测井曲线的识别及应用

合集下载

测井曲线综合解释课件

测井曲线综合解释课件

测井曲线种类
01
02
03
电测井曲线
包括电阻率曲线、自然电 位曲线等,反映地层的导 电性、自然电场等电学性 质。
声波测井曲线
包括声速测井、声幅测井 等,反映地层的声学性质 和岩石机械性质。
核测井曲线
包括伽马测井、中子测井 等,利用放射性核素测量 地层的放射性。
测井曲线应用
地层评价
通过分析测井曲线,可以 对地层进行岩性、物性、 含油性等方面的评价。
多学科交叉 测井曲线综合解释将与地质学、地球物理学、数学等多个 学科交叉融合,形成更加系统化和科学化的解释方法。
数据共享与协同工作 随着大数据和云计算技术的发展,测井数据将实现共享, 多学科专家可以协同工作,共同完成测井曲线综合解释任 务。
测井曲线综合解释技术的挑战与机遇
1 2 3
数据处理难度大 测井数据量大、维度多,需要高效的数据处理和 分析技术,对硬件和软件要求较高。
测井曲线综合解释课件
目 录
• 测井曲线概述 • 测井曲线解释基础 • 测井曲线综合解释方法 • 测井曲线综合解释应用 • 测井曲线综合解释展望
contents
01
测井曲线概述
测井曲线定义
• 测井曲线定义:测井曲线是利用测井技术测量并绘制出的地层 岩石的物理性质变化曲线,反映了地下岩层和流体的物理性质。
多学科知识融合难度高 测井曲线综合解释需要多学科知识的融合,如何 将不同学科的知识有机地结合起来是技术难点之 一。
解释结果的不确定性 由于地质条件的复杂性和测井数据的局限性,测 井曲线综合解释结果存在一定的不确定性,需要 不断完善和改进解释方法。
测井曲线综合解释技术的未来发展方向
集成化解释平台
未来将开发更加集成化的测井曲 线综合解释平台,实现数据管理、

测井曲线具体划分

测井曲线具体划分

井下地层是由各类岩石组成,不同的岩石具有不同的物理化学性质,为了研究各类岩石的物理性质及井下地层是否含有石油天然气和其他有用矿产,建立了一门实用性很强的边缘学科---地球物理测井学,简称“测井”,它以地质学、物理学、数学为理论基础,采用计算机信息技术、电子技术及传感器技术,设计出专门的测井仪器,沿着井身进行测量,得出地层的各种物理、化学性质、地层结构及井身几何特性等各种信息,为石油天然气勘探、油气田开发提供重要数据和资料。

测井的井场作业如图所示,由测井地面仪器、绞车和电缆组成,通过电缆把下井仪器放到井底,在提升电缆过程中进行测量。

第一节:概述普通电阻率测井就是把一个电极系放入井内,测量井内岩层电阻率变化,用以研究地质剖面、判断油气水层。

又称视电阻率测井。

内容:梯度电极系、电位电极系、微电极测井主要任务:通过测井岩石电阻率的差别来区分岩性、划分油气水层,进行剖面地层对比等。

岩石电阻率一、岩石电阻率与岩性的关系不同岩性的岩石,电阻率不同。

主要造岩矿物的电阻率很高,石油的电阻率很高,几乎不导电。

沉积岩是靠岩石孔隙中所含地层水中的离子导电的。

二、岩石电阻率与地层水性质的关系岩石骨架:组成沉积岩的造岩矿物的固体颗粒部分。

沉积岩的导电能力主要取决于其孔隙中的地层水的性质—地层水电阻率。

1.地层水电阻率与含盐类化学成分的关系2.地层水Rw与矿化度Cw的关系:反比3.Rw与温度的关系:反比三、含水岩石电阻率与孔隙度的关系地层因素F:完全含水(100%含水)岩石的电阻率Ro与地层水电阻率的比值。

即F=Ro/Rw该比值只与岩石的孔隙度、胶结情况和孔隙结构有关,与Rw无关。

实验证明:F=a/φ(m)其中:a—与岩性有关的系数,0.6-1.5;m—胶结指数,随岩石胶结程度不同而变化,1.5-3;例:某油田第三系一含水砂岩的电阻率为7.2欧姆.米,地层水电阻率为1.2欧姆.米。

