆,∴ 11a -≤≤ 故选C .例9. 设集合{}{}222|40,|2(1)10,A x x x B x x a x a a R =+==+++-=∈.(1)若A B B =,求a 的值; (2)若A B B =,求a 的值. 【思路点拨】明确A B B =、A B B =的含义,根据问题的需要,将其转化为等价的关系式B A ⊆和A B ⊆,是解决本题的关键.同时,在包含关系式B A ⊆中,不要漏掉B =∅的情况.【答案】(1)1a =或1a ≤-;(1)2. 【解析】首先化简集合A ,得{}4,0A =-.(1)由AB B =,则有B A ⊆,可知集合B 为∅,或为{}0、{}4-,或为{}0,4-.①若B =∅时,224(1)4(1)0a a ∆=+--<,解得1a <-. ②若0B ∈,代入得21011a a a -=⇒==-或.当1a =时,{}{}2|400,4,B x x x A =+==-=符合题意; 当1a =-时,{}{}2|00,B x x A ===⊆也符合题意. ③若4B -∈,代入得2870a a -+=,解得7a =或1a =. 当1a =时,已讨论,符合题意;当7a =时,{}{}2|1648012,4B x x x =++==--,不符合题意. 由①②③,得1a =或1a ≤-. (2),AB B A B =∴⊆.又{}4,0A =-,而B 至多只有两个根,因此应有A B =,由(1)知1a =. 【总结升华】两个等价转化:,A B B A B A B B B A =⇔⊆=⇔⊆非常重要,注意应用.另外,在解决有条件A B ⊆的集合问题时,不要忽视A ≠∅的情况.举一反三:【变式1】已知集合{}{}222,|120A B x x ax a =-=++-=,若A B B =,求实数a 的取值范围.【答案】4,a ≥或4a <- 【解析】A B B =,B A ∴⊆.①当B =∅时,此时方程22120x ax a ++-=无解,由0∆<,解得4,a >或4a <-. ②当B ≠∅时,此时方程22120x ax a ++-=有且仅有一个实数解-2,0∴∆=,且22(2)2120a a --+-=,解得4a =.综上,实数a 的取值范围是4,a ≥或4a <-.【变式2】设全集U R =,集合{}{}|12,|40A x x B x x p =-≤≤=+<,若B C u A ,求实数p 的取值范围.【答案】4p ≥【解析】 C u A={}|1,2x x x <->或,|4p B x x ⎧⎫=<-⎨⎬⎩⎭.B C u A ,∴14p-≤-,即4p ≥.∴实数p 的取值范围是4p ≥. 【巩固练习】1.1. 设A={(x, y)| |x+1|+(y-2)2=0},B={-1, 2},则必有( ) A 、B A Ü B 、A B Ü C 、A=B D 、A ∩B=∅ 2. 集合M={y| y=x 2-1, x ∈R}, N={x| y=23x -},则M ∩N 等于( )A 、{(-2, 1), (2, 1)}B 、{|0x x ≤≤C 、{|1x x -≤≤D 、∅3.已知全集U R =,则正确表示集合{1,0,1}M =-和{}2|0N x x x =+=关系的韦恩(Venn )图是 ( )4.已知集合,A B 满足AB A =,那么下列各式中一定成立的是( )A . AB B . B AC . AB B = D . A B A =5.若集合}1,1{-=A ,}1|{==mx x B ,且A B A =⋃,则m 的值为( ) A .1 B .-1 C .1或-1 D .1或-1或06.设集合},412|{Z k k x x M ∈+==,},214|{Z k k x x N ∈+==,则( )A .N M =B .MN C .N M D .M N =∅7.设{}{}34|,|,<>=≤≤==x x x A C b x a x A R U U 或,则___________,__________==b a .8.某班有学生55人,其中体育爱好者43人,音乐爱好者34人,还有4人既不爱好体育也不爱好音乐,则该班既爱好体育又爱好音乐的人数为 人.9.若{}{}21,4,,1,A x B x==且AB B =,则x = .10.若{}|1,I x x x Z =≥-∈,则N C I = . 11.设全集{}(,),U x y x y R =∈,集合2(,)12y M x y x ⎧+⎫==⎨⎬-⎩⎭,{}(,)4N x y y x =≠-,那么()()U U C M C N 等于________________.12.设集合{}1,2,3,4,5,6M =,12,,,k S S S ⋅⋅⋅都是M 的含两个元素的子集,且满足:对任意的{},i i i S a b =,{},j j j S a b =({},,1,2,3,,i j i j k ≠∈⋅⋅⋅),都有min ,min ,j j i i i i j j a b a b b a b a ⎧⎫⎧⎫⎪⎪≠⎨⎬⎨⎬⎪⎪⎩⎭⎩⎭({}min ,x y 表示两个数,x y 中的较小者)则k 的最大值是 .13.设222{|40},{|2(1)10}A x x x B x x a x a =+==+++-=,其中x R ∈,如果A B B =,求实数a 的取值范围.14.设U R =,集合{}2|320A x x x =++=,{}2|(1)0B x x m x m =+++=;若()U C A B =∅,求m 的值.15.设1234,,,a a a a N +∈,集合{}{}222212341234,,,,,,,A a a a a B a a a a ==.满足以下两个条件: (1){}1414,,10;AB a a a a =+=(2)集合AB 中的所有元素的和为124,其中1234a a a a <<<.求1234,,,a a a a 的值.【答案与解析】1.【答案】D【解析】.学生易错选C 。

