新北师大版初中数学七年级上册 (初一)5.2 第3课时 用去分母解一元一次方程课件
合集下载
人教版(2024数学七年级上册5.2 第4课时 利用去分母解一元一次方程

A. 3(x-1)-2(2x+3)=1
B. 3(x-1)-2(2x+3)=6
C. 3x-1-4x+3=1
D. 3x-1-4x+3=6
2. (澄海区期末) 解下列方程:
(1) 3y+2-1=2y-1;
4
6
解:(1) 去分母 (方程两边乘 12),得
3(3y+2) -12×1= 2(2y-1). 去括号,得 9y+6-12=4y-2.
计算:
去分母(方程左右两边边 同乘各分母的最小公倍数)
5(3x + 1) - 2×10 = (3x - 2) - 2(2x + 3)
去括号
移项
合并同类项 系数化为1
解一元一次方程的一般步骤:
合系
一般形式
去 分 母
去 括 号
移 项
并 同 类
数 化 为
x=a 形式
项1
例1 解方程:(1)
x+1 2
第五章 一元一次方程
5.2 解一元一次方程
第4课时 利用去分母解一元一 次方程
人教版七年级(上)
教学目标
1. 解方程的基本思路是把“复杂”转化为“简单”,把“新” 转化为“旧”的过程,理解并掌握如何去分母解方程 .
2. 进一步体会解方程方法的灵活多样,培养解决不同问 题的能力,发展数学思维.
重点:熟练掌握用去分母解一元一次方程. 难点:通过探究去分母解一元一次方程,
-1=2+2-x
4
;
解:去分母 (方程两边乘 4),得
2(x+1)-4=8+(2-x).
去括号,得 2x+2-4=8+2-x.
移项,得
2x+x=8+2-2+4.
合并同类项,得 3x=
人教版七年级数学上册一元一次方程《解一元一次方程(二)——去括号与去分母(第3课时)》示范教学课件

本节课,我们将对一元一次方程的简单应用题目的几种类型进行学习.
类型一、利用去括号解方程
(2) ;
1.利用去括号解下列方程:
(3) .
(1)2x+(10-x)=5x;
类型一、利用去括号解方程
去小括号
由外向内去括号.
归纳
(1)去括号时要按一定的顺序,可以由内向外去括号,也可以由外向内去括号. (2)在解含多重括号的一元一次方程时,要根据方程中各系数的特点,灵活选择适当的运算步骤和运算方法,使求解过程更加简便.
类型二、利用去分母解方程
2.利用ห้องสมุดไป่ตู้分母解下列方程:
(1) ;
(3) .
类型一、利用去括号解方程
去大括号
去中括号
整理,得 .
方程两边乘 3,得
x+2+12=15.
移项、合并同类项,得
x=1.
类型一、利用去括号解方程
解一元一次方程(二)——
去括号与去分母
(第3课时)
人教版七年级数学上册
1.利用去括号解方程
(1)注意符号“+”“-”的改变,即括号前有正号不变号,括号前有负号必变号; (2)去括号时,不要漏乘括号内的任何一项.
例:3x+5(20-x)=6x-(8-x).
去括号,得 3x+100-5x=6x-8+x.
(1)不含分母的项,也必须乘分母的最小公倍数,一定不要漏乘; (2)分子是一个多项式时,去分母后不要忘记加括号.
2.利用去分母解方程
即x+2(x+2)=10.
3.列方程解应用题的步骤
(1)审题勾画关键词,找出相等关系; (2)表示相等关系; (3)设未知数,列方程; (4)解方程、检验,并答题.
(2) .
(1) ;
类型一、利用去括号解方程
(2) ;
1.利用去括号解下列方程:
(3) .
(1)2x+(10-x)=5x;
类型一、利用去括号解方程
去小括号
由外向内去括号.
归纳
(1)去括号时要按一定的顺序,可以由内向外去括号,也可以由外向内去括号. (2)在解含多重括号的一元一次方程时,要根据方程中各系数的特点,灵活选择适当的运算步骤和运算方法,使求解过程更加简便.
类型二、利用去分母解方程
2.利用ห้องสมุดไป่ตู้分母解下列方程:
(1) ;
(3) .
类型一、利用去括号解方程
去大括号
去中括号
整理,得 .
方程两边乘 3,得
x+2+12=15.
移项、合并同类项,得
x=1.