试求该层的孔隙度。

(a=0.93,m=1.64)解:F=Ro/Rw=7.2/1.2=6F=a/φ(m)=0.93/φ(1.64)得,φ=32%四、含油岩石电阻率Rt与含油饱和度So的关系电阻增大系数I:含油岩石的电阻率与该岩石完全含水时电阻率的比值。

测井曲线基本原理及其应用测井曲线基本原理及其应用

测井曲线基本原理及其应用测井曲线基本原理及其应用

测井曲线基本原理及其应用测井曲线基本原理及其应用一.国产测井系列1、标准测井曲线2.5m底部梯度视电阻率曲线。

地层对比,划分储集层,基本反映地层真电组率。

恢复地层剖面。

自然电位(SP)曲线。

地层对比,了解地层的物性,了解储集层的泥质含量。

2、组合测井曲线(横向测井)含油气层(目的层)井段的详细测井项目。

双侧向测井(三侧向测井)曲线。

深双侧向测井曲线,测量地层的真电组率(RT),试双侧向测井曲线,测量地层的侵入带电阻率(RS)。

0.5m电位曲线。

测量地层的侵入带电阻率。

0.45m底部梯率曲线,测量地层的侵入带电阻率,主要做为井壁取蕊的深度跟踪曲线。

补偿声波测井曲线。

测量声波在地层中的传输速度。

测时是声波时差曲线(AC)自然电位(SP)曲线。

井径曲线(CALP)。

测量实际井眼的井径值。

微电极测井曲线。

微梯度(RML),微电位(RMN),了解地层的渗透性。

感应测井曲线。

由深双侧向曲线计算平滑画出。

[L/RD]*1000=COND。

地层对比用。

3、套管井测井曲线自然伽玛测井曲线(GR)。

划分储集层,了解泥质含量,划分岩性。

中子伽玛测井曲线(NGR)划分储集层,了解岩性粗细,确定气层。

校正套管节箍的深度。

套管节箍曲线。

确定射孔的深度。

固井质量检查(声波幅度测井曲线)二、3700测井系列1、组合测井双侧向测井曲线。

深双侧向测井曲线,反映地层的真电阻率(RD)。

浅双侧向测井曲线,反映侵入带电阻率(RS)。

微侧向测井曲线。

反映冲洗带电阻率(RX0)。

补偿声波测井曲线(AC),测量地层的声波传播速度,单位长度地层价质声波传播所需的时间(MS/M)。

反映地层的致密程度。

补偿密度测井曲线(DEN),测量地层的体积密度(g/cm3),反映地层的总孔隙度。

补偿中子测井曲线(CN)。

测量地层的含氢量,反映地层的含氢指数(地层的孔隙度%)自然电位曲线(SP)自然伽玛测蟛曲线(GR),测量地层的天然放射性总量。

划分岩性,反映泥质含量多少。

测井九条曲线的应用

测井九条曲线的应用
砂岩的流体为水时:含氢量高 砂岩的流体为油时:含氢量低
① ②

砂岩的流体为气时:含氢量低
密度(DEN)
反应地层孔隙度
※测得地层孔隙度为有效孔隙度 划分岩性 判断气层 计算孔隙度 块煤的密度为1.4g/m3 粉煤的密度为1.7~1.8g/m3
地层在各曲线中的反应
GR 煤层 低 泥岩 高 灰岩 低 高 DNL 低 RT 高 低 高 低 DT 高 CNL 高 高 低 DEN 高 高
自然伽玛(GR) 自然电位(SP) 微球聚焦(RXO) 岩性(DEN) 深侧向(LLD) 浅侧向(LLS) 声波(DT) 中子(CNL) 密度(DNL)

自然伽玛(GR)
一、作用 反应地层的泥质含量 判断地层盐型、计算泥质含量 二、岩性的反应出 ★ 泥岩的GR最高 ★ 煤岩与灰岩的GR最低
• 反应地层的孔隙度 • 岩性反应 1.泥岩的声波 2.砂岩的声波 3.灰岩的声波 4.煤岩的声波
300µ/m 270µ/m 300µ/m 300µ/m
中子(CNL)
• • ☆ • 反应地层孔隙度 反应气层 中子测得孔隙度为有效孔隙度 测含氢量 泥岩含氢量高 煤岩含氢量高 灰岩含氢量低 砂岩含氢量根据流体改变
自然电位(SP) spontaneous potential
作用 (1)反应地层渗透率 (2)测定渗透率、矿化度
微球聚焦(RXO)

