碳纳米管表面处理对储氢性能的影响
碳纳米管

碳纳米管简介潘春旭===================================武汉大学 物理科学与技术学院地址:430072湖北省 武汉市 武昌区 珞珈山电话:027-8768-2093(H);8721-4880(O)传真:027-8765-4569E-Mail: cxpan@;cxpan@个人网页:/cxpan===================================1. 什么是碳纳米管?1991年日本NEC公司的饭岛纯雄(Sumio Iijima)首次利用电子显微镜观察到中空的碳纤维,直径一般在几纳米到几十个纳米之间,长度为数微米,甚至毫米,称为“碳纳米管”。
理论分析和实验观察认为它是一种由六角网状的石墨烯片卷成的具有螺旋周期管状结构。
正是由于饭岛的发现才真正引发了碳纳米管研究的热潮和近十年来碳纳米管科学和技术的飞速发展。
按照石墨烯片的层数,可分为:1) 单壁碳纳米管(Single-walled nanotubes, SWNTs):由一层石墨烯片组成。
单壁管典型的直径和长度分别为0.75~3nm和1~50μm。
又称富勒管(Fullerenes tubes)。
2) 多壁碳纳米管(Multi-walled nanotubes, MWNTs):含有多层石墨烯片。
形状象个同轴电缆。
其层数从2~50不等,层间距为0.34±0.01nm,与石墨层间距(0.34nm)相当。
多壁管的典型直径和长度分别为2~30nm和0.1~50μm。
多壁管在开始形成的时候,层与层之间很容易成为陷阱中心而捕获各种缺陷,因而多壁管的管壁上通常布满小洞样的缺陷。
与多壁管相比,单壁管是由单层圆柱型石墨层构成,其直径大小的分布范围小,缺陷少,具有更高的均匀一致性。
无论是多壁管还是单壁管都具有很高的长径比,一般为100~1000,最高可达1000~10000,完全可以认为是一维分子图1 碳纳米管原子排列结构示意图2. 碳纳米管的独特性质1) 力学性能碳纳米管的抗拉强度达到50~200GPa,是钢的100倍,密度却只有钢的1/6,至少比常规石墨纤维高一个数量级。
储氢材料

储氢材料摘要:作为一种新型的清洁能源,氢的廉价制取、安全高效储存与运输及其模型应用,将是今后研究的重点。
本文介绍了储氢材料的结构、性能、制备及应用;展望了储氢材料的发展趋势。
关键字:氢;储氢材料;清洁能源1引言随着传统能源的日渐枯竭,致使人类面临着能源、资源和环境危机的严峻挑战,同时人们环保意识的日益增强,开始大力寻找新的洁净能源己成为科研工作的焦点[l]。
在这些过程中,氢以其独有的优点逐渐得到人们的公认。
氢作为洁净能源具有以下优点:(l) 氢的燃烧产物是水,对环境不产生任何污染;(2) 氢可以通过太阳能、风能等分解水而再生,是可再生能源;(3) 燃烧1g氢放出的热量是等量汽油的3倍左右;(4) 氢资源丰富,可通过水、碳氢化合物等电解或分解生成。
由此可见,氢是一种清洁,高效的能源,在未来有着广阔的应用前景。
在氢能利用过程中,有两个重要的方面,即氢能的制备和储运。
在氢能的制备方面:人类通过利用太阳能光解海水可以制得大量的氢;故氢的储存和运输是其发展和应用中遇到的难点之一。
2 氢的存储标准与现状“储氢材料”顾名思义是一种能够储存氢的材料。