类型一、利用去括号解方程
解一元一次方程(二)——
去括号与去分母
(第3课时)
人教版七年级数学上册
1.利用去括号解方程
(1)注意符号“+”“-”的改变,即括号前有正号不变号,括号前有负号必变号; (2)去括号时,不要漏乘括号内的任何一项.
例:3x+5(20-x)=6x-(8-x).
去括号,得 3x+100-5x=6x-8+x.
(1)不含分母的项,也必须乘分母的最小公倍数,一定不要漏乘; (2)分子是一个多项式时,去分母后不要忘记加括号.
2.利用去分母解方程
即x+2(x+2)=10.
3.列方程解应用题的步骤
(1)审题勾画关键词,找出相等关系; (2)表示相等关系; (3)设未知数,列方程; (4)解方程、检验,并答题.
(2) .
(1) ;
北师大版七年级数学上册-第五章一元一次方程(同步+复习)串讲精品课件【作者:李树茂】

内蒙古包头瑞星教育原创精品课件——版权所有
第五章
一元一次方程
七年级(上)
第一单元:认识一元一次方程
一.等式及性质
1. 2. 等式:表示相等关系的式子叫做等式(左右 两边的代数式用等号连接)。 等式的性质:
① 性质1: 等式的两边都加上(或减去)同一个数 或同一个整式,所得的结果仍是等式。 若 A=B,则:A+M=B+M ② 性质2:等式的两边都乘(或除以)同一个数 (除数不为零),所得的结果仍是等式。 A B 若 A=B,则:AM=BM;— = — M M ③ 等式的可逆性(对称性);等式的传递性。 若A=B 则B=A;若A=B,B=C 则A=C。
解:设这批夹克每件的成本是X元,则: X(1+50%)×80%=60 X=50 答:这批夹克每件的成本是50元。
【练习】甲、乙两家商场销 售同一种书包,甲商场售价 为80元,乙商场标价为120元, 但打出“特价酬宾,7折优惠” 的广告。 (1)若你是顾客,你会选 择在哪家商场购买? (2)若你是商场经理,你 会选择哪种销售方式?说说 你的想法。
【例1】用适当的数或整式填空,使所得的结 果仍是等式,并说明依据和变形的过程。
① ② ③ ④ ⑤ 若x+3=4 则: x=4+( ). 若2x=10-3x 则: 2x+( )=10. 若0.2x=0 则: x=( ). -2x=6 则: x=( ). 若4x+3=4 则: x=( ).
二.方程与一元一次方程的概念
则a =______ 。 -6 4.若x=4是方程 mx-8=20的解。则m=(
).
第二单元:求解一元一次方程
一.移项
1. 定义:依据等式的性质1,把方程中的项改 变符号后,从方程的一边移到另一边,这种 变形叫做移项。 注意:
第五章
一元一次方程
七年级(上)
第一单元:认识一元一次方程
一.等式及性质
1. 2. 等式:表示相等关系的式子叫做等式(左右 两边的代数式用等号连接)。 等式的性质:
① 性质1: 等式的两边都加上(或减去)同一个数 或同一个整式,所得的结果仍是等式。 若 A=B,则:A+M=B+M ② 性质2:等式的两边都乘(或除以)同一个数 (除数不为零),所得的结果仍是等式。 A B 若 A=B,则:AM=BM;— = — M M ③ 等式的可逆性(对称性);等式的传递性。 若A=B 则B=A;若A=B,B=C 则A=C。
解:设这批夹克每件的成本是X元,则: X(1+50%)×80%=60 X=50 答:这批夹克每件的成本是50元。
【练习】甲、乙两家商场销 售同一种书包,甲商场售价 为80元,乙商场标价为120元, 但打出“特价酬宾,7折优惠” 的广告。 (1)若你是顾客,你会选 择在哪家商场购买? (2)若你是商场经理,你 会选择哪种销售方式?说说 你的想法。
【例1】用适当的数或整式填空,使所得的结 果仍是等式,并说明依据和变形的过程。
① ② ③ ④ ⑤ 若x+3=4 则: x=4+( ). 若2x=10-3x 则: 2x+( )=10. 若0.2x=0 则: x=( ). -2x=6 则: x=( ). 若4x+3=4 则: x=( ).
二.方程与一元一次方程的概念
则a =______ 。 -6 4.若x=4是方程 mx-8=20的解。则m=(
).