反应电阻率
深、浅侧向(LLD、LLS)
• 反应地层电阻率 • 岩性反应 1、泥岩的电阻率小 2、砂岩的电阻率根据流体的不同在变化 3、煤岩与灰岩的电阻率高
声波(DT)

测井曲线解释及其含义

测井曲线解释及其含义

主要测井曲线及其含义主要测井曲线及其含义一、自然电位测井:测量在地层电化学作用下产生的电位。

自然电位极性的“正”、“负”以及幅度的大小与泥浆滤液电阻率Rmf和地层水电阻率Rw的关系一致。

Rmf≈Rw时,SP几乎是平直的; Rmf>Rw时SP为负异常;Rmf<Rw时,SP在渗透层表现为正异常。

自然电位测井SP曲线的应用:①划分渗透性地层。

②判断岩性,进行地层对比。

③估计泥质含量。

④确定地层水电阻率。

⑤判断水淹层。

⑥沉积相研究。

自然电位正异常Rmf<Rw时,SP出现正异常。

淡水层Rw很大(浅部地层)咸水泥浆(相对与地层水电阻率而言)自然电位测井自然电位曲线与自然伽马、微电极曲线具有较好的对应性。

自然电位曲线在水淹层出现基线偏移二、普通视电阻率测井(R4、R2.5)普通视电阻率测井是研究各种介质中的电场分布的一种测井方法。

测量时先给介质通入电流造成人工电场,这个场的分布特点决定于周围介质的电阻率,因此,只要测出各种介质中的电场分布特点就可确定介质的电阻率。

视电阻率曲线的应用:①划分岩性剖面。

②求岩层的真电阻率。

③求岩层孔隙度。

④深度校正。

⑤地层对比。

电极系测井2.5米底部梯度电阻率进套管时有一屏蔽尖,它对应套管鞋深度;若套管下的较深,在测井图上可能无屏蔽尖,这时可用曲线回零时的半幅点向上推一个电极距的长度即可。

底部梯度电极系分层:顶:低点;底:高值。

三、微电极测井(ML)微电极测井是一种微电阻率测井方法。

其纵向分辨能力强,可直观地判断渗透层。

主要应用:①划分岩性剖面。

②确定岩层界面。

③确定含油砂岩的有效厚度。

④确定大井径井段。

⑤确定冲洗带电阻率Rxo及泥饼厚度hmc。

微电极确定油层有效厚度微电极测井微电极曲线应能反映出岩性变化,在淡水泥浆、井径规则的条件下,对于砂岩、泥质砂岩、砂质泥岩、泥岩,微电极曲线的幅度及幅度差,应逐渐减小。

四、双感应测井感应测井是利用电磁感应原理测量介质电导率的一种测井方法,感应测井得到一条介质电导率随井深变化的曲线就是感应测井曲线。

测井曲线原理

测井曲线原理

主要测井曲线及其含义一、自然电位测井:测量在地层电化学作用下产生的电位。

自然电位极性的“正”、“负”以及幅度的大小与泥浆滤液电阻率Rmf和地层水电阻率Rw 的关系一致。

Rmf≈Rw时,SP几乎是平直的;Rmf>Rw时SP为负异常;Rmf<Rw时,SP在渗透层表现为正异常。

自然电位测井SP曲线的应用:①划分渗透性地层。

②判断岩性,进行地层对比。

③估计泥质含量。

④确定地层水电阻率。

⑤判断水淹层。

⑥沉积相研究。

自然电位正异常Rmf<Rw时,SP出现正异常。

淡水层Rw很大(浅部地层)咸水泥浆(相对与地层水电阻率而言)自然电位测井自然电位曲线与自然伽马、微电极曲线具有较好的对应性。

自然电位曲线在水淹层出现基线偏移二、普通视电阻率测井(R4、R2.5)普通视电阻率测井是研究各种介质中的电场分布的一种测井方法。

测量时先给介质通入电流造成人工电场,这个场的分布特点决定于周围介质的电阻率,因此,只要测出各种介质中的电场分布特点就可确定介质的电阻率。

视电阻率曲线的应用:①划分岩性剖面。

②求岩层的真电阻率。

③求岩层孔隙度。

④深度校正。

⑤地层对比。

电极系测井2.5米底部梯度电阻率进套管时有一屏蔽尖,它对应套管鞋深度;若套管下的较深,在测井图上可能无屏蔽尖,这时可用曲线回零时的半幅点向上推一个电极距的长度即可。