衡量储氢材料性能的标准主要有2个:体积储氢密度(kg/m3)和储氢质量分数(%)。
体积储氢密度为系统单位体积内储存氢气的质量,储氢质量分数为系统储存氢气的质量与系统质量的比值。
另外,充放氢的可逆性、充放气速率及可循环使用寿命等也是衡量储氢材料性能的重要参数[2]。
和其它物质一样,氢的存在状态也是固态、液态、气态。
气态时存储方式较为简单方便,也是目前储存压力低于17MPa氢气的常用方法。
但其密度较小,体积大;由于是易燃气体在运输和使用过程中存在安全隐患是该方法的不足之处。
液态储氢方法的体积密度高(70kg/m3),但氢气的液化需要冷却到20K的超低温下才能实现,此过程消耗的能量约占所储存氢能的25%~45%。
液态氢不仅储存成本高,而且使用条件苛刻,目前只限于在航天技术领域中应用。
碳纳米管的性质与应用

研究碳纳米管的发光性质从其发光位置着手 研究。单壁纳米碳管的发光是从支撑纳米碳管的 金针顶附近发射的,并且发光强度随发射电流的 增大而增强;多壁纳米碳管的发光位置主要限制 在面对着电极的薄膜部分,发光位置是非均匀的, 发光强度也是随着发射电流的增大而增强。碳纳 米管的发光是由电子在与场发射有关的两个能级 上的跃迁而导致的。研究表明单壁纳米碳管的光 吸收随压力的增大而减弱,其原因在于压力的变 化会导致纳米碳管对称性的改变。
碳纳米管的性质与应用
应化0804 报告人:赵 开
主要内容
碳纳米管的简介
碳纳米管的性质
碳纳米管的应用 碳纳米管的展望
碳纳米管的简介
碳纳米管(CNT)是碳的同素异形体 之一,是由六元碳环构成的类石墨平面卷 曲而成的纳米级中空管,其中每个碳原子 通过SP2杂化与周围3个碳原子发生完全键合。 碳纳米管是由一层或多层石墨按照一定方 式卷曲而成的具有管状结构的纳米材料。 由单层石墨平面卷曲形成单壁碳纳米管 (SWNT),多层石墨平面卷曲形成多壁碳 纳米管(MWNT)。
碳纳米管的展望
由于碳纳米管具有非常好的性能,其 尺寸又处于纳米级,因而具有很好的应用 前景,受到了多个领域研究者的广泛关注。 随着其应用研究的进展,势必引起一场科 技革命的新突破,并带动一系列相关高科 技产业的兴起与发展。在不久的将来,基 于碳纳米管的多种现代化产品将会真正进 入我们的生活,对社会的发展势必将起到 极大的推动作用。
碳纳米管在电磁学领域的应用:
碳纳米管具有良好的导电性,是一种可用于制备修饰 电极和电化学传感器的优良材料。将碳纳米管对传统电极 进行修饰可以降低氧化过电势,增加峰电流,从而改善分 析性能,提高方法选择性和灵敏度。因此,碳纳米管作为 修饰电极材料已广泛应用于分析化学领域。利用碳纳米管 的场致电子发射性能可用于制作平面显示装置,使之更薄、 更省电,从而取代笨重和低效的电视和计算机显示器。碳 纳米管的优异场发射性能还可使其应用于微波放大器、真 空电源开关和制版技术上,可用于大规模集成电路、超导 线材、超电容器,也可用于电池电极和半导体器件。碳纳 米管的直径比以往用的针尖小得多,用碳纳米管作为扫描 探针能大大提高其分辨率。利用碳纳米管的金属导电性和 半导体性能,碳纳米管还被用于制作分子级开关、半导体 器件等。
储氢材料

储 氢 材 料
The brief introduction of hydrogen storage materials
什么是储氢材料?