人教A版高中数学必修1第一章1.1.3《集合的基本运算》同步测试(一)

《集合的基本运算》同步测试题(一)一.选择题(在每小题给出的四个选项中,只有一项是符合题目要求的) 1.已知集合{}1,2,3A =,{}3,4,5B =,则A B =( )A .{}3B .{}2,5C .{}2,3,4D .{}1,2,4,52.已知集合{}2|20A x x x =-->,{}3,2,1,0,1,2,3B =---,则AB =( )A .{}3,2--B .{}3,2,3--C .1,0,1,2D .{}3,2,2,3--3.已知集合{}1,3,5,7A =,{}21,B y y x x A ==+∈,则A B =( )A .{}1,3,5,7,9,11,15B .{}1,3,5,7C .{}3,5,9D .{}3,74.已知集合{}|13,|A x xB x y ⎧=<<==⎨⎩,则A B =( ) A .{|12}x x <≤ B .{|23}x x <<C .{|23}x x ≤<D .{|1}x x >5.己知集合{}223A x x x =-≥,{}04B x x =<<,则A B =( )A .()1,4-B .(]0,3C .[)3,4 D .()3,46.已知集合{}2|430A x x x =-+>,{}|230B x x =->,则集合()R C A B =( ) A .33,2⎛⎫- ⎪⎝⎭B .3,32⎛⎫ ⎪⎝⎭C .31,2⎡⎫⎪⎢⎣⎭D .3,32⎛⎤ ⎥⎝⎦7.设集合(){}211A x x =-≤,(){}20B x x x =+≤,则A B =( )A .[]1,1-B .[]0,2C .[]22-,D .[]2,1-8.已知集合{}2,,0A a a =,{}1,2B =,若{}1A B ⋂=,则实数a 的值为( )A .1-B .0C .1D .±19.集合{}2210M x x x =--<,{}20N x x a =+,U =R ,若U M C N φ⋂=,则a 的取值范围是( )A .1a >B .1a ≥C .1a <D .1a ≤10.设集合{}2,5,6A =,{}250B x x x m =-+=,若{}2A B ⋂=,则B =( )A .{}2,3B .{}2C .{}3D .{}1,6-11.已知全集,{|1},{|2}U R M x x P x x ==≤=,则()UM P ⋃=( )A .{|12}x x <<B .{|1}x xC .{|2}x x ≤D .{|1x x 或2}x12.已知集合{A x y ==,{}B x x a =≥,若AB A =,则实数a 的取值范围是( ) A .(],3-∞- B .(),3-∞- C .(],0-∞ D .[)3,+∞ 二.填空题13.若集合{}12A x Z x =∈-<<,{}220B x x x =-=,则AB =______.14.已知集合{|21}A x x =-<≤,集合{|1≥B x x =或2}x <-,求AB =___15.已知全集{}2,1,0,1,2,3U =--,集合{}1,0,1A =-,{}1,1,2B =-,则()()UU A B ⋂=______16.设集合{}1,0,3A =-,{}3,21B a a =++,{}3A B ⋂=,则实数a 的值为___ 三.解答题(解答应写出文字说明、证明过程或演算步骤) 17.设全集为R ,{}|37A x x =≤<,{}|210B x x =<<. (1)求A B ;(2)求()RA B ⋃.18.已知全集U =R ,{}2|120A x x px =++=,{}2|50B x x x q =-+=,(){2}UA B =,求p q +.19.设全集{}25,3,4U a a =+-,U 的子集{|2|,5}A a =+.如果{3}UA =,求实数a 的值.20.已知全集U =R ,集合{}|21M x x =-<≤,{}2|230N x x x =-->.(1)求M N ⋂; (2)求()U M C N .21.已知集合{}23A x x =-<<,集合{}1B x x =>,集合{}C x x a =< (1)求,AB A B ;(2)设全集为R ,若R A C C ⊆,求实数a 的取值范围22.设集合{0,4}A =-,{}22|2(1)10B x x a x a =+++-=,若A B A ⋃=,求实数a 的值.参考答案一.选择题(在每小题给出的四个选项中,只有一项是符合题目要求的)二.填空题 13.{}0,1,214.(,2)(2,)-∞-⋃-+∞ 15.{}2,3- 16.0或1三.解答题(解答应写出文字说明、证明过程或演算步骤) 17.【解析】(1)由题意{|37}AB x x =≤<;(2)由题意{|210}A B x x ⋃=<<, ∴(){|2RA B x x ⋃=≤或10}x ≥.18.【解析】∵(){2}UA B =,∴2B ∈,2A ∉.∴22520q -⨯+=得到6q =,此时{2,3}B =. ∵(){2}UA B =,{2,3}B =,∴3A ∈.∴233120p +⨯+=.∴7p =-.∴1p q +=-. 19.【解析】由题意{3}UA =,{}25,3,4U a a =+-,{|2|,5}A a =+则2332a a a +-=⇒=或3a =-, 当2a =时,{4,5}A =满足A 是U 的子集;当3a =-时,{1,5}A =不满足A 是U 的子集,所以舍去. 综上,2a =20.【解析】(1)由题知{}2|230N x x x =-->={|1x x <-或3}x >,{}|21MN x x ∴=-<<-;(2)由(1)知{}|13U C N x x =-≤≤则(){}|23U M C N x x =-<≤.21.【解析】(1){|13}A B x x ⋂=<<,{|2}A B x x =>-∪ (2){|}=≥R C x x a ,因为,RA C ⊆2a ≤-22.【解析】∵A B A ⋃=,∴B A ⊆. 当B =∅时,∆<0,即1a <-;当{0}B =时,2002(1)01a a ∆=⎧⎪=-+⎨⎪=-⎩,,即1a =-;当{4}B =-时,20442(1),(4)(4)1a a a ∆=⎧⎪--=-+⇒⎨⎪-⨯-=-⎩无解;当{0,4}B =-时,2042(1)01a a ∆>⎧⎪-=-+⎨⎪=-⎩,1a ⇒=.综上,1a =或1a -。