底部梯度电极系分层:顶:低点;底:高值。

三、微电极测井(ML)微电极测井是一种微电阻率测井方法。

其纵向分辨能力强,可直观地判断渗透层。

主要应用:①划分岩性剖面。

②确定岩层界面。

③确定含油砂岩的有效厚度。

④确定大井径井段。

⑤确定冲洗带电阻率Rxo及泥饼厚度hmc。

微电极确定油层有效厚度微电极测井微电极曲线应能反映出岩性变化,在淡水泥浆、井径规则的条件下,对于砂岩、泥质砂岩、砂质泥岩、泥岩,微电极曲线的幅度及幅度差,应逐渐减小。

四、双感应测井感应测井是利用电磁感应原理测量介质电导率的一种测井方法,感应测井得到一条介质电导率随井深变化的曲线就是感应测井曲线。

地球物理测井各条测井曲线的原理及应用


浅双侧向电阻率测井
RMLL
micro lateral resistivity log
微侧向电阻率测井
CON
induction log
感应测井
AC
acoustic
声波时差
DEN
density
密度
CN
neutron
中子
GR
natural gamma ray
自然伽马
SP
spontaneous potential
-|25mv|+

自然电位 原状地层
侵 入 带 ( 稀 溶
浆 ( 稀 溶 液 )


泥岩 砂岩
泥岩
1、自然电位测井
•曲线特点
砂泥岩剖面: 泥岩处 SP曲线平直(基线) 砂岩处 负异常(Rmf > Rw )
负异常幅度 与粘土含量成反 比,Rmf / Rw 成正比
曲线应用
① 划分岩层界面 ② 确定渗透性岩层 ③ 确定水淹层
1:500测井项目 (全井 )
1 双侧向
1
2 声波时差
2
3 自然电位
3
4 自然伽马
4
5 井径
5
6 井斜
6
7
1:200测井项目 (目的层段) 双侧向—微球形聚焦
选测项目 地层倾角
岩性密度 补偿中子 声波时差 自然伽马 自然电位
井径
自然伽马能谱
微电阻率成像
声波成像
核磁共振
双感应—八侧 向(上古目的 层)
测井符号
英文名称
中文名称
Rt
true formation resistivity.
地层真电阻率
Rxo

《测井曲线标准化》课件

地质研究
测井曲线标准化在地质研究中也有广泛应用,如古生物地层学、沉积学 、构造地质学等领域,通过标准化处理,能够更好地揭示地质历史和演 化过程。
未来研究方向
算法优化
进一步优化测井曲线标准化的算法,提高标准化的准确性和稳定性,减少人为因素和随 机误差的影响。
数据融合
加强不同类型测井数据的融合和处理,实现多源数据的协同分析和综合解释,提高地层 评价和油气检测的精度和可靠性。
多学科交叉
加强地质学、地球物理学、数学、计算机科学等 多学科的交叉融合,推动测井曲线标准化的理论 和方法创新。
应用前景
01
油气勘探开发
测井曲线标准化是油气勘探开发中的重要环节,通过标准化处理,能够
更好地揭示地层特征和油气分布规律,提高勘探开发效率。
02 03
煤田勘探
在煤田勘探中,测井曲线标准化也是必不可少的步骤,通过标准化处理 ,能够更好地了解煤层分布和煤质特征,为煤田的合理开发和利用提供 依据。
确定标准层
选择一个或多个标准层,作为标 准化的参考层。标准层应具有代 表性,能够反映所研究区域的地 质特征。
计算标准化系数
根据标准层和其他井的数据,计 算各个井的标准化系数,以实现 归一化处理。
数据收集
收集需要进行标准化的测井数据 ,包括各个井的测井曲线、井深 、钻井参数等信息。
应用标准化系数
将标准化系数应用于各个井的测 井曲线,得到标准化的测井数据 。
重要性
由于测井过程中存在众多影响因素,如仪器误差、环境因素、人为误差等,导致不同测井曲线之间存在较大差异 。通过标准化处理,可以消除这些差异,使测井曲线具有可比性和可分析性,为地质解释和油气藏评价提供准确 可靠的数据支持。
标准化流程

