初中数学规律探究问题的类型及解题技巧分析
初中数学规律探究问题的类型及解题技巧分析

初中数学规律探究问题的类型及解题技巧分析数学规律探究是初中数学中的重要内容,它能够帮助学生更好地理解数学知识,提高数学思维能力和解题能力。
在数学规律探究中,问题的类型和解题技巧对于学生的学习非常重要。
本文将对初中数学规律探究问题的类型及解题技巧进行详细分析。
一、问题的类型1. 数列规律问题数列规律问题是指给出一个数列,要求学生按照一定的规律计算出下一个数或者找出规律并求出第n项。
这类问题需要学生熟悉各种数列的特点及规律,能够灵活运用等差数列、等比数列等知识,且需要在解题过程中发现规律,掌握归纳思维的方法。
几何规律问题是指在图形中出现一定的规律,学生要求找出规律并利用规律解决问题。
这类问题需要学生熟悉几何图形的属性及性质,在解题过程中需要运用几何推理和证明的方法。
3. 数学化问题数学化问题是指一些日常生活中难以直接用数学方法解决的问题,需要学生将这些问题数学化,通过分析和求解数学模型得到答案。
这类问题需要学生具备一定的数学建模能力和实际问题解决能力,需要运用代数、函数等数学工具。
统计规律问题是指在一定的数据或样本中,出现某些规律或者需要通过数据分析得到结论。
这类问题需要学生掌握各种统计方法和数据分析能力,能够在解题过程中运用平均数、中位数、众数等统计概念。
二、解题技巧1. 观察性能力解决规律性问题首先需要学生良好的观察能力,能够从数据中发现规律,捕捉事物的本质特征,从而归纳总结出规律规则。
2. 用词准确解决规律性问题需要学生清晰准确地描述规律,学生需要用精准的数学语言描述规律的特点和具体过程。
3. 思维灵活解决规律性问题需要学生具备灵活的思维能力,能够将问题从不同的角度看待,想到不同的解法和思路。
4. 阅读理解能力解决规律性问题需要学生具备良好的阅读理解能力,能够准确读懂题意,在解题过程中准确把握问题的关键点。
5. 归纳思维综上所述,规律性问题是初中数学教学中的重要内容。
在解题过程中需要学生具备较强的观察性能力、数学语言描述能力、灵活的思维能力、阅读理解能力和归纳思维能力等技能。
七年级数学上册-难点探究:整式中的规律探究问题压轴题七种模型全攻略(解析版)

专题11难点探究专题:整式中的规律探究问题压轴题七种模型全攻略【考点导航】目录【典型例题】 (1)【类型一数字类规律探索之单项式问题】 (1)【类型二数字类规律探索之排列问题】 (3)【类型三数字类规律探索之末尾数字问题】 (6)【类型四数字类规律探索之新运算问题】 (8)【类型五数字类规律探索之等式问题】 (12)【类型六图形类规律探索之数字问题】 (17)【类型七图形类规律探索之数量问题】 (19)【典型例题】【类型一数字类规律探索之单项式问题】【变式训练】(1)这组单项式的系数依次为多少?系数的绝对值的规律是什么?(2)这组单项式的次数的规律是什么?(3)根据上面的归纳,你可以猜想出第n 个单项式是什么吗?(4)请你根据猜想,写出第2022个、第2023个单项式.【答案】(1)1,3,5,7,,37,39,--- ,系数的绝对值的规律是21n -(2)这组单项式的次数的规律是从1开始的连续自然数(3)()(1)21n nn x--(4)第2022个单项式是20224043x ,第2023个单项式是20234045x -【分析】(1)根据单项式系数的含义进行求解,再观察其绝对值的规律即可;(2)观察次的变化,从而可求解;(3)结合(1)(2)进行分析即可;(4)根据(3)进行求解即可.【详解】(1)解:这组单项式的系数依次是1,3,5,7,,37,39,--- ,系数的绝对值为1,3,5,7,,37,39, ,是从1开始的奇数,∴系数的绝对值的规律是21n -.(2)解:这组单项式的次数的规律是从1开始的连续自然数.(3)解:由(1)问得:符合规律是(1)n -,∵这组单项式的次数的规律是从1开始的连续自然数,∴第n 个单项式是()(1)21n n n x --.(4)解:第2022个单项式是20224043x ,第2023个单项式是20234045x -.【点睛】本题主要考查找规律,能够通过观察题中的单项式找出规律是解题关键.【类型二数字类规律探索之排列问题】例题:(2022秋·浙江金华·七年级校考期中)从3开始的连续奇数按右图的规律排列,其余位置数字均为0.(1)第5行第10列的数字是(2)数字2023在图中的第【答案】04525n-行的第【分析】(1)根据第21n-行第(2)观察数据发现第21【详解】解:(1)观察数据发现根据第【变式训练】1.(2023秋·全国·七年级专题练习)填在下面各正方形中的四个数之间都有相同的规律,根据规律,m的值A.86B.52C.38【答案】A即故选:A.【点睛】本题稍复杂,不但要考虑相邻两个图形中数字的变化规律,还要找出每个图形中四个数之间的规【类型三数字类规律探索之末尾数字问题】例题:(2022秋·江苏连云港·七年级校考阶段练习)观察下列算式:031=,133=,239=,3327=,4381=,53243=,63729=,732187=…归纳各计算结果中个位数字的规律,可得20033的个位数字是()A .1B .3C .9D .7【答案】D【分析】先由前面8个具体的计算归纳得到个位数每四次循环,再利用规律解题即可.【详解】解:031=,133=,239=,3327=,4381=,53243=,63729=,732187=…,归纳可得:个位数每四次循环,∵()200314501+÷=,∴20033与33的个位数相同,是7;故选D【点睛】本题考查的是数字变化规律的探究,乘方的含义,掌握探究的方法并灵活应用规律解决问题是解题关键.【变式训练】【类型四数字类规律探索之新运算问题】例题:(2022·湖南株洲·统考二模)定义一种关于整数n 的“F ”运算:(1)当n 是奇数时,结果为35n +;(2)【变式训练】【类型五数字类规律探索之等式问题】【变式训练】1.(2023春·山东济南·七年级统考期中)已知1x ≠,观察下列等式;()()2111x x x -+=-;()()23111x x x x -++=-;()()234111x x x x x -+++=-;…(1)猜想:()()23111n x x x x x --++++⋅⋅⋅+=________;(2)应用:根据你的猜想请你计算下列式子的值:①()()234512122222-+++++=________;②()()202220212020211x x x x x x -+++⋅⋅⋅+++=________.(3)求10099982222221+++⋅⋅⋅+++的值是多少?【答案】(1)1nx -(2)①63-;②20231x -(3)10121-【分析】(1)根据所列等式所呈现的规律得出答案;(2)①利用(1)中得到的结论得出结果为612-即可;②将原式变为()()220202*********x x x x x x ++-+⋅⋅++-⋅+,再利用(1)中的结论即可得出结果;(3)将原式化为()()210012122...2--⨯++++,再利用(1)中得到的结论得出结果即可.【详解】(1)解:由已知条件可得:()()231111n n x x x x x x --++++⋅⋅⋅+=-;故答案为:1n x -;(2)①()()23456121222221263-+++++=-=-,②()()202220212020211x x x x x x -+++⋅⋅⋅+++,()()220202*********x x x x x x =+++⋅⋅⋅++--+,()20231x =--,20231x =-,故答案为:20231x -;(3)10099982222221+++⋅⋅⋅+++,()()210012122...2=--⨯++++,()10112=--,【类型六图形类规律探索之数字问题】例题:(2022秋·湖北黄冈·七年级校考阶段练习)如图,根据图形中数的规律,可推断出a的值为()A.128B.216C.226D.240【答案】C【分析】根据图形得出右下角三角形中的数字等于左下角与中间三角形中数字的积再加2,然后计算即可.