人教A版高中数学必修一集合集合间的基本关系同步练习

1.1.3 集合的基本运算5分钟训练(预习类训练,可用于课前)1.填空题(U为全集):A∩A=_________,A∩∅=_________,A∩B_________B∩A,A∩B_________A,A∪B_________A,A∪∅=_________,A∪B_________B∪A,A∪A_________A,A∩(A)=_________,(A)=_________,A∩B_________ A∪B.思路解析:集合中最基本的运算性质.答案:A ∅= ⊆⊇ A = = ∅ A ⊆2.在相应的图中,对所要求的集合部分打上阴影:(1)(A∪B)∩[(A∩B)];(2)(B∪C)∪(A);(3)B∩[(A∪C)].思路解析:本题考查用韦恩图表示集合.解:3.设全集U={a,b,c,d,e},集合M={a,c,d},N={b,d,e},那么(M)∩(N)是( )A.∅B.{d}C.{a,c}D.{b,e}思路解析:M={b,e},N={a,c}.答案:A4.某车间有120人,其中乘电车上班的84人,乘汽车上班的32人,两车都乘的18人,求:(1)只乘电车的人数;(2)不乘电车的人数;(3)乘车的人数;(4)不乘车的人数;(5)只乘一种车的人数.思路解析:本题考查集合的运算,解题的关键是把文字语言转化为集合语言,借助于Venn 图的直观性把它表示出来,再求解.解:设只乘电车的人数为x,不乘电车的人数为y,乘车的人数为z,不乘车的人数为u,只乘一种车的人数为v,如下图所示,可得x=84-18=66(人),y=120-84=36(人),z=84+32-18=98(人),u=120-98=22(人),v=(84-18)+(32-18)=80(人).10分钟训练(强化类训练,可用于课中)1.设集合A={x|x∈Z且-10≤x≤-1},B={x|x∈Z且|x|≤5},则A∪B的元素个数是( )A.11B.10C.16D.15思路解析:可用列举法找出A、B的元素,再求并集.答案:C2.已知集合M={(x,y)|x+y=2},N={(x,y)|x-y=4},那么集合M∩N为( )A.x=3,y=-1B.(3,-1)C.{3,-1}D.{(3,-1)}思路解析:首先搞清M、N中元素是点,M∩N首先是集合,并且其中元素也是点,即可选D.答案:D3.已知U为全集,集合M、N为U的子集,若M∪N=N,则( )A.M⊇NB.M⊆NC.M⊆ND.M⊇N思路解析:由M∪N=N可知M⊆N,且都是U的子集,再由补集的定义可知.答案:A4.设集合A={-3,0,1},B={t2-t+1}.若A∪B=A,则t=_________.思路解析:由A∪B=A知B⊆A,∴t2-t+1=-3①或t2-t+1=0②或t2-t+1=1③.①无解;②无解;③t=0或t=1.答案:0或15.某班有50名学生,有36名同学参加学校组织的数学竞赛,有23名同学参加物理竞赛,有3名学生两科竞赛均未参加,问该班有多少同学同时参加了数学、物理两科竞赛?思路解析:利用V enn图更直观、清楚地看到各量之间的关系.如图.解:全集为U,其中含着50名学生,设集合A表示参加数学竞赛的学生,B表示参加物理竞赛的学生.则U中元素个数为50,A中元素个数为36,B中元素个数为23,全集中A、B之外的学生有3名,设数学、物理均参加的学生为x名,则有(36-x)+(23-x)+x+3=50,解得x=12. 答:本班有12名学生同时参加了数学、物理两科竞赛.6.已知集合A={x|x2+4x=0},集合B={x|x2+2(a+1)x+a2-1=0},其中x∈R.(1)若A∩B=B,求实数a的取值范围;(2)若A∪B=B,求实数a的值.思路解析:本题体现了分类讨论思想,要注意空集这一特殊集合.解:(1)易知A={0,-4},又A∩B=B,即A⊇B.∴B=∅或{0}或{-4}或{0,-4}.当B=∅时,方程x2+2(a+1)x+a2-1=0无实数解,∴Δ=4(a+1)2-4(a2-1)<0.解得a<-1.当B={0}或{-4}时,方程x2+2(a+1)x+a2-1=0有两个相等实数根,∴Δ=4(a+1)2-4(a2-1)=0,得a=-1,此时B={0},满足题意.