测井曲线综合解释


密度曲线
总结词
反映岩层密度的曲线
详细描述
密度曲线是通过测量地层对伽马射线的吸收能力来反映岩层的密度。在测井曲线 上,密度较高的岩层通常对应于砂岩或石灰岩,而密度较低的岩层则可能表示泥 岩或页岩。
中子曲线
总结词
反映岩层含氢量的曲线
详细描述
中子曲线是通过测量地层对中子的吸收能力来反映岩层的含氢量。在测井曲线上,中子吸收能力较强 的岩层通常表示含氢量较高的泥岩或页岩,而中子吸收能力较弱的岩层则可能表示含氢量较低的砂岩 或石灰岩。
地层倾角法是通过测量地层的倾斜角 度来判断地层的岩性和物性,该方法 需要使用特殊的测量仪器和数据处理 技术。
交会图法是最常用的方法之一,通过 将不同测井曲线绘制在一张图上,利 用它们的交会关系来判断地层的岩性、 物性和含油性。
模式识别法是一种基于人工智能和机 器学习的方法,通过训练模型来识别 地层的岩性和物性,该方法需要大量 的训练数据和计算资源。
数据噪声干扰
测井数据容易受到多种噪声的干 扰,如环境噪声、设备噪声等, 这些干扰会影响数据的准确性和 可靠性。
数据标准化和归一

由于不同测井设备的测量范围和 精度可能存在差异,需要进行标 准化和归一化处理,以确保数据 的可比性和一致性。
多参数综合分析的复杂性
参数间相互影响
测井曲线包含多个参数,这些参数之间可能 存在相互影响和耦合关系,需要进行深入分 析和综合考虑。
根据测井曲线数据,确定该库区存在软弱夹层和 裂隙,可能对水库的稳定性和安全性造成影响。
结论
建议对该库区进行进一步工程地质勘查,加强监 测和维护,确保水库的安全运行。
05
测井曲线综合解释的挑 战与展望
数据处理难度大

常用测井曲线含义及测井解释方法

主要测井曲线及其含义一、自然电位测井:测量在地层电化学作用下产生的电位。

自然电位极性的“正”、“负”以及幅度的大小与泥浆滤液电阻率Rmf和地层水电阻率Rw的关系一致。

Rmf≈Rw时,SP几乎是平直的;Rmf>Rw时S P为负异常;Rmf<Rw时,SP在渗透层表现为正异常。

自然电位测井SP曲线的应用:①划分渗透性地层。

②判断岩性,进行地层对比。

③估计泥质含量。

④确定地层水电阻率。

⑤判断水淹层。

⑥沉积相研究。

自然电位正异常Rmf<Rw时,SP出现正异常。

淡水层Rw很大(浅部地层)咸水泥浆(相对与地层水电阻率而言)自然电位测井自然电位曲线与自然伽马、微电极曲线具有较好的对应性。

自然电位曲线在水淹层出现基线偏移二、普通视电阻率测井(R4、R2.5)普通视电阻率测井是研究各种介质中的电场分布的一种测井方法。

测量时先给介质通入电流造成人工电场,这个场的分布特点决定于周围介质的电阻率,因此,只要测出各种介质中的电场分布特点就可确定介质的电阻率。

视电阻率曲线的应用:①划分岩性剖面。

②求岩层的真电阻率。

③求岩层孔隙度。

④深度校正。

⑤地层对比。

电极系测井2.5米底部梯度电阻率进套管时有一屏蔽尖,它对应套管鞋深度;若套管下的较深,在测井图上可能无屏蔽尖,这时可用曲线回零时的半幅点向上推一个电极距的长度即可。

底部梯度电极系分层:顶:低点;底:高值。

三、微电极测井(ML)微电极测井是一种微电阻率测井方法。

其纵向分辨能力强,可直观地判断渗透层。

主要应用:①划分岩性剖面。

②确定岩层界面。

③确定含油砂岩的有效厚度。

④确定大井径井段。

⑤确定冲洗带电阻率Rxo及泥饼厚度hmc。

微电极确定油层有效厚度微电极测井微电极曲线应能反映出岩性变化,在淡水泥浆、井径规则的条件下,对于砂岩、泥质砂岩、砂质泥岩、泥岩,微电极曲线的幅度及幅度差,应逐渐减小。