=⨯+,【详解】解:由图可得:2022=⨯+,10242=⨯+,2646250682=⨯+,即右下角三角形中的数字等于左下角与中间三角形中数字的积再加2,a=⨯+=,所以14162226故选:C.【点睛】本题考查了规律型—数字的变化类,解决本题的关键是观察数字的变化寻找规律,总结规律,运用规律.【变式训练】A .450B .463C .465D .526【答案】B 【分析】结合表格找出其中的规律,求出28165x =+=,8658528=⨯+=y ,再计算y x -即可.【详解】解:由表可得:2521=+,12252=⨯+;21741=+,724174=⨯+;23761=+,2286376=⨯+;∴28165x =+=,8658528=⨯+=y ;∴52865463y x -=-=.故选:B .【点睛】本题考查数字规律题,解题的关键是找出其中的规律:28165x =+=,8658528=⨯+=y .2.(2023春·贵州毕节·七年级统考期末)根据图中数字的规律,若第n 个图中A B C D ++-的值为196,则n =()A .12B .13C .14D .15【答案】C 【分析】通过观察可知,若第n 个图中A 位置上的数是1n +,B 位置上的数是2n ,C 位置上的数是n 1-,D 位置上的数是2n ,所以2A B C D n ++-=,带入数值求出即可.【详解】解:通过观察可知,若第n 个图中A 位置上的数是1n +,B 位置上的数是2n ,C 位置上的数是n 1-,D 位置上的数是2n ,所以()()22112A B C D n n n n n ++-=+++--=,当196A B C D ++-=时,2196n \=,n Q 是正整数,14n ∴=.故选:C .【点睛】本题考查了图形中有关数字的变化规律,能准确观察到相关规律是解决问题关键.3.(2022秋·河南周口·七年级校考期中)如图所示,下列各三角形中的三个数之间均具有相同的规律,根据此规律,则第n (n 为正整数)个三角形中,用n 表示y 的式子为()A .21n +B .2n n +C .12n n ++D .21n n ++【答案】B 【分析】由题意可得各三角形中下边第三个数是上边两个数字的和,而上边第一个数的数字规律为1,2,3,⋯,n ,第二个数的数字规律为:2,22,32,⋯,2n ,由此即可得到答案.【详解】解:由题意可得:三角形上边第一个数的数字规律为:1,2,3,⋯,n ,三角形上边第二个数的数字规律为:2,22,32,⋯,2n ,三角形下边的数的数字规律为:112123+=+=,224226+=+=,3383211+=+=,⋯,∴第n 个三角形中的数的规律为:2n y n =+,故选:B .【点睛】本题考查了数字类规律探索,根据题意得出:第n 个三角形中的数的规律为:2n y n =+,是解题的关键.【类型七图形类规律探索之数量问题】(1)按图示规律完成下表:(3)搭第15个图形需要多少根火柴棒?【答案】(1)13,17,21(2)41n +(3)61【分析】(1)根据所给的图形进行分析即可得出结果;(2)由(1)进行总结即可;(3)根据(2)所得的式子进行解答即可.【详解】(1)解:第1个图形的火柴棒根数为:5,第2个图形的火柴棒根数为:954541=+=+⨯,第3个图形的火柴棒根数为:13544542=++=+⨯,第4个图形的火柴棒根数为:175444543=+++=+⨯,第5个图形的火柴棒根数为:2154444544=++++=+⨯,⋯⋯故答案为:13,17,21;(2)解:由(1)得:搭第n 个图形需要火柴棒根数为:54(1)41n n +-=+.答:第n 个图形需要火柴棒根数为:41n +;(3)解:当15n =时,41415161n +=⨯+=,所以搭第15个图形需要61根火柴棒.【点睛】本题主要考查规律型:图形的变化类,解答的关键是根据所给的图形分析出其规律.【变式训练】1.(2023秋·河北张家口·七年级统考期末)观察下列“蜂窝图”,按照这样的规律,则第2023个图案中的“”的个数是()A .6074B .6072C .6070D .6068【答案】C【分析】根据题意可得第n 个图案中的“”的个数为((31)n +个,即可求解.【详解】解:∵第1个图案中的“”的个数1314=⨯+=(个),第2个图案中的“”的个数2317=⨯+=(个),第3个图案中的“”的个数33110=⨯+=(个),…,第2023个图案中的“”的个数3202316070==⨯+(个),故选:C .【点睛】本题考查图形的变化规律,解题的关键是根据已知图形得出规律.2.(2023春·湖北武汉·七年级统考开学考试)如图,摆第一个图形需要4根火柴,摆第二个图形需要7根火柴,……,以此类推.那么摆第八个图形需要()根火柴.A .24B .27C .25D .28【答案】C 【分析】根据给出的图形,得到第n 个图形需要()431n +-根火柴,进而求出第八个图形所需要的火柴数.【详解】解:由图可知,摆第一个图形需要4根火柴,摆第二个图形需要437+=根火柴,摆第三个图形需要43210+⨯=根火柴,L∴第n 个图形需要()431n +-根火柴,∴摆第八个图形需要()438125+⨯-=根火柴;故选C .【点睛】本题考查图形类规律探究.解题的关键是得到第n 个图形需要()431n +-根火柴.3.(2023春·山东青岛·七年级统考期中)如图,某品牌自行车每节链条的长度为2.5cm ,交叉重叠部分的圆的直径为0.8cm .(1)观察图形,填写如表;链条节数/x(节)2345…链条长度/y(cm) 4.2 5.97.6…(2)如果一辆自行车的链条(安装以后)共由60节链条组成,那么链条的总长度是(1)按此规律摆下去,第6个图案有多少个三角形即可求出第6个图案有多少个三角形;(2)由(1)中发现的规律,即可得出第n 个图案有多少个三角形;(3)将2022n =代入31n +即可求解.【详解】(1)第1个图案有4个三角形,即4311⨯=+第2个图案有7个三角形,即7321⨯=+第3个图案有10个三角形,即10331⨯=+第4个图案有13个三角形,即13341⨯=+第5个图案有16个三角形,即16351⨯=+第6个图案有19个三角形,即19361⨯=+(2)按此规律摆下去,第n 个图案有()31n +个三角形.(3)当2022n =时,316067n +=.答:第2022个图案有6067个三角形.【点睛】本题考查了规律型:图形的变化类以及列代数式,根据各图案所需三角形个数的变化,找出变化规律是解题的关键.。
初中数学规律探究问题的类型及解题技巧分析

初中数学规律探究问题的类型及解题技巧分析初中数学规律探究问题是指通过观察数列、图形或数据等,在一定的规则下寻找并探究其中的规律性的问题。
这种问题在初中数学中占有很重要的地位,有助于学生培养数学思维能力、观察力和逻辑推理能力。
初中数学规律探究问题的类型可以分为数列规律、图形规律和数据规律三类。
一、数列规律问题:数列规律问题是最常见的一类规律探究问题。
通过观察数列中的数字间的关系,找出数列中的规律,并根据规律继续发展数列的下一项。
解题技巧:1. 观察数列中的数字之间的差值或倍数关系,找出数列的通项公式。
1, 3, 5, 7, ...这个数列中,每项相差2,可推测通项公式为2n-1。
2. 观察数列中的数字之间的乘积关系,找出数列的通项公式。
2, 6, 18, 54, ...这个数列中,每项之间都是前一项乘以3,可推测通项公式为2*3^n-1。
3. 观察数列中的数字之间的其他关系,如开方、乘方、递推等。
1, 2, 4, 8, ...这个数列中,每项都是前一项乘以2,可推测通项公式为2^n。
二、图形规律问题:图形规律问题是通过观察一系列图形的形状、数量、位置等特征,找出其中的规律,并根据规律继续绘制下一个图形。
解题技巧:1. 观察图形中的线段、角度、对称性等几何特征,找出图形的规律。
菱形图形的内角和都是360度,可用来判断菱形的特征。