当B={-4,0}时,方程x2+2(a+1)x+a2-1=0有两个不相等实数根-4,0,则-2(a+1)=-4+0且a2-1=0,解得a=1,此时B={x|x2+4x=0}={-4,0},满足题意.综合以上可知a ≤-1或a=1.(2)由已知得A={0,-4}.又A ∪B=B ,即A ⊆B.又∵B 为二次方程解集,其中最多有2个元素,∴B={0,-4},即方程x 2+2(a+1)x+a 2-1=0有两根为0和-4.由韦达定理知⎩⎨⎧-=-⨯+-=-,1)4(0),1(2402a a 解得⎩⎨⎧±==.1,1a a ∴a=1. 因此,若A ∪B=B ,则a=1.7.某高中2005年春季运动会开始了.设A={x|x 是参加100米跑的同学},B={x|x 是参加200米跑的同学},C={x|x 是参加400米跑的同学},学校规定,每个参加上述比赛的同学最多只能参加两项,请你用集合的运算说明这项规定,并解释以下集合运算的含义:(1)A ∪B ;(2)A ∩C.思路解析:本题考查集合的交集运算、并集运算.解:用集合语言表示“学校规定,每位参赛同学最多只能参加两项比赛”,即为(A ∩B )∩C=∅.(1)A ∪B={x|x 是参加100米跑或参加200米跑的同学}.(2)A ∩C={x|x 是既参加100米跑又参加400米跑的同学}.8.已知集合A={x|x 2-4ax+2a+6=0},B={x|x <0},若A ∩B ≠∅,求实数a 的取值范围.思路解析一:由A ∩B ≠∅可知,方程x 2-4ax+2a+6=0至少有一个负实根,即有两负根、一负根一零根、一负根一正根三种情况.解法一:∵A ∩B ≠∅,B={x|x <0},∴方程x 2-4ax+2a+6=0至少有一负根.(1)当方程x 2-4ax+2a+6=0有两个负根时,⎪⎩⎪⎨⎧>+=∙<=+≥+⨯-=∆,0)3(2,04,0)3(241621212a x x a x x a a 即⎪⎪⎩⎪⎪⎨⎧-><-≤≥.3,0,123a a a a 或解得-3<a ≤-1.(2)当方程x 2-4ax+2a+6=0有一负根一零根时,⎪⎩⎪⎨⎧=+=∙<=+>+⨯-=∆,0)3(2,04,0)3(241621212a x x a x x a a解得a=-3.(3)当方程x 2-4ax+2a+6=0有一负根一正根时,⎩⎨⎧<+=∙>+⨯-=∆,0)3(2,0)3(2416212a x x a a 解得a <-3.综上所述,所求实数a 的取值范围为a ≤-1.思路解析二:如果从反面考虑,先求出方程x 2-4ax+2a+6=0有实根时a 的取值范围(可看成全集),然后考虑方程x 2-4ax+2a+6=0的两根均为非负实数时a 的取值范围,则最后可利用补集求解.解法二:设全集U={a|Δ=(-4a )2-4(2a+6)≥0}={a|(a+1)(a-23)≥0}={a|a ≤-1或a ≥23}.若方程x 2-4ax+2a+6=0的两根x 1、x 2均为非负数,则⎪⎩⎪⎨⎧≥+≥∙∈.0,0,2121x x x x U a 解得a ≥23.在全集U 中,集合{a|a ≥23}的补集为{a|a ≤-1}.∴所求实数a 的取值范围是a ≤-1. 快乐时光腹部的疤痕5岁的女儿不明白妈妈的肚皮为什么有一个疤痕,妈妈向女儿解释说:“这是医生割了一刀,把你取出的地方.”女儿认真想了一会儿,很认真地问妈妈:“那你为什么要吃掉我?”30分钟训练 (巩固类训练,可用于课后)1.设集合U={1,2,3,4,5},A={1,2,3},B={2,5},则A ∩(B )等于( )A.{2}B.{2,3}C.{3}D.{1,3}思路解析:先求B={1,3,4},再与A 取交集. 答案:D2.设U 是全集,集合P 、Q 满足P Q U ,则下面结论错误的是( ) A.Q ∪P=PB.P ∪Q=UC.P ∩Q=∅D.P ∩Q=Q 思路解析:利用文氏图分析.答案:C3.已知全集I ,集合A 、B 满足A ∩B=B ,A ∪B=A ,则必定有( )A.B ⊂AB.B ⊃AC.A=BD.A ∩B=∅思路解析:理解A ∩B=B ,A ∪B=A 的含义,从而A 、C 选项均有可能.但必定有选项D. 答案:D4.设S 、T 是非空集合,且S T ,T S ,设Z=S ∩T ,则S ∪Z 等于( )A.SB.TC. ∅D.Z思路解析:理解符号、∩、∪的意义.答案:A5.