在一定的温度和压力条件下,能 可逆地吸收和释放氢气的材料,可 作为储氢材料。
储氢材料应具备的特点: 1、低释氢温度
2、吸收—放氢过程可逆
3、材料稳定,安全,无毒,低成本
储氢合金按组成元素的主要种类分为:镁系、稀土系、
钛系、锆系、铁系五大类。
按主要组成元素的原子比分为:AB5型、AB2型、AB 型、
A2B型,其中A是容易形成稳定氢化物的发热型金属元素,B 为难于形成氢化物的吸热型元素,且A原子半径大于B原子半 径。 A如:Ti、Zr、La、Mg、Ca、 Mm(混合稀土金属)等。
单壁纳米碳管束TEM 照片
多壁纳米碳管TEM 照片
2.2.2 碳纳米管材料的制备及研究方法 制备方法 电弧法 气相沉积法
低分子化合物
加载气(H2) 金属微粒催化剂
气相生长
1000~1400°C
碳纤维(或纳米管) 石墨化
2000~3000°C
表面处理
产品
石墨纤维 (或纳米管)
研究方法
有机液态氢化物主要包括苯、甲苯、萘等,人们现在主 要用苯及甲苯来储氢。
有机液体氢化物储氢的优、缺点
有机液体储氢技术与传统的储氢技术(深冷液化、金属氢化 物、高压压缩)相比具有以下优点:
①储氢量大 苯和甲苯的理论储氢质量分数分别为7.19%和 6.18%,比传统的金属氢化物、高压压缩的储氢量大得多。
MOF-5的吸附等温线78K
MOF-5的吸附等温线298K
温度、压力对其储氢性能的影响
碳纳米管-CNT

1992 前苏联科学家也独立发现了碳纳米管,但结果发表在俄语杂志上 ➢ 1993 Iijima (NEC, Japan)和Bethune (IBM, USA)的研究组各自独立发现了
单壁碳纳米管(SWNT)
➢ SWNT
结构
管壁由单石墨片层卷绕而成,两侧由富勒烯半球封端 根据卷绕方式(n, m)的不同,SWNT可分为
CNT
性 能(续)
➢ 力学性能
杨氏模量 1~5 TPa,与石墨片层相当(1.06TPa),
比碳纤维高一个数量级,约为钢的100
倍, 而密度仅为钢的1/6
拉伸强度 10~150GPa,石墨片层为36.5GPa,拉伸形变至40%无明显脆性行为、塑性
形变和断裂
MWNT tensile test
✓ armchair n = m ✓ zigzag n = 0 ✓ chiral n ≠ m, m ≠ 0 根据电子结构的不同,SWNT可分为 ✓ 金属性 (n-m)/3为整数 ✓ 半导体性 (n-m)/3为非整数
单石墨片层
armchair型SWNT
zigzag型SWNT
chiral型SWNT
➢ MWNT
电阻率 0.05 µΩ.m ~ 10 mΩ.m 电流密度 1010 ~ 1013 A/m2
AFM image
CNT电性能测试装置(左) 电性能测试结果(右)
性 能(续)
➢ 热性能
热稳定性 真空环境可耐温至2800oC,空气中700oC 热导率 理论值6000W.(m.K)-1;实验值3000W.(m.K)-1
碳纳米管
Carbon Nanotubes, CNTs
太空电梯 - 未来的地球-太 空班车
CNT-based Cable
碳纳米管及其应用新领域

碳纳米管及其应用新领域摘要:综述了碳纳米管材料独特性能及其应用潜力,详细说明了碳纳米管材料在各种应用领域中的巨大应用前景,包括高强度复合材料、微机械、信息存储、纳米电子器件等。
关键词:碳纳米管的性能,碳纳米管的应用新领域,储氮材料,复合材料,信息存储,碳纳米电子学前言:碳纳米管具有典型的层状中空结构特征,构成碳纳米管的层片之间存在一定的夹角碳纳米管的管身是准圆管结构,并且大多数由五边形截面所组成。
管身由六边形碳环微结构单元组成, 端帽部分由含五边形的碳环组成的多边形结构,或者称为多边锥形多壁结构。
是一种具有特殊结构(径向尺寸为纳米量级,轴向尺寸为微米量级、管子两端基本上都封口)的一维量子材料。
由于其独特的结构,碳纳米管的研究具有重大的理论意义和潜在的应用价值。
一、碳纳米管的性能碳纳米管作为一维纳米材料,重量轻,六边形结构连接完美,具有许多异常的力学、电学和化学性能。
近些年随着碳纳米管及纳米材料研究的深入其广阔的应用前景也不断地展现出来。
力学性能由于碳纳米管中碳原子采取SP2杂化,相比SP3杂化,SP2杂化中S轨道成分比较大,使碳纳米管具有高模量、高强度。