2. 观察图形之间的变形关系,如旋转、平移、翻转等。
向上平移一次得到下一个图形,可用来判断图形的规律。
3. 观察图形中的数字和符号之间的关系,如大小、顺序、重复等。
图形中重复出现的数字可能有特殊的含义,可以利用这些数字来推测规律。
解题技巧:1. 观察数据之间的数值关系,如加减、乘除、指数等。
一组数据之间的差值相等,可用来推测规律。
2. 观察数据之间的变化趋势,如递增、递减、周期性等。
一组数据呈现递增或递减的趋势,可用来推测规律。
3. 观察数据之间的比例关系,如比值、百分比、占比等。
初中数学规律探究问题的类型及解题技巧分析

初中数学规律探究问题的类型及解题技巧分析初中数学中,规律探究问题广泛存在于各种数学题型中,包括数列、几何、方程等多个方面。
解决这类问题需要灵活运用数学知识和思维方法,下面将就规律探究问题的类型及解题技巧进行分析。
(一)数列型规律探究问题1. 根据已知的数列前几项,找出数列的通项公式。
首先观察数列的前几项,如果发现相邻两项之间的差或比具有规律性,那么可以尝试构建通项公式。
对于等差数列,可以通过计算相邻两项的差值来确定数列的公差,从而得到通项公式。
同理,对于等比数列,可以通过计算相邻两项的比值来确定数列的公比,从而得到通项公式。
2. 根据数列的规律,推断数列中某一位置上的数值。
有时候,问题并没有直接给出数列的前几项,而是给出了数列的规律,并要求求解数列中某一位置上的数值。
这时候,可以根据已知的规律,通过迭代或递推的方式来推断数列中任意位置上的数值。
1. 根据已知的图形形状,找出图形的特点。
有时问题给出了一个图形,需要根据图形的特点找到规律。
这时可以通过观察图形的边数、角度等特征来确定规律。
正多边形的内部角度和是固定的,可以根据这个规律,计算某个正多边形的内部角度和。
2. 根据图形的特点,求解未知的参数。
有时问题给出了一个图形的部分信息,需要求解图形的某些未知参数。
问题给出了一个三角形的三个角度,需要求解这个三角形的形状。
根据三角形的内角和等于180°的性质,可以得到这个三角形的剩余角度,从而确定三角形的形状。
1. 根据已知的关系式,建立方程解决问题。
有时问题给出了一个数学关系,需要找到满足这个关系的解。
问题可能给出了两个数的和或差,需要求解这两个数。
可以通过设一元方程,利用方程的解来求解这个问题。
在解决规律探究问题时,可以运用以下一些技巧:1. 观察法:通过观察题目给出的信息或图形,找出规律,再推测未知的信息或图形。
2. 假设法:根据已知条件进行一些假设,然后进行推理、计算,最后验证假设的结果是否符合题目要求。
2021年中考数学一轮复习规律探索题--数字问题常见类型及解题技巧

【例1】一组数据1,6,11,16,21,…第n个数是( )【例2】一组数6、8、10、12、14…第n个数是( )【例3】观察以下等式:第1个等式:++=1,第2个等式:++=1,第3个等式:++=1,第4个等式:++=1,第5个等式:++=1,按照以上规律,解决下列问题:(1)写出第6个等式:;(2)写出你猜想的第n个等式:(用含n的等式表示),并证明.举一反三1、找规律,填空(1)3、5、7、9…第n个数是()(2)6、8、10、12…第n个数是()(3)10、14、18、22…第n个数是()(4)1、6、11、16、21…第n个数是()2.观察下列等式的规律.第一个等式:;第二个等式:;第三个等式:.(1)请用上述规律写出第四个等式_______________________;(2)猜想第n个等式(用含n的代数式表示),并证明你猜想的等式是正确的.3. 阅读下列内容:,,,…根据观察到的规律解决以下问题:(1)第5个等式是________;(2)若n是正整数,则第n个等式是________;(3)计算:.4. 【阅读理解】我们知道,1+2+3+…+n=,那么12+22+32+…+n2结果等于多少呢?在图1所示三角形数阵中,第1行圆圈中的数为1,即12,第2行两个圆圈中数的和为2+2,即22,…;第n行n个圆圈中数的和为,即n2,这样,该三角形数阵中共有个圆圈,所有圆圈中数的和为12+22+32+…+n2.【规律探究】将三角形数阵经两次旋转可得如图2所示的三角形数阵,观察这三个三角形数阵各行同一位置圆圈中的数(如第n-1行的第一个圆圈中的数分别为n-1,2,n),发现每个位置上三个圆圈中数的和均为 ______ ,由此可得,这三个三角形数阵所有圆圈中数的总和为3(12+22+32+…+n2)= ______ ,因此,12+22+32+…+n2= ______ .【解决问题】根据以上发现,计算:的结果为 ______ .题型二后一项与前一项的比值固定,即商固定【例1】有一列数,按一定的规律排成1、-2、4、-8、16、-32…(1)设这列数中的一个数为a,则它后面的第1个数是______,第2个数是______.(2)你能从中抽出相邻的三张卡片,且这些卡片上的数字之和为93吗?若能,写出这三个数,若不能,说明理由.举一反三1. 有一列数,按下表中的规律排列.序号 1 2 3 4 5 6 …n …对应数-1 3 -9 27 -81 243 …?…(1)用含有n的式子表示第n个对应数;(2)若相邻三个数的和等于1701,这三个数各是多少?2. 阅读材料:求1+2+22+23+24+…+22017的值.解:设S=1+2+22+23+24+ (22017)将等式两边同时乘以2得,2S=2+22+23+24+25+…+22017+22018,将下式减去上式得:2S-S=22018-1,即S=22018-1,所以1+2+22+23+24+…+2201722018-1,请你依照此法计算:(1)1+2+22+23+24+ (29)(2)1+5+52+53+54+…+5n(其中n为正整数).题型三含有平方规律【例1】观察下列等式:第1个等式:;第2个等式:;第3个等式:;第4个等式:;……根据你观察到的规律,解决下列问题:(1)写出第5个等式;(2)写出第n个等式,并证明;(3)计算:.举一反三1. 观察,猜想,证明.观察下列的等式;;发现上述3个等式的规律,猜想第5个等式并进行验证;写出含字母为任意自然数,且表示的等式,并写出证明过程.。
常考的规律探究问题-2024年中考数学答题技巧与模板构建(含解析)

常考的规律探究问题题型解读|模型构建|通关试练模型01数与式、图形的规律问题数式规律和图形规律探究问题的特点是:问题的结论不是直接给出,而是给出一组具有某种特定关系的数、式、图形,或是给出图形有关的操作变化过程,或某一具体的问题情境等,要求通过观察分析推理,探究其中蕴含的规律,进而归纳或猜想出一般性的结论.模型02平面直角坐标系中的规律问题(旋转、平移、翻滚、渐变等)平面直角坐标系中的规律探究问题由于问题背景的不同,这类题的解题策略是:由特例观察、分析、归纳一般规律,然后利用规律解决问题.具体思维过程是“特殊---一般----特殊”.这类问题体现了“特殊与一般”的数学思想方法,解答时往往体现“探索、归纳、猜想”等思维特点,对分析问题、解决问题的能力具有很高的要求.模型01数与式、图形的规律问题考|向|预|测数与式、图形的规律问题该题型主要以选择、填空形式出现,难度系数不大,需要学生学会分析各式或图形中的“变”与“不变”的规律--重点分析“怎样变”,应结合各式或图形的序号进行前后对比分析.主要考查学生阅读理解、观察图形的变化规律的能力,关键是通过归纳与总结,得到其中的规律,利用规律解决问题.答|题|技|巧第一步:读懂题意,标序号;第二步:根据已有规律模仿或归纳推导隐藏规律,析各式或图形中的“变”与“不变”的规律--重点分析“怎样变”;第三步:猜想规律与“序号”之间的对应关系,并用关于“序号”的式子表示出来;第四步:验证所归纳的结论,利用所学数学知识解答1(2023·湖南)观察下列按顺序排列的等式:a1=1-13,a2=12-14,a3=13-15,a4=14-16,⋯,试猜想第n个等式(n为正整数):a n=.2(2023·安徽)(规律探究)如下图,是由若干个边长为1的小正三角形组成的图形,第(2)个图比第(1)个图多一层,第(3)个图比第(2)个图多一层,依次类推.