设集合A={y|y=x 2+1,x ∈R },B={y|y=x+1,x ∈R },则A ∩B 等于( )A.{(0,1),(1,2)}B.{(0,1)}C.{(1,2)}D.{y|y ≥1}思路解析:A ∩B 是一个集合,其中的元素还是y ,排除A 、B 、C 三项.答案:D6.右图中反映的是①四边形、②梯形、③平行四边形、④菱形、⑤正方形这五种几何图形之间的关系,五个图形与A、B、C、D、E代表的图形集合相对应,正确的是( )A.①—B,②—A,③—C,④—D,⑤—EB.①—A,②—B,③—C,④—D,⑤—EC.①—C,②—A,③—B,④—D,⑤—ED.①—D,②—B,③—C,④—E,⑤—A思路解析:由平面几何知识,在①②③④⑤五个图形中,①是最大、最基本的图形,包含②③④⑤.∴①—A.B与C是并列的,即无交集,且③包含了④⑤.∴②—B,③—C.正方形是特殊的菱形,∴④—D,⑤—E.∴选B.答案:B7.如右图,有四个区域Ⅰ、Ⅱ、Ⅲ、Ⅳ.下面给出了四个用集合A、B的交集、并集、补集表示的集合,请你将对应的集合与区域连结起来.B∩(A)ⅠA∩B ⅡA∩(B)Ⅲ(A∪B)Ⅳ思路解析:考查用韦恩图来表示集合的运算.答案:8.如右图所示,全集为I,非空集合P、Q满足P Q I,若含P、I、Q的一个集合运算表达式使运算结果为∅,则这个运算表达式可以是_________.(只需写一个表达式)思路解析:用Venn图表示含I、P、Q的运算表达式结果为∅,只需无公共部分的两区域表示的集合取交集即可.由Venn图,知P∩(Q)或(Q)∩(Q∩P)或(Q)∩(Q∪P),(Q)∩(P),(P)∩P均可.答案:P∩(Q)9.已知A={x|x2-ax+a2-19=0},B={x|x2-5x+6=0},是否存在a,使A、B满足下列三个条件:①A≠B;②A∪B=B;③∅(A∩B)?若存在,求出a的值;若不存在,请说明理由. 思路解析:存在性探索问题的一般解法是先假设存在,再由此推算,若出现矛盾,则说明假设错误,即不存在,否则存在.解:假设存在a使得满足条件,由已知得B={2,3},∵A∪B=B,∴A⊆B.又∵∅(A∩B),∴A≠∅,即A={2}或{3}.当A={2}时,代入得a2-2a-15=0,即a=-3或a=5.经检验,a=-3时,A={2,-5}≠{2}矛盾,a=5时,A={2,3}≠{2}矛盾;当A={3}时,代入得a2-3a-10=0,即a=5或a=-2,经检验,a=-2时,A={3,-5}≠{3}矛盾;a=5时,A={2,3}≠{3},矛盾.综上所述,不存在实数a,使得满足条件.10.某班举行数、理、化三科竞赛,每人至少参加一科,已知参加数学竞赛的有27人,参加物理竞赛的有25人,参加化学竞赛的有27人,其中参加数学、物理两科的有10人,参加物理、化学两科的有7人,参加数学、化学两科的有11人,而参加数、理、化三科的有4人,求全班人数.思路解析:考查交集的运算.用集合的运算解决实际问题.根据题意,借助韦恩图求解.解:设参加数学、物理、化学竞赛的人构成的集合分别为A、B、C,则n A=27,n B=25,n C=27,n A∩B=10,n B∩C=7,n A∩C=11,n A∩B∩C=4,如图所示.∴全班人数为各数之和:10+12+13+7+3+6+4=55.答:全班共有55人.11.集合A={x|-2<x<-1或x>1},B={x|a≤x≤b},若A∪B={x|x>-2},A∩B={x|1<x≤3}.求a、b的值.思路解析:先在数轴上画出A的范围及B的范围.解:若使A∪B={x|x>-2},则应有-2<a≤-1,b≥1.若使A∩B={x|1<x≤3=,则-1≤a≤1,b=3.所以a=-1,b=3.12.已知A={2,4,a3-2a2-a+7},B={-4,a+3,a2-2a+2,a3+a2+3a+7},且A∩B={2,5}. (1)求实数a的值;(2)求A∪B.思路解析:利用A∩B={2,5}确定集合元素的取值是本题的关键.解:(1)由题意知a3-2a2-a+7=5,解之,得a=-1,1,2.当a=-1,1时,A={2,4,5},B={-4,2,4,5}或{-4,1,4,12},这与已知A∩B={2,5}矛盾;当a=2时,符合题意,故a=2.(2)此时A∪B={2,4,5}∪{-4,2,5,25}={-4,2,4,5,25}.。