第二单元:求解一元一次方程
一.移项
1. 定义:依据等式的性质1,把方程中的项改 变符号后,从方程的一边移到另一边,这种 变形叫做移项。 注意:
人教版七年级上册5.2解一元一次方程 第四课时 去分母 课件(共24张PPT)

1
4
5
A.15x 1 4( x 1)
B.3x 1 (4 x 1)
C.15x 20 4( x 1)
D.15x 4 4( x 1)
知识点1:利用去分母解方程
例7:解下列方程
x 1
2 x
(1)
1 2
2
4
解:去分母,得
2( x 1) 4 8 (2 x)
知识点1:利用去分母解方程
思考:从上面的解一元一次方程的过程,你能归纳出解
一元一次方程的一般步骤吗?
去分母、去括号、移项、合并同类项、系数化为1.
通过这些步骤,可以使以x为未知数的一元一次方程逐
步转化为x=m的形式。这个过程主要依据等式的性质
和运算律等.
3x
x 1
1.解方程
,以下去分母正确的是(C )
5.2解一元一次方程
第4课时 去分母
人教版版七年级上册
(1)经历从现实情境中方程的特点,会解含有分
母的一元一次方程.
(2)体验通过去分母、去括号、移项、合并同类
项,把未知数系数化为1得到方程解的转化过程.
解含有分母的一元一次方程.
去分母.
1.去括号解一元一次方程的一般步骤是
什么?
(1)去括号;(2)移项(变号);
去括号,得
2x 2 4 8 2 x
移项,得
2x x 8 2 2 4
合并同类项,得
3x 12
系数化为1,得
x4
知识点1:利用去分母解方程
例7:解下列方程
x 1
2x 1
(2)3x
3
2
3
解:去分母,得
4
5
A.15x 1 4( x 1)
B.3x 1 (4 x 1)
C.15x 20 4( x 1)
D.15x 4 4( x 1)
知识点1:利用去分母解方程
例7:解下列方程
x 1
2 x
(1)
1 2
2
4
解:去分母,得
2( x 1) 4 8 (2 x)
知识点1:利用去分母解方程
思考:从上面的解一元一次方程的过程,你能归纳出解
一元一次方程的一般步骤吗?
去分母、去括号、移项、合并同类项、系数化为1.
通过这些步骤,可以使以x为未知数的一元一次方程逐
步转化为x=m的形式。这个过程主要依据等式的性质
和运算律等.
3x
x 1
1.解方程
,以下去分母正确的是(C )
5.2解一元一次方程
第4课时 去分母
人教版版七年级上册
(1)经历从现实情境中方程的特点,会解含有分
母的一元一次方程.
(2)体验通过去分母、去括号、移项、合并同类
项,把未知数系数化为1得到方程解的转化过程.
解含有分母的一元一次方程.
去分母.
1.去括号解一元一次方程的一般步骤是
什么?
(1)去括号;(2)移项(变号);
去括号,得
2x 2 4 8 2 x
移项,得
2x x 8 2 2 4
合并同类项,得
3x 12
系数化为1,得
x4
知识点1:利用去分母解方程
例7:解下列方程
x 1
2x 1
(2)3x
3
2
3
解:去分母,得
人教版数学七年级上册解一元一次方程(二)--去分母课件

去括号
15x – 3x + 4x = – 2 – 6 – 5+20
移项
16x = 7
x 7 16
合并同类项 系数化为1
续探去分母法解一元一次方程
3x x 1 3 2x 1;
2
3
解:去分母(两边乘以6),得
18x+3(x-1)=18-2(2x-1)
你漏乘
方程两边各项 都乘以6。
了吗? 去括号,得 18x+3x-3=18-4x+2
再探一元一次方程的应用!
童话数学100雁问题
例1:碧空万里,一群大雁在翱翔,迎面又飞来一
只小灰雁,它对群雁说:“你们好,百只雁!你们百雁 齐飞,好气派!可怜我孤雁独飞.”群雁中一只领头的 老雁说: “不对!小朋友,我们远远不足100只.将我们 这一群加倍,再加上半群,又加上四分之一群,最后还 得请你也凑上,那才一共是100只呢!”
“尊敬的毕达哥拉斯,请你告知我,有多少名学生在 你学校里听你讲课?”