碳纳米管具有良好的力学性能,碳纳米管的硬度与金刚石相当,却拥有良好的柔韧性,可以拉伸。
碳纳米管的结构虽然与高分子材料的结构相似,但其结构却比高分子材料稳定得多。
碳纳米管是目前可制备出的具有最高比强度的材料。
若将以其他工程材料为基体与碳纳米管制成复合材料,可使复合材料表现出良好的强度、弹性、抗疲劳性及各向同性,给复合材料的性能带来极大的改善。
导电性能碳纳米管上碳原子的P电子形成大范围的离域n键,由于共轭效应显著,碳纳米管具有一些特殊的电学性质。
碳纳米管具有良好的导电性能,由于碳纳米管的结构与石墨的片层结构相同,所以具有很好的电学性能。
对于一个给定的纳米管,在某个方向上表现出金属性,是良好的导体,否则表现为半导体。
对于这个的方向,碳纳米管表现出良好的导电性,电导率通常可达铜的1 万倍。
碳纳米管
(B)热解法:这种方法也很简单,将一块基板放 进加热炉里加热至600℃,然后慢慢充入甲烷 一类的含碳气体。气体分解时产生自由的碳原 子,碳原子重新结合可能形成碳纳米管。
优点:最容易实现产业化,也可能制备很长的 碳纳米管。
缺点:制得的碳纳米管是多壁的,常常有许多 缺陷。与电弧放点法制备的碳纳米管相比,这 种碳纳米管抗张强度只有前者的十分之一。
初步估算,碳纳米管的强度大概是钢的100倍。 Lieber运用STM技术测试了碳纳米管的弯曲强度, 证明碳纳米管具有理想的弹性和很高的硬度。因此 用碳纳米管作为金属表面上的复合镀层,可以获得 超强的耐磨性和自润滑性,其耐磨性要比轴承钢高 100倍,摩擦系数为0.06~0.1,且还发现该复合镀层 还具有高的热稳定性和耐腐蚀性等性能。
(C)浓硝酸氧化法
将碳纳米管加入到浓硝酸中搅拌,超声波分散 后加热回流处理。自然冷却后用蒸馏水稀释、 洗涤至中性,经真空干燥、研磨后既得到纯化 处理的碳纳米管[14]。
优点:经过适当浓度硝酸氧化处理一定时间的 CNTs,其基本结构未发生本质变化,而表面 活性基团显著增加,在乙醇中分散浓度、均匀 性、稳定性得到提高,在复合材料中的分散均 匀性及与树脂的结合性能也得到相应提高。硝 酸氧化处理是CNTs表面活化的有效方法。
中美科学家在研究中对合成碳纳米管常用的化 学气相淀积方法进行了改进。改进结果显示,在化 学气相淀积过程中加入氢和另外一种含硫化合物后, 不仅能制造出更长的碳纳米管束,而且这些碳纳米 管束可由单层碳纳米管通过自我组装而有规律地排 列组成。
研究人员认为,他们的新方法作为一种更为简便 的替代工艺,也许还可以用来生产高纯度的单层碳 纳米管材料。
储氢材料的研究进展
氢的储存技术是开发利用氢能的关键性技术,如何有效地对氢进行储存,并且在使用时能够方便地释放出来,是该项技术研究的焦点。以上介绍的每一种储氢材料都有或多或少的缺点,制约其长足的发展。比如说,储氢合金虽是主要应用的储氢材料,但大多数储氢合金的自重大,寿命也是个问题,自重低的镁合金很难常温储放氢,大规模应用仍然有困难。碳纳米管储氢材料受到广泛关注,但基础研究不够,能否实用化还是个问题,目前的研究重点是提高室温、常压下氢的吸附量,在吸附机理、吸附剂的合成和吸附剂的净化等方面取得突破性进展。另一思路是制备新型的复合储氢材料,大部分储氢材料的性能都有加合的特点,而单一的储氢材料的性质也较多地为人们所认识。所以,复合储氢材料是未来储氢材料制备的一个走向。
有机物储氢的特点是:(1)储氢量大,苯和甲苯的理论储氢质量分数分别为7.19 %和6.18 %,比传统的金属氢化物、高压压缩的储氢量大得多;(2)储氢剂和氢载体的性质与汽油相似,储存、运输、维护保养安全方便,特别是储存设施的简便是传统储氢技术难以比拟的;(3)可多次循环使用,寿命长达20年;(4)加氢反应放出大量热可供利用。Touzani和Klvana等[16,17]系统地研究了MCH的脱氢反应,并对偶联于氢燃机上的脱氢反应进行了数值模拟。瑞士在研究随车脱氢,为汽车提供燃料的技术方面开展了一系列研发工作[35,36]。Parmaliana等[18]利用商品化的载Pt蜂窝状催化剂研究了苯/环己烷的加氢和脱氢反应,250℃~350℃,常压下,加氢效果最好。Cacciola等[19]论证了用环己烷和甲基环己烷作氢载体的储氢和输氢的可行性。我国的有机液体氢化物储氢技术,1994年石油大学进富[20]对利用Ni - Al2O3催化剂的甲苯气相加氢反应及其动力学进行了研究,取得了一定的进展。2003年,顾仁敖等[21]用共焦拉曼光谱研究了苯在光滑铂电极表面的电化学还原行为,表明苯可直接还原生成环己烷。