人教A版高中数学必修一练习集合的基本运算(2)

1.1.3.1一、选择题1.已知集合M ={直线},N ={圆},则M ∩N 的元素个数为( )个.( )A .0B .1C .2D .不确定 [答案] A[解析] 集合M ∩N 中的元素表明既是直线又是圆的元素,这样的元素是不存在的,从而M ∩N =∅,故选A.[点评] 集合M 与N 都是图形集,不是点集,M 中的元素为直线,N 中的元素为圆.易将M ∩N 错误理解为直线与圆的交点个数的集合,得出M ∩N ={0,1,2},从而易错选C.2.(2010·江西理,2)若集合A ={x | |x|≤1,x ∈R },B ={y|y =x2,x ∈R},则A∩B =( )A .{x |-1≤x ≤1}B .{x |x ≥0}C .{x |0≤x ≤1}D .∅[答案] C[解析] 集合A ={x |-1≤x ≤1},B ={y |y ≥0},故A ∩B ={x |0≤x ≤1}.选C.3.(09·山东文)集合A ={0,2,a },B ={1,a 2}.若A ∪B ={0,1,2,4,16},则a 的值为( )A .0B .1C .2D .4 [答案] D[解析] ∵A ={0,2,a},B ={1,a2},A ∪B ={0,1,2,4,16}, ∴⎩⎪⎨⎪⎧a2=16a =4,∴a =4.故选D. 4.(2010·福建文,1)若集合A ={x |1≤x ≤3},B ={x |x >2},则A ∩B 等于( )A .{x |2<x ≤3}B .{x |x ≥1}C .{x |2≤x <3}D .{x |x >2}[答案] A[解析]∴A ∩B ={x |2<x ≤3}.5.设集合A ={x |-1≤x <2},B ={x |x <a },若A ∩B ≠∅,则a 的取值范围是( )A .a <2B .a >-2C .a >-1D .-1<a ≤2 [答案] C[解析] 由A ∩B ≠∅知a >-1,故选C.6.(08·山东文)满足M ⊆{a 1,a 2,a 3,a 4},且M ∩{a 1,a 2,a 3}={a 1,a 2}的集合M 的个数是( )A .1B .2C .3D .4 [答案] B[解析] ∵M ∩{a 1,a 2,a 3}={a 1,a 2},∴a 1∈M ,a 2∈M ,a 3∉M .又∵M ⊆{a 1,a 2,a 3,a 4},∴M ={a 1,a 2}或{a 1,a 2,a 4}.7.(09·全国Ⅱ理)设集合A ={x |x >3},B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ x -1x -4<0,则A ∩B =( ) A .∅ B .(3,4)C .(-2,1)D .(4,+∞) [答案] B[解析] ∵A ={x |x >3},B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ x -1x -4<0={x |(x -1)(x -4)<0}={x |1<x <4}, ∴A ∩B ={x |3<x <4}.8.设P 、Q 为两个非空实数集合,定义集合P +Q ={x |x =a +b ,a ∈P ,b ∈Q },若P ={0,1,2},Q ={-1,1,6},则P +Q 中所有元素的和是( )A .9B .8C .27D .26[答案] D[解析] 由P +Q 的定义知:a =0时,b 可取-1,1,6,故x =-1,1,6;同理可得x 可取的其它值为:0,2,7,3,8,故P +Q ={-1,0,1,2,3,6,7,8},其所有元素之和为26.9.已知集合A ={x |x =2k +1,k ∈N *},B ={x |x =k +3,k ∈N },则A ∩B 等于( )A .BB .AC .ND .R [答案] B[解析] A ={3,5,7,9…},B ={3,4,5,6…},易知A B ,∴A ∩B =A .10.当x ∈A 时,若x -1∉A ,且x +1∉A ,则称x 为A 的一个“孤立元素”,由A 的所有孤立元素组成的集合称为A 的“孤星集”,若集合M ={0,1,3}的孤星集为M ′,集合N ={0,3,4}的孤星集为N ′,则M ′∪N ′=( )A .{0,1,3,4}B .{1,4}C .{1,3}D .{0,3} [答案] D[解析] 由条件及孤星集的定义知,M ′={3},N ′={0},则M ′∪N ′={0,3}.二、填空题11.若集合A ={2,4,x },B ={2,x 2},且A ∪B ={2,4,x },则x =________.[答案] 0,1或-2[解析] 由已知得B ⊆A ,∴x 2=4或x 2=x ,∴x =0,1,±2,由元素的互异性知x ≠2,∴x =0,1或-2.12.