毕达哥拉斯回答说“一共有这么多学生在听课:其中 二分之一在学数学,四分之一学习音乐,七分之一沉默 无言,此外还有三名女生:”
你能算出有多少名学生吗?
解:设有x名学生
由题意,得 去分母,得
1 x+ 1 x+ 1 x+3=x. 24 7 28x+14x+8x+168=56x.
知识回顾
❖上节课我们学习了一元一次方程 的解法,它有哪些基本步骤?
❖你觉得在解一元一次方程中,最 容易在哪里出错?
❖应用一元一次方程解应用题的一 般步骤是什么?
问题:英国伦敦博物馆保存着一部分极其珍贵的
文物——纸莎草文书.现存世界上最古老的方程就 出现在这部英国考古学家兰德1858年找到的纸草书 上.经破译,上面都是一些方程,共85个问题.其 中有如下一道著名的求未知数的问题:一个数,它 的三分之二,它的一半,它的七分之一,它的全部, 加起来总共是33,这个数为几何? 分析:设这个数为x.
5.2+解一元一次方程去分母解一元一次方程++课件+2024-2025学年人教版七年级数学上册

D
)
4.课外活动中一些学生分组参加活动,原来每组6人,后来重新编组,每组
8人,这样就比原来减少2组,则这些学生共有多少人?
解:设这些学生共有 x 人.根据题意,得
- =2,解得 x=48.
答:这些学生共有 48 人.
5.解下列方程:
-
-
(1)
-1=
;
解:(1)去分母,得3(3x-1)-1×12=2(5x-7).
合并同类项
;
(5)
系数化为1.
最小
.
课堂互动
知识点 1 去分母解一元一次方程
例1
在解方程
+ -
是( D )
A.2(x+1)-x-1=1
B.2(x+1)-x-1=4
C.2(x+1)-(x-1)=1
D.2(x+1)-(x-1)=4
-
=1 时,第一步应先“去分母”,去分母后所得方程
知识点2 去分母解一元一次方程的应用
+
由题意,得 -
=1.
解得 x=360.
答:该单位参加旅游的职工有 360 人.
10.(运算能力)小明解方程
-
素养题
+1=
+
,由于粗心大意,在去分母时,方程左
边的 1 没有乘 10,由此求得的解为 x=4,试求 a 的值,并求出方程的正确解.
解:由题意,得方程 2(2x-1)+1=5(x+a)的解为 x=4,所以 2(2×4-1)+1=5(4+a),
-
+
5.2 第4课时 去分母 课件(共19张PPT) 人教版七年级数学上册
重点
难点
故事导入
毕达哥拉斯是古希腊著名的数学家,有一次有人问他:“尊敬的毕达哥拉斯先生,请告诉我,有多少名学生在你的学校里听你讲课?”毕达哥拉斯回答说:“我的学生,现在有在学习数学,在学习音乐, 沉默无言,此外,还有三名妇女.”请你算一算,毕达哥拉斯的学生有多少名? 你会解这个方程吗?
(设毕达哥拉斯有x名学生.x+ x+ x+3=x)
(1)不对,方程右边常数项漏乘最小公倍数.
(2)不对.分数线还代表括号,去分母时,分子是多项式的应该将分子用括号括上)
(3)去括号,得x-24=7.移项,得x=7+24.合并同类项,得x=31
2.解含分数系数的一元一次方程的步骤包括哪些?这些步骤是一成不变的吗?3.去分母时应该注意什么问题?
去分母、去括号、移项、合并同类项、系数化为1.步骤不是一成不变的,根据方程的特点,采取灵活、合理的步骤
教材习题:完成课本130页习题3题.
同学们再见!
授课老师:
时间:2024年9月15日
知识点1:去分母解一元一次方程(重难点)
注:1.如果分子是一个多项式,那么在去分母时,不要忘记将分子看作一个整体加上括号;2.去分母时不要漏乘不含分母的项;3.去分母≠分数的基本性质,去分母时与方程的每一项都有关,分数的基本性质只对方程中的某一个分数进行变形,与其他项无关.
知识点2:解一元一次方程的一般步骤(重点)
解:②去分母,得5(x-3)-2(4x+1)=10.去括号,得5x-15-8x-2=10.移项,得5x-8x=10+15+2.合并同类项,得-3x=27.系数化为1,得x=-9.