(1)第(9)个图中阴影三角形的个数为;非阴影三角形的个数为.(2)第n个图形中,阴影部分的面积与非阴影部分的面积比是441∶43,求n.(3)能否将某一个图形中的所有小三角形重新拼接成一个菱形,如果能,请指出是第几个图形,如果不能说明理由.模型02平面直角坐标系中的规律问题考|向|预|测平面直角坐标系中的规律问题(旋转、平移、翻滚、渐变等)该题型也主要以选择、填空的形式出现,一般较为靠后,有一定难度,该题型需要分析变化规律得到一般的规律(如点变的循环规律或点运动的循环规律,点的横、纵坐标的变化规律等).主要考查对点的坐标变化规律,一般我们需要结合所给图形,找到点或图形的变化规律或者周期性,最后利用正确运用数的运算.答|题|技|巧第一步:观察点或图形的变化规律,根据图形的变化规律求出已知关键点的坐标;第二步:分析变化规律得到一般的规律看是否具有周期性(如点变的循环规律或点运动的循环规律,点的横、纵坐标的变化规律等)第三步:周期性的求最小周期看余数,不是周期性的可以罗列求解几组以便发现规律,根据最后的变化次数或者运动时间登,确定要求的点与哪个点重合或在同一象限,或与哪个关键点的横纵坐标相等;第四步:利用有理数的运算解题旋转型1(2023·四川)如图所示,矩形ABOC的顶点O为坐标原点,BC=2,对角线OA在第二象限的角平分线上.若矩形从图示位置开始绕点O以每秒45°的速度顺时针旋转,则第2025秒时,点A的对应坐标为()A.2,0B.0,2C.2,2D.-2,-2平移型2(2023·杭州)如图,直角坐标平面xOy 内,动点P 按图中箭头所示方向依次运动,第1次从点(-1,0)运动到点(0,1),第2次运动到点(1,0),第3次运动到点(2,-2),⋯⋯,按这样的运动规律,动点P 第2018次运动到点A.(2018,0)B.(2017,0)C.(2018,1)D.(2017,-2)翻滚型3(2023·安徽)如图所示,在平面直角坐标系中,△A 1A 2A 3,△A 3A 4A 5,△A 5A 6A 7,⋯都是等边三角形,其边长依次为2,4,6,⋯其中点A 1的坐标为2,0 ,点A 2的坐标为1,-3 ,点A 3的坐标为0,0 ,点A 4的坐标为2,23 ,⋯,按此规律排下去,则点A 100的坐标为()A.1,503B.1,513C.2,503D.2,5131(2023·山东)我国古代数学家杨辉发现了如图所示的三角形,我们称之为“杨辉三角”,我们把第2行从左到右数第1个定为a 2,1 ,我们把第4行从左到右数第3个定为a 4,3 ,由图我们可以知道:a 2,1 =1,a 4,3 =3,按照图中数据规律,a 8,5 +a 9,6 的值为.2(2023·河南)如图,找出其变化的规律,则第1349个图形中黑色正方形的数量是.摆成,⋯⋯;按图中所示规律,第n个图需要棋子枚.五角星的个数为()A.n2+1B.n2-1C.2n-1D.2n+15(2023·广东)正六边形ABCDEF在数轴上的位置如图,点A、F对应的数分别为0和1,若正六边形ABCDEF绕着顶点顺时针方向在数轴上连续翻转,翻转1次后,点E所对应的数为2,则连续翻转2022次后,数轴上2022这个数所对应的点是()A.A点B.B点C.C点D.D点6(2023·辽宁)如图,在平面直角坐标系中,直线l:y=3x+3与两坐标轴交于A、B两点,以AB为边作等边△ABC,将等边△ABC沿射线AB方向作连续无滑动地翻滚.第一次翻滚:将等边三角形绕B点顺时针旋转120°,使点C落在直线l上,第二次翻滚:将等边三角形绕点C顺时针旋转120°,使点A落在直线l上⋯⋯当等边三角形翻滚2023次后点A的对应点坐标是()A.2023,20233D.2021,20243C.2021,20223B.2022,202437(2023·河南)如图,矩形ABCD的顶点A、B分别在x轴、y轴上,其坐标分别为-6,0,、0,-8AD=20,将矩形ABCD绕点O顺时针旋转,每次旋转90°,则第2022次旋转结束时,点D的坐标为()A.10,12D.12,-10C.-12,10B.-10,-128(2023·江西吉安·期末)规律探究题:如图是由一些火柴棒摆成的图案:按照这种方式摆下去,摆第2023个图案用几根火柴棒()A.8093B.8095C.8092D.80919(23-24·河南新乡·期末)汉字文化正在走进人们的日常消费生活.如图所示图形都是由同样大小的圆点和线段按照一定的规律排列组成的篆书简化“汉”字,其中,图①中共有12个圆点,图②中共有18个圆点,图③中共有25个圆点,图④中共有33个圆点⋯依此规律则图⑩中共有圆点的个数是()A.63B.75C.88D.10210(23-24·湖北武汉·期末)已知点A0-1,3,记A0关于直线m(直线m上各点的横坐标都为0)的对称点为A1,A1关于直线n(直线n上各点的纵坐标都为1)的对称点为A2,A2关于直线p(直线p上各点的横坐标都为-2)的对称点为A3,A3关于直线q(直线q上各点的纵坐标都为3)的对称点为A4,A4关于直线m的对称点为A5,A5关于直线n的对称点为A6,⋯⋯依此规律A2023的坐标是()A.2021,-2021D.-2025,2027C.-2021,-2017B.-2025,-202111(23·山东济宁·期末)如图,OP=1,过点P作PP1⊥OP且PP1=1,得OP1=2;再过点P,作P1P2⊥OP1,且P1P2=1,得OP2=3;又过点P2作P2P3⊥OP2且P2P3=1,得OP3=2⋯依此法继续作下去,得OP2021=()A.2023B.2022C.2021D.202012(23·广西贵港·期末)请看杨辉三角,并观察下列等式:(a+b)1=a+b(a+b)2=a2+2ab+b2(a+b)3=a3+3a2b+3ab2+b3(a+b)4=a4+4a3b+6a2b2+4ab3+b4根据前面各式的规律,则(a+b)6=.13(23-24·辽宁沈阳·期中)汉字文化正在走进人们的日常消费生活.下列图形都是由同样大小的圆点和线段按照一定的规律排列组成的篆书简化“汉”字,其中,图①中共有12个圆点,图②中共有18个圆点,图③中共有25个圆点,图④中共有33个圆点⋯依此规律,则图⑧中共有圆点的个数是.14(2023·四川资阳·一模)如图,李明从A点出发沿直线前进5米到达B点后向左旋转的角度为α,再沿直线前进5米,到达点C后,又向左旋转α角度,照这样走下去,第一次回到出发地点时,他共走了45米,则每次旋转的角度α为.15(22-23·江苏)我国南宋数学家杨辉1261年所著的《详解九章算法》一书里出现了如图所示的表(图①),即杨辉三角.现在将所有的奇数记“1”,所有的偶数记为“0”,则前4行如图②,前8行如图③,求前32行“1”的个数为.16(2023九年级上·全国·期末)在平面直角坐标系中,抛物线y=x2的图象如图所示.已知A点坐标为(1,1),过点A作AA1∥x轴交抛物线于点A1,过点A1作A1A2∥OA交抛物线于点A2,过点A2作A2A3∥x 轴交抛物线于点A3,过点A3作A3A4∥OA交抛物线于点A4⋯,依次进行下去,则点A2023的坐标为.17(22-23九年级上·全国·期末)(规律探究题)下表是按一定规律排列的一列方程,仔细观察,大胆猜想,科学推断,完成练习.序号方程方程的解1x2-2x-3=0x1=-1,x2=32x2-4x-12=0x1=-2,x2=63x2-6x-27=0x1=-3,x2=9⋯⋯⋯(1)这列方程中第10个方程的两个根分别是x1=,x2=.(2)这列方程中第n个方程为.18(22-23·福建莆田·期中)探究规律题按照规律填上所缺的单项式并回答问题:(1)a,-2a2,3a3,-4a4,,;(2)试写出第2017个和第2018个单项式;(3)试写出第n个单项式;(4)试计算:当a=-1时,a+(-2a2)+3a3+(-4a4)+⋯+99a99+(-100a100)的值.19(23-24·河南安阳)探究规律,完成相关题目.