已知A ={x |x 2+px +q =x },B ={x |(x -1)2+p (x -1)+q =x +1},当A ={2}时,集合B =________.[答案] {3+2,3-2}[解析] ∵A ={2},∴方程x 2+px +q =x 有两相等实根2,∴⎩⎪⎨⎪⎧ 4+2p +q =2(p -1)2-4q =0∴⎩⎪⎨⎪⎧p =-3q =4, ∴方程(x -1)2+p (x -1)+q =x +1可化为:x 2-6x +7=0,∴x =3±2,∴B ={3+2,3-2}.13.(胶州三中2009~2010高一期末)设A ={x |x 2-px +15=0},B ={x |x 2+qx +r =0}且A ∪B ={2,3,5},A ∩B ={3},则p =______;q =______;r =______.[答案] 8 -5 6[分析] 抓住集合中元素的特征性质,A 、B 都是一元二次方程的解集.从A ∩B 入手知3是两个方程的公共根,可确定A 中方程的系数p 进而得A ,也就弄清了B 中的元素获解.[解析] ∵A ∩B ={3},∴3∈A,3∈B∴⎩⎪⎨⎪⎧9-3p +15=0 (1)9+3q +r =0 (2),由(1)得p =8 , ∴A ={x |x 2-8x +15=0}={3,5}又A ∪B ={2,3,5},∴2∈B ,∴4+2q +r =0 (3)由(2)(3)得q =-5,r =6.经检验符合题意.三、解答题14.已知A ={x |a ≤x ≤a +3},B ={x |x <-1或x >5}(1)若A ∩B =∅,求a 的取值范围.(2)若A ∪B =B ,a 的取值范围又如何?[解析] (1)-1≤a ≤2(2)∵A ∪B =B ,∴A ⊆B ,∴a +3<-1,或a >5,∴a >5或a <-415.设集合M ={1,2,m 2-3m -1},N ={-1,3},若M ∩N ={3},求m .[解析] ∵M ∩N ={3},∴3∈M ,∴m 2-3m -1=3,∴m =-1或4.16.已知A ={1,x ,-1},B ={-1,1-x }.(1)若A ∩B ={1,-1},求x .(2)若A ∪B ={1,-1,12},求A ∩B . (3)若B ⊆A ,求A ∪B .[解析] (1)由条件知1∈B ,∴1-x =1,∴x =0.(2)由条件知x =12, ∴A ={1,12,-1},B ={-1,12}, ∴A ∩B ={-1,12}. (3)∵B ⊆A ,∴1-x =1或1-x =x ,∴x =0或12,当x =0时,A ∪B ={1,0,-1}, 当x =12时,A ∪B ={1,12,-1}. 17.某班参加数学课外活动小组的有22人,参加物理课外活动小组的有18人,参加化学课外活动小组的有16人,至少参加一科课外活动小组的有36人,则三科课外活动小组都参加的同学至多有多少人?[解析] 设参加数学、物理、化学课外活动小组的同学分别组成集合A 、B 、C .由下图可知,要使A ∩B ∩C 的元素个数最多,因此区域Ⅰ、Ⅱ、Ⅲ中元素应尽可能地少,由于在22+18+16=56中A ∩B ∩C 中元素个数重复计算了三次(只应计数一次).故A ∩B ∩C 的元素个数最多可为12(56-36)=10.故三科课外活动小组都参加的同学至多有10人.18.已知集合A ={x |3x -7>0},B ={x |x 是不大于8的自然数},C ={x |x ≤a ,a 为常数},D ={x |x ≥a ,a 为常数}.(1)求A ∩B ;(2)若A ∩C ≠∅,求a 的取值集合;(3)若A ∩C ={x |73<x ≤3},求a 的取值集合; (4)若A ∩D ={x |x ≥-2},求a 的取值集合;(5)若B ∩C =∅,求a 的取值集合;(6)若B ∩D 中含有元素2,求a 的取值集合.[解析] A ={x |x >73},B ={0,1,2,3,4,5,6,7,8}. (1)A ∩B ={3,4,5,6,7,8}.(2)∵A ∩C ≠∅,∴a >73, ∴a 的取值集合为⎝⎛⎭⎫73,+∞. (3)由条件知,A ∩C 不是空集,∴A ∩C ={x |73<x ≤a }, 又A ∩C ={x |73<x ≤3}, ∴a =3,∴a 的取值集合为{3}.(4)∵A ∩D ={x |x ≥-2}≠A ,∴A ∩D =D ,∴a =-2,即a 的取值集合为{-2}.(5)∵B ∩C =∅,∴a <0,∴a 的取值集合为{a |a <0}.(6)∵2∈B ∩D ,∴2∈D ,∴a ≤2,∴a 的取值集合为{a |a ≤2}.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.1.3 集合的基本运算
建议用时 实际用时 满分 实际得分
45分钟 100分
一、 选择题(本大题共6小题,每小题6分,共
36分)