四、双感应测井感应测井是利用电磁感应原理测量介质电导率的一种测井方法,感应测井得到一条介质电导率随井深变化的曲线就是感应测井曲线。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一讲 测井曲线的识别及应用 钻井取芯、岩屑录井、地球物理测井是目前比较普及的三种认识了解地层的方法。钻井获取的岩芯资料直观、准确,但成本高、效率低。岩屑录井简便、及时,但干扰因素多,深度有误差,岩屑易失真。测井是一种间接的录井手段,它是应用地球物理方法,连续地测定岩石的物理参数,以不同的岩石存在着一定物性差别,在测井曲线上有不同的变化特征为基础,利用各种测井曲线显示的特征、变化规律来划分钻井地质剖面、认识研究储层的一种录井方法;具有经济实用、收获率高、易保存的优势,是目前我们认识地层的主要途径。 鄂尔多斯盆地常规测井系列分为综合测井和标准测井两种。 综合测井系列:重点反映目的层段钻井剖面的地层特征。测量井段由井底到直罗组底部,比例尺1:200。由感应、八侧向、四米电阻、微电极、声速、井径、自然电位、自然咖玛八种测井方法组成。探井、评价井为了提高储层物性解释精度,加测密度和补偿中子两条曲线。 标准测井系列:全面反映钻井剖面地层特征,测量井段由井底到井口(黄土层底部),比例尺1:500,多用于盆地宏观地质研究。过去标准测井系列较单一,仅有视电阻率、自然咖玛测井等两三条曲线。近几年完钻井的标准测井系列曲线较完善,只比综合测井系列少了微电极测井一项。 一、?????? 测井曲线的识别 微电极系测井、四米电阻测井、感应—八侧向测井、都是以测定岩石的电阻率为物理前提,但曲线的指向意义各异。微电极常用于判断砂岩渗透性和薄层划分。感应—八侧向测井用于判定砂岩的含油水层性能。四米电阻、声速、井径、自然电位、自然咖玛用于砂泥岩性划分。它们各有特定含义,又互相印证,互为补充,所以,我们使用时必须综合考虑。 1、微电极测井 大家知道,油井完钻后由井眼向外围依次是:泥饼、冲洗带、侵入带、地层。泥饼是泥浆中的水分进入地层后,吸附、残留在砂岩壁上的泥浆颗粒物。冲洗带是紧靠井壁附近,地层中的流体几乎被钻井液全部赶走了的部分;其深入地层的范围一般约7—8厘米。侵入带是钻井液与地层中流体的混合部分。 微电极测井是一种探测井壁周围泥饼和冲洗带电阻率的测井方法。由三个微电极系测得的微梯度和微电位两条曲线组成。微梯度探测范围(横向深度)4—5厘米,显示的是泥饼的电阻值(泥饼的厚度一般在3—5厘米之间,泥饼的电阻率通常为泥浆滤液电阻率的1—2倍);微电位探测深度8—10厘米,显示的是冲洗带的电阻值。当地层为非渗透性的泥岩、页岩时井壁无泥饼和冲洗带,梯度电阻值等于或接近电位电阻值,曲线重合或叠置;当地层为渗透性的砂岩时,梯度电阻值小于电位电阻值,两条曲线分离,出现差异,差异越大说明砂岩渗透性能越好。所以,主要用来判断储层的渗透性能。 微电极系由于电极距短,反应灵敏,极板紧贴井壁受泥浆影响小对层界面反映清晰,划分2~5米薄层时使用较多,曲线的拐点处为小层界面。 2、感应测井 感应测井是利用电磁感应的原理来测量地层的导电性能。双感应—八侧向综合井下仪器,测量的是地层深、中、浅三个不同位置上的电阻率值。深感应探测深度约为中感应的二倍(距井筒四米左右),反映的是原始地层的电阻率。中感应反映的是距井筒1~2米范围内地层的电阻率。八侧向反映的是井壁附近的电阻率。这种由近到远的三组合比较清楚的指示了电阻率的径向变化。是我们判定储层性质,定性划分油水层,定量解释油层的含油饱和度、含水饱和度的主要依据。 非渗透性的泥、页岩,钻井泥浆对其浸染较小,没有泥饼和侵入带,深、中、浅三个部位的电阻率差别较小,所以,深感应、中感应、八侧向三条曲线形态接近或重合。 致密砂岩段钻井泥浆对其浸染较小,侵入带较浅,八侧向反映的是冲洗带+侵入带的电阻率,深、中感应反映的均是原始地层的电阻率,所以,深、中感应电阻值相等曲线重合,八侧向电阻率值较高曲线峰态明显。 渗透性好的砂岩段侵入带较深,深、中、八三条曲线差异较大,渗透性越好曲线间距越大。当原始地层为水层时,电阻值向着远井方向递减,含水饱和度越高电阻率越小,所以,测得的视电阻率值深感应最小,八侧向最大,中感应居中,在测井图上,深、中、八三条曲线由左向右平行排列。当原始地层为油层时,油层电阻值高于侵入带而低于井壁附近,所以,深感应电阻率大于中感应而小于八侧向,中、深、八三条曲线由左向右依次排列。 平时工作中,我们常以中感应曲线为中轴,以深感应曲线的正负偏态,判定储层的含油水性。深感应曲线负偏时(深感应曲线在中感应曲线左边),是水层;深感应曲线正偏时(深感应曲线在中感应曲线右边),则为油层。 