定义“*”运算:(+2)*(+4)=+(22+42);(-4)*(-7)=+(-4)2+(-7)2;(-2)*(+4)=-(-2)2+(+4)2;(+5)*(-7)=-(+5)2+(-7)2;0*(-5)=(-5)*0=(-5)2;(+3)*0=0*(+3)=(+3)2.0*0=02+02=0(1)归纳*运算的法则:两数进行*运算时,.(文字语言或符号语言均可)特别地,0和任何数进行*运算,或任何数和0进行*运算,(2)计算:+1*0*-2.(3)是否存在有理数m,n,使得m-1*n+2=0,若存在,求出m,n的值,若不存在,说明理由.20(23-24·浙江杭州·期中)探究规律,完成相关题目:小明说:“我定义了一种新的运算,叫※(加乘)运算.”然后他写出了一些按照※(加乘)运算的运算法则进行运算的算式:(+5)※(+2)=+7;(-3)※(-5)=+8;(-3)※(+4)=-7;(+5)※(-6)=-11;(0)※(+8)=8;(0)※(-8)=8;(-6)※(0)=6;(+6)※(0)=6.小亮看了这些算式后说:“我知道你定义的※(加乘)运算的运算法则了.”聪明的你也明白了吗?(1)观察以上式子,类比计算:①-1 2※-15=,-23※+1 =;(2)计算:(-2)※[0※(-1)];(括号的作用与它在有理数运算中的作用一致,写出必要的运算步骤)(3)若1-a※b-3=0.计算:1a×b +1a+2×b+2+1a+4×b+4+1a+6×b+6+1的值.a+8×b+8常考的规律探究问题题型解读|模型构建|通关试练模型01数与式、图形的规律问题数式规律和图形规律探究问题的特点是:问题的结论不是直接给出,而是给出一组具有某种特定关系的数、式、图形,或是给出图形有关的操作变化过程,或某一具体的问题情境等,要求通过观察分析推理,探究其中蕴含的规律,进而归纳或猜想出一般性的结论.模型02平面直角坐标系中的规律问题(旋转、平移、翻滚、渐变等)平面直角坐标系中的规律探究问题由于问题背景的不同,这类题的解题策略是:由特例观察、分析、归纳一般规律,然后利用规律解决问题.具体思维过程是“特殊---一般----特殊”.这类问题体现了“特殊与一般”的数学思想方法,解答时往往体现“探索、归纳、猜想”等思维特点,对分析问题、解决问题的能力具有很高的要求.模型01数与式、图形的规律问题考|向|预|测数与式、图形的规律问题该题型主要以选择、填空形式出现,难度系数不大,需要学生学会分析各式或图形中的“变”与“不变”的规律--重点分析“怎样变”,应结合各式或图形的序号进行前后对比分析.主要考查学生阅读理解、观察图形的变化规律的能力,关键是通过归纳与总结,得到其中的规律,利用规律解决问题.答|题|技|巧第一步:读懂题意,标序号;第二步:根据已有规律模仿或归纳推导隐藏规律,析各式或图形中的“变”与“不变”的规律--重点分析“怎样变”;第三步:猜想规律与“序号”之间的对应关系,并用关于“序号”的式子表示出来;第四步:验证所归纳的结论,利用所学数学知识解答1(2023·湖南)观察下列按顺序排列的等式:a 1=1-13,a 2=12-14,a 3=13-15,a 4=14-16,⋯,试猜想第n 个等式(n 为正整数):a n =.【答案】1n -1n +2.【详解】根据题意可知,a 1=1-11+2,a 2=12-12+2,a 3=13-13+2,a 4=14-14+2,⋯∴a n =1n -1n +2.2(2023·安徽)(规律探究)如下图,是由若干个边长为1的小正三角形组成的图形,第(2)个图比第(1)个图多一层,第(3)个图比第(2)个图多一层,依次类推.(1)第(9)个图中阴影三角形的个数为;非阴影三角形的个数为.(2)第n 个图形中,阴影部分的面积与非阴影部分的面积比是441∶43,求n .(3)能否将某一个图形中的所有小三角形重新拼接成一个菱形,如果能,请指出是第几个图形,如果不能说明理由.【详解】(1)第(1)(2)(3)个图中阴影部分小三角形的个数分别是:1+3=22,1+3+5=32,1+3+5+7=42,由此可推测第(9)个图中阴影部分小三角形的个数是(9+1)2=102=100(个),空白三角形的个数为2×(9+2-1=21);故答案为:100;21;(2)第n 个图形中阴影三角形与非阴影三角形的个数比是:n +1 22n +2 -1=44143,解得,n =20或n =-6443(舍去)经检验,n =20符合要求,所以,n =20;(3)设第(m )个图形可重新拼成一个菱形,第(m )个图形总的三角形个数为m +2 2=m 2+4m +4, 由于可以拼一个菱形,则是一含有60度角的菱形,即两个等边三角形构成的菱形,每个等边三角形中含小三角形数为x 2,则有:2x 2=m +2 2解得,m =±2x -2∴m 不是正整数,∴不可能拼成一个菱形.例3.(2023·江西)规律探究与猜想:①方程x 2-3x +2=0的解为x 1=1,x 2=2;②方程x 2-5x +6=0的解为x 1=2,x 2=3;③方程x 2-7x +12=0的解为x 1=3,x 2=4;④方程x 2-9x +20=0的解为x 1=4,x 2=5;⋯⋯(1)根据以上各方程及其解的特征,请解答下列问题:①方程x2-19x+90=0的解为______.②第个方程为______,其解为______.(2)请用公式法解方程x2-9x+20=0,验证猜想结论的正确性.【详解】(1)解:方程x2-3x+2=x2+(-1-2)x+(-1)×(-2)=(x-1)(x-2)=0,解为x1=1,x2=2;方程x2-5x+6=x2+(-2-3)+(-2)×(-3)=(x-2)(x-3)=0,解为x1=2,x2=3;方程x2-7x+12=x2+(-3-4)+(-3)×(-4)=(x-3)(x-4)=0,解为x1=3,x2=4;⋯①x2-19x+90=x2+(-9-10)+(-9)×(-10)=(x-9)(x-10)=0,解为x1=9,x2=10;②第个方程为x2+-n-(n+1)x+(-n)×-(n+1)=(x-n)x-(n+1)=0∴第个方程为x2-(2n+1)x+n2+n=0,解为x1=n,x2=n+1.(2)解:x2-9x+20=0Δ=(-9)2-4×1×20=1,∴x1=9-12=4,x2=9+12=5.故结论正确.模型02平面直角坐标系中的规律问题考|向|预|测平面直角坐标系中的规律问题(旋转、平移、翻滚、渐变等)该题型也主要以选择、填空的形式出现,一般较为靠后,有一定难度,该题型需要分析变化规律得到一般的规律(如点变的循环规律或点运动的循环规律,点的横、纵坐标的变化规律等).主要考查对点的坐标变化规律,一般我们需要结合所给图形,找到点或图形的变化规律或者周期性,最后利用正确运用数的运算.答|题|技|巧第一步:观察点或图形的变化规律,根据图形的变化规律求出已知关键点的坐标;第二步:分析变化规律得到一般的规律看是否具有周期性(如点变的循环规律或点运动的循环规律,点的横、纵坐标的变化规律等)第三步:周期性的求最小周期看余数,不是周期性的可以罗列求解几组以便发现规律,根据最后的变化次数或者运动时间登,确定要求的点与哪个点重合或在同一象限,或与哪个关键点的横纵坐标相等;第四步:利用有理数的运算解题旋转型1(2023·四川)如图所示,矩形ABOC的顶点O为坐标原点,BC=2,对角线OA在第二象限的角平分线上.若矩形从图示位置开始绕点O以每秒45°的速度顺时针旋转,则第2025秒时,点A的对应坐标为()A.2,0B.0,2C.2,2D.-2,-2【答案】B 【详解】解:∵四边形ABOC 是矩形,∴OA =BC =2,∵每秒旋转45°,8次一个循环,2025÷8=253⋅⋅⋅⋅⋅⋅1,∴第2025秒时,点A 的对应点A 2025落在y 轴正半轴上,∴点A 2025的坐标为0,2 .故选:B .平移型2(2023·杭州)如图,直角坐标平面xOy 内,动点P 按图中箭头所示方向依次运动,第1次从点(-1,0)运动到点(0,1),第2次运动到点(1,0),第3次运动到点(2,-2),⋯⋯,按这样的运动规律,动点P 第2018次运动到点A.(2018,0)B.(2017,0)C.