1.下列表述中错误的是( )
A.若,ABABAI则
B.若ABBABU,则
C.()ABIÜAÜ()ABU
D.∁U(A∩B)= (∁UA)∪(∁UB)
2.已知全集U={-1,0,1,2},集合A={-1,2},B={0,2},则(∁UA)∩B=( )
A.{0} B.{2}
C. {0,1} D.{-1,1}
3.若全集U=R,集合M={x|-2≤x≤2},N={x|x2-3x≤0},则M∩(∁UN)=( )
A. {x|x<0} B.{x|-2≤x<0}
C.{x|x>3} D.{x|-2≤x<3}
4.若集合M={x∈R|-3A.{-1} B.{0}
C. {-1,0} D. {-1,0,1}
5.已知全集U=A∪B中有m个元素,(∁UA)∪(∁UB)中有n个元素.若A∩B非空,则A∩B的元
素个数为( )
A.m B.m+n
C.m-n D.n-m
6.设U={n|n是小于9的正整数},A={n∈U|n是奇数},B={n∈U|n是3的倍数},则∁U(A∪B)
=( )
A. {2,4} B. {2,4,8}
C. {3,8} D. {1,3,5,7}
二、填空题(本大题共3小题,每小题6分,共
18分)

7.某班有学生55人,其中体育爱好者43人,音乐爱好者34人,还有4人既不爱好体育也不爱
好音乐,则该班既爱好体育又爱好音乐的有

.
8.若集合{(x,y)|x+y-2=0且x-2y+4=0}{(x,y)|y=3x+b},则b=________.
9.已知集合}023|{2xaxxA至多有一个元素,则a的取值范围是 ;若至少有
一个元素,则a的取值范围是 .
三、解答题(本大题共3小题,共46分)

10.(14分)
集合22|190Axxaxa,
2|560Bxxx,
2
|280Cxxx,

满足ABI,,ACI求实数a的值.
11.(15分)已知集合A={x∈R|ax2-3x+2=0}.
(1)若A=,求实数a的取值范围;
(2)若A是单元素集,求a的值及集合A.

12.(17分)设集合A={x|x2-3x+2=0},B={x|x2+2(a+1)x+(a2-5)=0}.
(1)若A∩B={2},求实数a的值;

(2)若A∪B=A,求实数a的取值范围
一、选择题
1.C 解析:当AB时,ABAABIU.
2.A 解析:∁UA={0,1},故(∁UA)∩B={0}.
3.B 解析:根据已知得M∩(∁UN)={x|-2≤x≤2}∩{x|x<0或x>3}={x|-2≤x<0}.
4. C 解析:因为集合N={-1,0,1,2},所以M∩N={-1,0}.
5.C 解析:∵U=A∪B中有m个元素, (ðUA)∪(ðUB)=ðU(A∩B)中有n个元素,
∴A∩B中有m-n个元素.
6.B 解析:U={1,2,3,4,5,6,7,8},A={1,3,5,7},B={3,6},∴A∪B={1,3,5,6,7},
则ðU(A∪B)={2,4,8}.
二、填空题
7.26 解析:全班分4类人:设既爱好体育又爱好音乐的有x人;仅爱好体育
的有(43x)人;仅爱好音乐的有(34x)人;既不爱好体育又不爱好音乐的
有4人 ,∴43x34xx4=55,∴x=26.

8.2 解析:由得 x=0,y=2.点(0,2)在y=3x+b上,∴b=2.

9.
9|,08aaa或,9
|8aa




解析:当A中仅有一个元素时,0a,或980a;
当A中有0个元素时,980a;
当A中有两个元素时,980a.
三、解答题
10. 解:2,3B,4,2C,而ABI,则2,3至少有一个元素在A中.

又ACI,∴2A,3A,即293190aa,得52aa或,
而5aAB时,,与ACI矛盾,
∴2a.
11.解:(1)A是空集,即方程ax2-3x+2=0无解.

若a=0,方程有一解x=23,不合题意.

若a≠0,要使方程ax2-3x+2=0无解,则Δ=9-8a<0,则a>98.
综上可知,若A=,则a的取值范围应为a>98.
(2)当a=0时,方程ax2-3x+2=0只有一根x=23,A={23}符合题意.
当a≠0时,=9-8a=0,即a=98时,方程有两个相等的实数根=43,则A={43}.
综上可知,当a=0时,A={23};当a=98时,A={43}.
12.解:由x2-3x+2=0得x=1或x=2,故集合A={1,2}.
(1)∵A∩B={2},∴2∈B,代入B中的方程,得a2+4a+3=0,解得a=-1或a=-3.
当a=-1时,B={x|x2-4=0}={-2,2},满足条件;
当a=-3时,B={x|x2-4x+4=0}={2},满足条件.
综上,a的值为-1或-3.
(2)对于集合B,Δ=4(a+1)2-4(a2-5)=8(a+3).∵A∪B=A,∴BA.
①当Δ<0,即a<-3时,B=满足条件;
②当Δ=0,即a=-3时,B={2}满足条件;
③当Δ>0,即a>-3时,B=A={1,2}才能满足条件,则由根与系数的关系得

解得 a=-52,a2=7,矛盾.
综上,a的取值范围是a≤-3.

相关文档
最新文档