另外,感应测井受高阻邻层(钙质层等)影响小,对低电阻地层反映灵敏,也是我们确定延长统标志层—凝灰岩的主要依据之一。曲线的半幅点为层系界面。 3、 普通电阻率测井 普通电阻率测井根据电极系大小分为1米、2.5米、4米电阻率测井,不同的地区根据自己的地层特征选择最适合自己的电极系,长庆近年来均采用四米电阻率测井系。主要用于定性划分岩石类型和判定砂岩的含油、含水性能。 一般情况下,泥岩、页岩、煤表现为高电阻,砂岩中等~略低电阻,凝灰岩低电阻。但仅根据四米视电阻率数值的大小,并不能准确判定它所反映的岩石性质,因为砂岩含油时电阻会上升,含水时电阻会下降,油层粒度较细、地层水矿化度较高或泥浆侵入较深时电阻率也较低。这种视电阻率解释的多义性,必须用其他测井曲线来弥补。四米电阻测井曲线的上下组合形态、变化趋势在大层段地层对比划分时应用较多。 4、声速测井 声速测井是一种研究声波在岩石单位距离的传播时间的测井方法。它利用声波在不同密度的岩石中传播速度的差异,判定岩性和定量计算孔隙度的大小。 泥岩、页岩、煤孔隙小较致密,声波穿越单位厚度地层用的时间短,速度快,所以,声速曲线幅度较高,呈尖刀状向右突出。 砂岩孔隙发育,孔隙内又有油水等液体,声波穿越单位厚度地层用的时间长,速度慢,所以,声速曲线幅度较低、较平直。 随着砂岩物性和孔隙中填充物的变化,砂岩的声速曲线也会有一些小的起伏或摆动。砂岩疏松,物性变好,曲线向右抬升;砂岩致密,物性变差,曲线向左偏移。延长组油层声速一般在220 微秒/米左右,延安组油层声速一般在240 微秒/米左右。 灰岩、钙质夹层声速曲线幅度较低,曲线幅度以砂岩为对称轴,呈小尖峰状向左突出。 密度测井曲线与声速测井曲线形态接近,但对泥页岩反应更灵敏,尖刀状峰值更高,两条曲线互相参照解释储层物性精度会更高。 5、井径测井 井孔直径的变化也是岩石性质的一种间接反映。泥、页岩层常因泥浆的浸泡和冲刷造成井壁坍塌,出现井径扩大。渗透性岩层常因泥浆液体滤失形成的泥饼使井径缩小,而在致密岩层(粉砂岩、钙质层)处井径一般变化不大,实际井径接近钻头直径。井径曲线是识别疏松地层与致密地层的首选依据,也是地层对比划分的重要标志。 6、自然电位测井 自然电位测井获取的是井内不同深度上的自然电位与地面上某一点的固定电位值之差。自然电位测井曲线图上用每厘米偏转所代表的毫伏数和正负方向来表示井内自然电位数值的相对高低,而无绝对的零线。 通常把自然电位曲线上对应厚层泥岩的自然电位值的连线当作基线,称为泥岩基线。某一地层的自然电位相对于泥岩基线发生偏离时,则称为自然电位异常;曲线偏向泥岩基线的左方为负异常,偏向泥岩基线的右方为正异常。 这一偏转方向,主要取决于井筒内泥浆滤液矿化度与地层水矿化度的相对大小。在一般情况下,测井时泥浆滤液矿化度必须小于地层水矿化度,因此自然电位显示为负异常。在自然电位曲线上有异常出现的地方,该异常相对于泥岩基线偏转的距离,叫做自然电位异常幅度。远近储层物性越好、厚度越大,自然电位曲线负偏幅度越大。纯砂岩的自然电位负偏幅度最大。随着砂岩中泥质含量的增加或粒度减小或孔隙减少,自然电位曲线负偏幅度随之减小。因此,根据自然电位曲线负偏幅度变化,可以区分地层的岩石性质,定性判断砂岩的渗透性、旋回性、粒度等。自然电位测井。常用曲线的半幅点来进行分层。 7、自然咖玛测井 粘土颗粒能够吸附较多的放射性元素的离子,所以泥岩就具有较强的自然放射性。利用这一特性测量地层咖玛射线总强度,用于区分岩性、定量计算地层的泥质含量的测井方法叫自然咖玛测井。 泥岩、页岩放射性元素含量高,自然咖玛曲线幅度高。砂岩、煤放射性元素含量低,自然咖玛曲线幅度低。砂岩中随着泥质含量增减,自然咖玛曲线幅度发生变化。自然咖玛测井是划分岩性的主要依据之一。 一般情况下,用曲线半幅点确定岩层界面,岩层较薄时则用曲线拐点划分界面。 二、 测井曲线的应用 测井曲线受泥浆性能、温度、仪器等多种因素影响,一条曲线往往不能准确的反映地下情况,必须把几条曲线结合起来分析。曲线幅度的高低仅限于本井上下围岩之间的对比,同一地层邻井之间曲线幅度的高低、数值的大小可以参考,但不同区域同一测井系列的曲线可比性较小。 常见岩石的电性特征: 砂岩:低伽玛、高自然电位、小井径、中~较低声速、中~低电阻、中~低感应,微电极曲线平直且电位与梯度差异大。 泥岩:高伽玛、低自然电位、大井径、高声速、高电阻、高感应。 油页岩(长7):高伽玛、高自然电位(甚至高过本井的砂岩),高声速、高电阻、高感应。(高自然电位是油页岩与泥岩的最大区别) 煤线:低伽玛、低自然电位、大井径、高声速、高电阻、高感应。(低伽玛是煤线与泥岩的主要区分标志) 凝灰质泥岩:尖刀~指状低感应、高声速、大井径、高伽玛、低自然电位,低电阻。 第二讲、地层对比与划分