例3:课外活动中,一些学生分组参加活动.原来每组6人,后来重新编组,每组8人,这样比原来减少了2组,问这些学生共有多少人?
难点
故事导入
毕达哥拉斯是古希腊著名的数学家,有一次有人问他:“尊敬的毕达哥拉斯先生,请告诉我,有多少名学生在你的学校里听你讲课?”毕达哥拉斯回答说:“我的学生,现在有在学习数学,在学习音乐, 沉默无言,此外,还有三名妇女.”请你算一算,毕达哥拉斯的学生有多少名? 你会解这个方程吗?
(设毕达哥拉斯有x名学生.x+ x+ x+3=x)
(1)不对,方程右边常数项漏乘最小公倍数.
(2)不对.分数线还代表括号,去分母时,分子是多项式的应该将分子用括号括上)
(3)去括号,得x-24=7.移项,得x=7+24.合并同类项,得x=31
2.解含分数系数的一元一次方程的步骤包括哪些?这些步骤是一成不变的吗?3.去分母时应该注意什么问题?
去分母、去括号、移项、合并同类项、系数化为1.步骤不是一成不变的,根据方程的特点,采取灵活、合理的步骤
教材习题:完成课本130页习题3题.
同学们再见!
授课老师:
时间:2024年9月15日
知识点1:去分母解一元一次方程(重难点)
注:1.如果分子是一个多项式,那么在去分母时,不要忘记将分子看作一个整体加上括号;2.去分母时不要漏乘不含分母的项;3.去分母≠分数的基本性质,去分母时与方程的每一项都有关,分数的基本性质只对方程中的某一个分数进行变形,与其他项无关.
知识点2:解一元一次方程的一般步骤(重点)
解:②去分母,得5(x-3)-2(4x+1)=10.去括号,得5x-15-8x-2=10.移项,得5x-8x=10+15+2.合并同类项,得-3x=27.系数化为1,得x=-9.
例3:课外活动中,一些学生分组参加活动.原来每组6人,后来重新编组,每组8人,这样比原来减少了2组,问这些学生共有多少人?
2020年七年级数学上册 第3章 一元一次方程 3.3 解一元一次方程(二)—去括号与去分母 第2课时 去分母课件
D.x+4 2=3x
易错点 去分母时漏乘无分母的项导致错误.
自我诊断4. 方程x+2 1-1=2-33x的解为 x=97
.
1.解方程x-3 1-x+6 2=4-2 x的步骤如下,则错误的一步为( B ) A.2(x-1)-(x+2)=3(4-x) B.2x-2-x+2=12-3x C.4x=12 D.x=3
x 2
=3,解为x=2;第2个方程是
x 2
+
x 3
=
5程,是解为1x0x+=1x61;=第213个方,程其是解x3为+
x 4
=7,解为x=12,…,根据规律第10个方
x=110
.
10.解方程:
(1)2x5+3=32x-2x3-7;
(2)x-2 4+0.2x0-.5 0.3=00..0021x.
再 见!
C.12-2(5x+7)=-(x+17)
D.12-10x+14=-(x+17)
去分母解方程的应用
自我诊断3. 小华用x元买学习用品,若全买钢笔,刚好买3支,若全买笔记
本刚好买4本.已知一个笔记本比一支钢笔便宜2元,则下列方程中正确的
是( A )
A.x3=x4+2
B.x4=3x+2
C.x4=x+3 2
解:(1)x=-8; (2)x=-2116.
11.已知关于x的方程4x+m=3x+1的解比3x-
3x-m 2
=1的解小3,求m的
值. 3x-m
解:解方程4x+m=3x+1,得x=1-m,解方程3x- 2 =1,得x=
2-m
2-m
3 ,所以有1-m+3= 3 ,解得m=5.
12.某工厂第一车间人数比第二车间人数的
7.如果方程2-
x+1 3
5.2.4 利用去分母解一元一次方程(课件)人教版(2024)数学七年级上册
5.2 解一元一次方程
第三章 一元一次方程
第4课时 利用去分母解一元一次方程
1. 掌握含有分数系数的一元一次方程的解法.(重点)2. 熟练利用解一元一次方程的步骤解各种类型的方 程.(难点)
目录页
讲授新课
当堂练习
课堂小结
新课导入
新课导入
教学目标
教学重点
解下列方程 : 2-2(x-7)=x-(x-4)解:去括号,得 2-2x+14=x+x+4 移项,得 -2x-x-x=4-2-14 合并同类项,得 -4x=-12 系数化为1,得 x=3
A
利用去分母解一元一次方程
2. 去分母时要注意什么问题?