(2018,1)D.(2017,-2)【答案】B 【详解】解:∵2018÷4=504余2,∴第2014次运动为第505循环组的第2次运动,横坐标为504×4+2-1=2017,纵坐标为0,∴点的坐标为(2017,0).故选B .翻滚型3(2023·安徽)如图所示,在平面直角坐标系中,△A 1A 2A 3,△A 3A 4A 5,△A 5A 6A 7,⋯都是等边三角形,其边长依次为2,4,6,⋯其中点A 1的坐标为2,0 ,点A 2的坐标为1,-3 ,点A 3的坐标为0,0 ,点A 4的坐标为2,23 ,⋯,按此规律排下去,则点A 100的坐标为()A.1,503D.2,513C.2,503B.1,513【答案】C【详解】解:观察所给图形,发现x轴上方的点是4的倍数,∵100÷4=25,∴点A100在x轴上方,∵A3A4=4,∴A54,0,∵A5A7=6,∴A7-2,0,∵A8A7=8,∴点A8的坐标为2,43,同理可知,点A4n的坐标为2,2n3,∴点A100的坐标为2,503. 故选:C.1(2023·山东)我国古代数学家杨辉发现了如图所示的三角形,我们称之为“杨辉三角”,我们把第2行从左到右数第1个定为a2,1,我们把第4行从左到右数第3个定为a4,3=,由图我们可以知道:a2,1 1,a4,3+a9,6的值为.=3,按照图中数据规律,a8,5【详解】解:如图所示,按照图中数据规律,a8,5=35,a9,6=56,∴a8,5+a9,6=35+56=91,故答案为:912(2023·河南)如图,找出其变化的规律,则第1349个图形中黑色正方形的数量是.【答案】2024个【详解】解:根据题意,可得当n为偶数时,第n个图形中黑色正方形的数量为n+n2个,当n为奇数时,第n个图形中黑色正方形的数量为n+n+12个,∴n=1349时,黑色正方形的个数为1349+1349+12=2024个.故答案为:2024个.3(2023·陕西)如图,第1个图用了6枚棋子摆成;第2个图用了9枚棋子摆成;第3个图用了12枚棋子摆成,⋯⋯;按图中所示规律,第n个图需要棋子枚.【答案】3(n+1)【详解】根据题意有,第1个图形棋子数为:3+3×1,第2个图形棋子数为:3+3×2,第3个图形棋子数为:3+3×3,⋯⋯,第n个图形棋子数为:3+3×n=3(n+1),∴第n个图需要棋子3(n+1)枚,故答案为:3(n+1).4(2023·云南)如图图形是同样大小的小五角星按一定规律组成的,按此规律排列,则第n个图形中小五角星的个数为()A.n2+1B.n2-1C.2n-1D.2n+1【答案】A【详解】解:则第1个图形中小五角星的个数为:12+1=2;则第4个图形中小五角星的个数为:1+22=5;则第3个图形中小五角星的个数为:1+32=10;则第4个图形中小五角星的个数为:1+42=17;⋯⋯;则第n个图形中小五角星的个数为:1+n2,故选:A.5(2023·广东)正六边形ABCDEF在数轴上的位置如图,点A、F对应的数分别为0和1,若正六边形ABCDEF绕着顶点顺时针方向在数轴上连续翻转,翻转1次后,点E所对应的数为2,则连续翻转2022次后,数轴上2022这个数所对应的点是()A.A点B.B点C.C点D.D点【答案】A【详解】解:当正六边形在转动第一周的过程中,F、E、D、C、B、A分别对应的点为1、2、3、4、5、6,∴翻转6次为一循环,∵2021÷6=337,∴数轴上2022这个数所对应的点是A点.故选:A.6(2023·辽宁)如图,在平面直角坐标系中,直线l:y=3x+3与两坐标轴交于A、B两点,以AB为边作等边△ABC,将等边△ABC沿射线AB方向作连续无滑动地翻滚.第一次翻滚:将等边三角形绕B点顺时针旋转120°,使点C落在直线l上,第二次翻滚:将等边三角形绕点C顺时针旋转120°,使点A落在直线l上⋯⋯当等边三角形翻滚2023次后点A的对应点坐标是()A.2023,20233D.2021,20243B.2022,20243C.2021,20223【答案】D【详解】解:∵直线l:y=3x+3与两坐标轴交于A、B两点,∴A-1,0,,B0,3∴AB=2,OA=1,OB=3,=3,OA∴∠BAO=60°,如图,等边△ABC经过第1次翻转后,A1-1,23,过点A2作A2M⊥x轴于点M,则AA2=3AB=6,∵∠A2AM=60°,=3,∴AM=AA2cos∠A2AM=6×12A2M=AA2sin∠A2AM=6×3=33,2等边△ABC经过第2次翻转后,A23,33,等边△ABC经过第3次翻转后,点A仍在点A2处,∴每经过3次翻转,点A向右平移3个单位,向上平移33个单位,∵2023÷3=674⋯⋯1,第2次与第3次翻转后点A处在同一个点,∴点A经过2023次翻转后,向右平移了3×674=2022个单位,向上平移了33×674+23=20243个单位,∴等边三角形翻滚2023次后点A的对应点坐标是2021,20243,故选:D.7(2023·河南)如图,矩形ABCD的顶点A、B分别在x轴、y轴上,其坐标分别为-6,0、0,-8,AD=20,将矩形ABCD绕点O顺时针旋转,每次旋转90°,则第2022次旋转结束时,点D的坐标为()A.10,12B.-10,-12C.-12,10D.12,-10【答案】B 【详解】解:如图,过点D 作DT ⊥x 轴于点T .矩形ABCD 的顶点A 、B 分别在x 轴、y 轴上,其坐标分别为-6,0 、0,-8 ,∴OA =6,OB =8,∴AB =OA 2+OB 2=10,∵∠ATD =∠AOB =∠BAD =90°,∴∠DAT +∠BAO =90°,∠BAO +∠ABO =90°,∴∠DAT =∠ABO ,∴△ATD ∽△BOA ,∴AD AB =AT OB =DT OA,即2010=AT 8=DT 6,∴AT =16,DT =12,∴OT =AT -OA =16-6=10,∴D 10,12 ,∵矩形ABCD 绕点O 顺时针旋转,每次旋转90°,则第1次旋转结束时,点D 的坐标为12,-10 ;则第2次旋转结束时,点D 的坐标为-10,-12 ;则第3次旋转结束时,点D 的坐标为-12,10 ;则第4次旋转结束时,点D 的坐标为10,12 ;⋯发现规律:旋转4次一个循环,∴2022÷4=505⋯2,则第2021次旋转结束时,点D 的坐标为-10,-12 .故选:B .8(2023·江西吉安·期末)规律探究题:如图是由一些火柴棒摆成的图案:按照这种方式摆下去,摆第2023个图案用几根火柴棒()A.8093B.8095C.8092D.8091【答案】A 【详解】观察图形的变化可知:摆第1个图案要用火柴棒的根数为:5;摆第2个图案要用火柴棒的根数为:9=5+4=5+4×1;摆第3个图案要用火柴棒的根数为:13=5+4+4=5+4×2;⋯则摆第n个图案要用火柴棒的根数为:5+4n-1=4n+1;故第2023个图案要用火柴棒的根数为:4×2023+1=8093故选:A9(23-24·河南新乡·期末)汉字文化正在走进人们的日常消费生活.如图所示图形都是由同样大小的圆点和线段按照一定的规律排列组成的篆书简化“汉”字,其中,图①中共有12个圆点,图②中共有18个圆点,图③中共有25个圆点,图④中共有33个圆点⋯依此规律则图⑩中共有圆点的个数是()A.63B.75C.88D.102【答案】D【详解】解:由题意知,图①中共有12个圆点,图②中共有12+6=18个圆点,图③中共有12+6+7=25个圆点,图④中共有12+6+7+8=33个圆点,⋯∴图⑩中共有圆点12+6+7+8+9+10+11+12+13+14=102,故选:D.10(23-24·湖北武汉·期末)已知点A0-1,3,记A0关于直线m(直线m上各点的横坐标都为0)的对称点为A1,A1关于直线n(直线n上各点的纵坐标都为1)的对称点为A2,A2关于直线p(直线p上各点的横坐标都为-2)的对称点为A3,A3关于直线q(直线q上各点的纵坐标都为3)的对称点为A4,A4关于直线m的对称点为A5,A5关于直线n的对称点为A6,⋯⋯依此规律A2023的坐标是()A.2021,-2021D.