地层是区域构造运动和地史演化的产物,是油气藏的载体。同一时期、同一构造运动中形成的地层,具有相同的沉积特点和储渗特性。地层对比的目的就是将具有相同岩性、电性、成因、上下接触关系的地层归为一类,追踪它们在时间、空间上的变化规律,研究与油气藏有关的地层。 地层对比划分可分为岩芯对比和测井曲线对比两种,常用的是测井曲线对比法。 (一) 地层对比划分依据 地层对比划分依据有标志层和标准层两个。 1、标志层: 标志层是大层(1~3级旋回),对比划分的依据。 标志层的确定原则:岩性典型,电性特征明显,易识别,分布稳定,易与追踪。 鄂尔多斯盆地经过近四十年的实践摸索,将煤层(炭质泥岩)和凝灰质泥岩作为地层对比划分的标志层。它们是特定气候条件下区域性的沉积物,全盆地内普遍发育,代表性强,覆盖面广。 若煤层、凝灰岩不发育,标志层电性特征不明显时,可将与标志层位置相当,电性特征典型的泥、页岩作为地层对比划分的参考依据。 2、标准层: 用标志层将大层确定之后还必须选定一些标准层作为细分小层的依据。这些标准层多数是在油层附近且分布稳定的泥岩。 标准层是小层(四级旋回),对比划分的主要依据。 (二) 地层对比划分的原则与方法 地层对比划分的原则:“旋回对比,分级控制”。 地层对比划分的方法:先追踪标志层,后确定标准层,再找含油层段。即:先定大层后分小层。 1、 旋回级别的分类:

相关文档
最新文档