想一想
1. 若使方程的系数变成整系数方程, 方程两边应该同乘以什么数?
系数化为1
去分母(方程两边同乘各分母的最小公倍数)
移项
合并同类项
去括号
知识点
解一元一次方程的步骤:
移项
合并同类项
系数化为1
去括号
去分母
归纳
例2 解下列方程:
练一练
解下列方程:
解:去分母(方程两边乘6),得 (x-1) -2(2x+1) = 6.去括号,得 x-1-4x-2 = 6.移项,得 x-4x = 6+2+1.合并同类项,得 -3x = 9.系数化为1,得 x = -3.
去分母(方程两边乘30),得 6 (4x+9) -10(3+2x) = 15(x-5).去括号,得 24x+54-30-20x = 15x-75.移项,得 24x-20x-15x =-75-54+30 .合并同类项,得 -11x = -99.系数化为1,得 x = 9.
第三章 一元一次方程
第4课时 利用去分母解一元一次方程
1. 掌握含有分数系数的一元一次方程的解法.(重点)2. 熟练利用解一元一次方程的步骤解各种类型的方 程.(难点)
目录页
讲授新课
当堂练习
课堂小结
新课导入
新课导入
教学目标
教学重点
解下列方程 : 2-2(x-7)=x-(x-4)解:去括号,得 2-2x+14=x+x+4 移项,得 -2x-x-x=4-2-14 合并同类项,得 -4x=-12 系数化为1,得 x=3
A
利用去分母解一元一次方程
2. 去分母时要注意什么问题?
想一想
1. 若使方程的系数变成整系数方程, 方程两边应该同乘以什么数?
系数化为1
去分母(方程两边同乘各分母的最小公倍数)
移项
合并同类项
去括号
知识点
解一元一次方程的步骤:
移项
合并同类项
系数化为1
去括号
去分母
归纳
例2 解下列方程:
练一练
解下列方程:
解:去分母(方程两边乘6),得 (x-1) -2(2x+1) = 6.去括号,得 x-1-4x-2 = 6.移项,得 x-4x = 6+2+1.合并同类项,得 -3x = 9.系数化为1,得 x = -3.
去分母(方程两边乘30),得 6 (4x+9) -10(3+2x) = 15(x-5).去括号,得 24x+54-30-20x = 15x-75.移项,得 24x-20x-15x =-75-54+30 .合并同类项,得 -11x = -99.系数化为1,得 x = 9.
5.2 解一元一次方程(去分母) 课件 (共18张PPT)-人教版数学七年级上册
(1) 5(3x−1)=4(x+1)
(2) 3x 1 x+1
4
5
和同学说说 这两个方程?
将下列方程去分母(只去分母,不求解)
x+2
(1)
x 1
3
2
解:去分母得:
(1)2(x+2)=3(x−1)
(2) x 3 x +1 46
(2)3(x−3)=2x+12
(3) 2x 3 +2 x x (3)3(2x−3)+2×12=4x − 12x
5.2 解一元一次方程 ——去分母
学习目标
1. 掌握含有分数系数的一元一次方程的去分母;(重 点) 2. 熟练根据解一元一次方程的步骤解各种类型的方
程。(难点)
情境导入
英国伦敦博物馆保存着一部极 其珍贵的文物----纸莎草文书。 书 中记载了许多与方程有关的数学 问题。其中有如下一道著名的求 未知数的问题:
拓展题
拓展题
2.有一人问老师,他所教的班级有多少学生,老师 说;“一半学生在学数学,四分之一的学生在学音乐, 七分之一的学生在学外语,还剩六位学生正在操场 踢足球.”你知道这个班有多少学生吗?
下课! 同学们再见!
授课老师: 时间:2024年9月15日
2023 课件
去 括 号 注意符号,防止漏乘;
移
项 移项要变号,防止漏项;
合并同类项
系数化为1
把未知数系数相加减,未知数不变;常数项 相加减
方程右边的数作分母,不要把分子分母弄颠倒
课后作业
1.解下列方程
基础题
(1) x 3 3x 4 ; 5 15
(2) 5y 4 y 1 2 5y 5 .