-2025,2027C.-2021,-2017B.-2025,-2021【答案】B【详解】解:∵直线m上各点的横坐标都为0,即直线m为y轴,∴A11,3,在第一象限,∵直线n上各点的纵坐标都为1,即直线n为直线y=1;∴A21,-1,在第四象限,∵直线p上各点的横坐标都为-2,即直线p为直线x=-2,∴A3-5,-1,在第三象限,∵直线q上各点的纵坐标都为3,即直线q为直线y=3,∴A4-5,7,在第二象限,∴A55,7在第三象限,,在第一象限,A65,-5,在第四象限,A7-9,-5∴每四个点坐标所在象限为一个循环,∵2023=4×505+3,∴A2023与A3在同一象限,∵A3-5,-1,A7-9,-5,∴可知,第三象限的点坐标的特征为A n -n +2 ,-n -2 ,∴A 2023-2025,-2021 ,故选:B .11(23·山东济宁·期末)如图,OP =1,过点P 作PP 1⊥OP 且PP 1=1,得OP 1=2;再过点P ,作P 1P 2⊥OP 1,且P 1P 2=1,得OP 2=3;又过点P 2作P 2P 3⊥OP 2且P 2P 3=1,得OP 3=2⋯依此法继续作下去,得OP 2021=()A.2023B.2022C.2021D.2020【答案】B【详解】解:由勾股定理得:OP 1=OP 2+OP 12=12+12=2,OP 2=OP 12+P 1P 22=(2)2+12=3,OP 3=OP 22+P 2P 32=(3)2+12=2,⋯,依此类推可得:OP n =(OP n -1)2+(P n -1P n )2=(n )2+12=n +1,∴OP 2021=2021+1=2022,故选:B .12(23·广西贵港·期末)请看杨辉三角,并观察下列等式:(a +b )1=a +b(a +b )2=a 2+2ab +b 2(a +b )3=a 3+3a 2b +3ab 2+b 3(a +b )4=a 4+4a 3b +6a 2b 2+4ab 3+b 4根据前面各式的规律,则(a +b )6=.【答案】a 6+6a 5b +15a 4b 2+20a 3b 3+15a 2b 4+6ab 5+b 6【详解】解:(a +b )6=a 6+6a 5b +15a 4b 2+20a 3b 3+15a 2b 4+6ab 5+b 6故本题答案为:a 6+6a 5b +15a 4b 2+20a 3b 3+15a 2b 4+6ab 5+b 6.13(23-24·辽宁沈阳·期中)汉字文化正在走进人们的日常消费生活.下列图形都是由同样大小的圆点和线段按照一定的规律排列组成的篆书简化“汉”字,其中,图①中共有12个圆点,图②中共有18个圆点,图③中共有25个圆点,图④中共有33个圆点⋯依此规律,则图⑧中共有圆点的个数是.【答案】75【详解】解:在图①中,圆点个数为y1=12个.在图②中,圆点个数为y2=y1+2+4=18个.在图③中,圆点个数为y3=y2+2+5=25个.在图④中,圆点个数为y4=y3+2+6=33个....以次类推,在图⑧中,圆点个数为y8=y7+(2+10)=y6+(2+9)+12=y5+(2+8)+11+12=y4+(2+7)+10+11+12=33+9+10+11+12=75.故答案为:75.14(2023·四川资阳·一模)如图,李明从A点出发沿直线前进5米到达B点后向左旋转的角度为α,再沿直线前进5米,到达点C后,又向左旋转α角度,照这样走下去,第一次回到出发地点时,他共走了45米,则每次旋转的角度α为.【答案】40°.【详解】连续左转后形成的正多边形边数为:45÷5=9,则左转的角度是360°÷9=40°.故答案是:40°.15(22-23·江苏)我国南宋数学家杨辉1261年所著的《详解九章算法》一书里出现了如图所示的表(图①),即杨辉三角.现在将所有的奇数记“1”,所有的偶数记为“0”,则前4行如图②,前8行如图③,求前32行“1”的个数为.【答案】243【详解】观察图②和图③可知,前8行中包含3个前4行的图形,中间三角形中的数字均为0,∴前8行中“1”的个数是前4行中“1”的个数的3倍,即前8行中“1”的个数为9×3=27(个),同理可知前16行中“1”的个数是前8行中“1”的个数的3倍,即前16行中“1”的个数为27×3=81(个),前32行中“1”的个数是前16行中“1”的个数的3倍,即前32行中“1”的个数为81×3=243(个),故答案为:243.16(2023九年级上·全国·期末)在平面直角坐标系中,抛物线y =x 2的图象如图所示.已知A 点坐标为(1,1),过点A 作AA 1∥x 轴交抛物线于点A 1,过点A 1作A 1A 2∥OA 交抛物线于点A 2,过点A 2作A 2A 3∥x 轴交抛物线于点A 3,过点A 3作A 3A 4∥OA 交抛物线于点A 4⋯,依次进行下去,则点A 2023的坐标为.【答案】-1012,10122【详解】解:∵A 点坐标为(1,1),∴直线OA 为y =x ,A 1(-1,1),∵A 1A 2∥OA ,∴直线A 1A 2为y =x +2,解y =x +2y =x 2得x =-1y =1 或x =2y =4 ,∴A 2(2,4),∴A 3(-2,4),∵A 3A 4∥OA ,∴直线A 3A 4为y =x +6,解y =x +6y =x2 得x =-2y =4 或x =3y =9 ,∴A 4(3,9),∴A 5(-3,9)⋯,∴A2023-1012,10122,故答案为:-1012,10122.17(22-23九年级上·全国·期末)(规律探究题)下表是按一定规律排列的一列方程,仔细观察,大胆猜想,科学推断,完成练习.序号方程方程的解1x2-2x-3=0x1=-1,x2=32x2-4x-12=0x1=-2,x2=63x2-6x-27=0x1=-3,x2=9⋯⋯⋯(1)这列方程中第10个方程的两个根分别是x1=,x2=.(2)这列方程中第n个方程为.【答案】(1)-10;30;(2)x2-2nx-3n2=0【详解】(1)由表格中的规律可知,第10个方程的解为x1=-10,x2=30;(2)根据表格中的规律可知,第n个方程的解是x1=-n,x2=3n,∴根据根与系数的关系可知:第n个方程就是x2-2nx-3n2=0.18(22-23·福建莆田·期中)探究规律题按照规律填上所缺的单项式并回答问题:(1)a,-2a2,3a3,-4a4,,;(2)试写出第2017个和第2018个单项式;(3)试写出第n个单项式;(4)试计算:当a=-1时,a+(-2a2)+3a3+(-4a4)+⋯+99a99+(-100a100)的值.【详解】解:(1)由前几项的规律可得:第五项、第六项依次为:5a5,-6a6;(2)第2007个单项式为:2017a2017,第2018个单项式为:-2018a2018;(3)第n个单项式的系数为:n×(-1)n+1,次数为n,故第n个单项式为:(-1)n+1nan.(4)原式=-1-2-3⋯-100=-5050.19(23-24·河南安阳)探究规律,完成相关题目.定义“*”运算:(+2)*(+4)=+(22+42);(-4)*(-7)=+(-4)2+(-7)2;(-2)*(+4)=-(-2)2+(+4)2;;(+5)*(-7)=-(+5)2+(-7)20*(-5)=(-5)*0=(-5)2;(+3)*0=0*(+3)=(+3)2.0*0=02+02=0(1)归纳*运算的法则:两数进行*运算时,.(文字语言或符号语言均可)特别地,0和任何数进行*运算,或任何数和0进行*运算,(2)计算:+1*0*-2.(3)是否存在有理数m,n,使得m-1=0,若存在,求出m,n的值,若不存在,说明理由.*n+2【详解】(1)解:归纳*运算的法则∶两数进行*运算时,同号得正,异号得负,并把两数的平方相加.特别地,0和任何数进行*运算,或任何数和0进行*运算,等于这个数的平方.(2)解:+1 *0*-2 ,=+1 *-2 2,=+1 *4,=+12+42 ,=1+16,=17;(3)解:m -1 *n +2 =0,=±m -1 2+n +2 2 =0,∴m -1=0,n +2=0,解得:m =1,n =-2,20(23-24·浙江杭州·期中)探究规律,完成相关题目:小明说:“我定义了一种新的运算,叫※(加乘)运算.”然后他写出了一些按照※(加乘)运算的运算法则进行运算的算式:(+5)※(+2)=+7;(-3)※(-5)=+8;(-3)※(+4)=-7;(+5)※(-6)=-11;(0)※(+8)=8;(0)※(-8)=8;(-6)※(0)=6;(+6)※(0)=6.小亮看了这些算式后说:“我知道你定义的※(加乘)运算的运算法则了.”聪明的你也明白了吗?(1)观察以上式子,类比计算:①-12 ※-15=,-23 ※+1 =;(2)计算:(-2)※[0※(-1)];(括号的作用与它在有理数运算中的作用一致,写出必要的运算步骤)(3)若1-a ※b -3 =0.计算:1a ×b +1a +2 ×b +2 +1a +4 ×b +4 +1a +6 ×b +6+1a +8 ×b +8的值.【详解】(1)解:①-12 ※-15 =-12 +-15 =12+15=710,故答案为:710.②-23 ※+1 =--23 +1 =-23+1 =-53,故答案为:-53.(2)解:(-2)※[0※(-1)]=-2 ※+1=-1+2=-3.(3)∵1-a ※b -3 =0,∴1-a +b -3 =0,。
初中数学规律探究问题的类型及解题技巧分析

初中数学规律探究问题的类型及解题技巧分析作者:李春月来源:《新课程·中旬》2019年第02期摘要:初中数学重要组成部分就是规律探究类的题目。
学生学习规律探究类的题目可以增强自身思维的灵敏性,对于智力的提高和思维意识的发散有重要的意义。
规律探究类的提问也是历年来中考考查的重点问题。
因此加强对此类问题的研究和分析是非常有必要的。
主要对初中数学规律探究问题中几个重点题型和解题技巧进行分析。
关键词:初中数学;规律探究;题型;解题方法新人教版初中数学中规律探究类的题目是考查学生的重点问题。
通常情况下,解决规律探究题的关键是让学生根据已知条件,如有规律的图表、算式等,进行观察、分析、总结,最后得出需要的答案[1]。
此类问题需要学生勇于大胆地推测和想象。
在历年来的中考数学试卷中,规律探究类问题占有较大的分值。
下面是笔者根据多年教学经验归纳总结的几个重点题型。
内容如下。
一、类型一:数字排列探究类题型二、类型二:数字规律探究类题型三、类型三:文字型探究题综上所述,规律探究类问题是初中数学中重要的组成部分,伴随新课改的推进,初中教学需要加强对学生思维意识能力的培养,全面提高学生的创新能力[3]。
而规律探究类的问题可以发散学生的思维意识,对于学生智力的开发和创新精神的培养有重要意义。
因此,需要在今后的教学中加强学生在规律探究方面的指导,以便促进学生的全面发展。
参考文献:[1]张懿.探索初中数学探索规律题型新解[J].科学时代,2013(7).[2]范小震.规律探索题的解答策略:从特殊出发[J].初中生世界(九年级),2018(7):100-102.[3]吴健.中考数学探索规律题型探究[J].数理化学习(初中版),2017(2):20-24.。
初中数学规律探究问题的类型及解题技巧分析

初中数学规律探究问题的类型及解题技巧分析初中数学中,规律探究问题是一类需要通过观察、归纳、推理等方法来找出数学规律的问题。
这类问题通常涉及数字序列、图形变换、等式变形等方面,要求学生在探究规律的过程中培养逻辑思维能力和数学思维方式,提高解决问题的能力。
一、数字序列类问题数字序列类问题是初中数学中最常见的规律探究问题。
这类问题通常要求学生根据给定的数字序列找出其中的规律,并推算出下一个数字或几个数字。
解决这类问题的关键是观察敏锐和逻辑推理能力。
具体的解题技巧如下:1.观察数字序列中的差值:有些数字序列是等差数列,差值相等;有些数字序列是等比数列,比值相等;有些数字序列可能是其他规律,需要用其他方法来找出。
2.找出数字序列中的特殊数字:有些数字序列中会有特殊的数字,比如首项为1的斐波那契数列,第三个数字开始,每个数字是前两个数字之和。
3.归纳误差法:当已知前几个数字后无法确定规律时,可以假设一个规律并进行验证,找出规律的特点和一般性质,再用这个规律来验证后续数字。
二、图形变换类问题图形变换类问题通常涉及图形的旋转、翻转、平移、缩放等操作,要求学生根据给定的图形或一系列图形的变换找出其中的规律。
解决这类问题的关键是观察图形的形状和位置的变化,利用几何知识进行分析。
具体的解题技巧如下:1.观察图形的对称性:有些图形在某种变换后会保持对称,比如旋转180度后还是原来的图形。
2.观察图形的放大缩小关系:有些图形在变换后会变成原来的图形的倍数,比如放大或缩小一定的倍数。
3.观察图形的平移关系:有些图形在变换后会平移一定的距离,比如向左或向右平移一定的格数。
三、等式变形类问题等式变形类问题通常要求学生通过等式的变形推导出另一个等式,并验证等式的等价性。
解决这类问题的关键是掌握等式变形的基本方法和技巧。
具体的解题技巧如下:1.使用性质和定理:根据等式的性质和定理进行变形,如分配律、合并同类项等;2.开展移项、约去等操作:通过移动变量的位置、约去相同因式等操作推导出新的等式;3.代入数值验证等式的等价性:可以代入一些具体的数值来验证等式是否成立。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学规律探究问题的类型及解题技巧分析
一、数字规律探究问题
数字规律探究问题是数学学习中常见的一类问题,通常涉及到数字之间的关系和规律。
解决数字规律问题需要学生对数字之间的运算关系进行分析,并找出规律。
一般来说,数
字规律问题分为两种类型:基本数字规律和扩展数字规律。
1. 基本数字规律
基本数字规律是指数字之间的简单关系,通常呈现在数列或者数字表格中。
给出一个
数列1,3,5,7…,要求学生找出其中的规律并补充下一个数。
解决这类问题的关键在于观察数字之间的差异和规律,一般来说可以通过计算相邻数字的差值或者比值来找到规律。
比如上述数列中每个数与前一个数的差值都是2,因此可以得出规律为n与n-1之间的差值递增2。
解题技巧:观察数字之间的差异和规律,可以进行递增、递减、乘法、除法等运算,
寻找规律的方式多种多样,需要学生多加练习和思考。
扩展数字规律是指数字之间的复杂关系,通常需要学生更加深入地思考和分析。
给出
一个数字表格,要求学生填写其中的空缺部分。
这类问题通常需要学生通过观察数字之间
的关系,找到规律并进行推理分析。
解决这类问题需要学生具有很强的逻辑思维能力和分
析能力。
解题技巧:对于扩展数字规律问题,学生需要通过分析数字之间的变化规律,尝试找
出其中的数学定律,并运用数学原理进行推理和计算。
图形规律探究问题是指通过观察图形之间的关系,找出其中的规律和特点。
这类问题
通常呈现为几何图形的变化和组合,要求学生找出其中的规律并进行推理分析。
解决图形
规律问题需要学生具有对图形的敏锐观察能力和逻辑推理能力。
解题技巧:观察图形之间的相似性和规律,可以通过旋转、平移、对称等方式进行变换,通过观察图形的对应关系找出规律。
2. 扩展图形规律
基本等式规律是指等式之间简单的变化关系,通常呈现为数学公式或者等式变换。
给
出一个等式2x+1=5,要求学生找出其中的规律并求解x的值。
解决这类问题需要学生熟练掌握等式的变形和求解方法。
解题技巧:观察等式之间的变化规律,可以通过移项、合并同类项、因式分解等方式
进行变形,找出变量的取值范围。
初中数学规律探究问题的类型多种多样,包括数字规律、图形规律、等式规律等,每种类型都需要学生具有较强的观察力、逻辑推理能力和数学运算能力。
在解题过程中,学生需要积极思考、多加实践,并根据不同类型的规律问题灵活运用不同的解题方法,尝试寻找出其中的规律和特点。
老师在教学中也需要根据学生的实际情况,针对不同类型的规律问题进行分层指导和差异化教学,帮助学生提高解题能力和逻辑思维能力。
通过对初中数学规律探究问题的类型及解题技巧进行详细分析,相信能够帮助学生更好地掌握这一部分知识,提高数学学习的效果。