碳基储氢材料的技术研究及展望
第 50 卷 第 5 期2021 年 5 月Vol.50 No.5May. 2021化工技术与开发Technology & Development of Chemical Industry碳基储氢材料的技术研究及展望付东升(中国石化上海石油化工股份有限公司,上海 200540)摘 要:本文从功能性材料和纤维缠绕结构性复合材料两个方面,总结了碳基材料在储氢领域的技术进展。
功能型储氢材料的技术原理是表面吸附,包括活性炭、活性炭纤维、纳米碳纤维、碳纳米管、石墨烯等,应用的关键在于开发较高温度下的低成本吸附材料。
高性能纤维缠绕复合材料是高压储氢技术的研究热点,结合低温技术,可以实现在保证储氢能力的同时降低压力,具有较好的经济性。
关键词:碳基材料;储氢;吸附;纤维缠绕复合材料中图分类号: TK 912 文献标识码:A 文章编号:1671-9905(2021)05-0054-05作者简介:付东升(1980-),男,博士,高级工程师,研究方向:碳材料及应用收稿日期:2021-02-22氢能具有资源丰富、高热值、无污染、可再生的优点,是理想的新一代清洁能源。
与化石能源相比,氢气燃烧发热量为28700kcal·kg -1,优质煤炭为8000kcal·kg -1,汽油为10630kcal·kg -1,天然气为11930kcal·kg -1。
氢能利用的关键技术在于储存,全世界科学家投入大量的精力,以开发安全经济的储存技术,现有氢气的储存方法有液化储存、压缩储存、金属氢化物储存、吸附储存等。
在作为结构材料的高压压缩氢气储存技术领域,以及作为功能材料的吸附储存技术领域中,碳基材料都发挥着关键的作用,也是过去几十年的研究焦点。
1 功能型碳基储氢材料功能型碳基储氢材料是依据碳基吸附材料可在低温条件下物理吸附储氢,高温下氢气解吸附的原理,进行氢气的储存和利用。
碳基吸附材料的比重轻,对氢气的吸附量大,经济性好,对气体中的杂质不敏感且可以循环使用。
碳纳米管
e) Picture of a CNT and a polymeric sponge placed in a water bath. The CNT sponge is floating on the top while the polyurethane sponge absorbed water and sank to below the surface level. f) A CNT sponge bent to arch-shape at a large-angle by finger tips. g) A 5.5cm1 cm0.18cm sponge twisted by three round turns at the ends without breaking. h) Densification of two cubic-shaped sponges into small pellets (a flat carpet and a spherical particle, respectively) and full recovery to original structure upon ethanol absorption.
范守善院士
清华大学物理系
研究领域:近十余年的研究方向集中在纳米尺度材料的 科学与技术,主要研究方向为碳纳米管的生长机理、可 控制合成与应用探索。在深入揭示和理解碳纳米管生长 机理的基础上,实现了超顺排碳纳米管阵列、薄膜和线 材的可控制与规模化制备,研究并发现了碳纳米管材料 独特的物理化学性质,基于这些性质发展出了碳纳米管 发光和显示器件、透明柔性碳纳米管薄膜扬声器、碳纳 米管薄膜触摸屏等多种纳米产品,部分应用产品已具有 产业化前景,实现了从源头创新到产业化的转换。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2000年第4期 总第109期 CARBON TECHNIQUES
炭寨技术
2[1【l0№4
SUM109
F 一7f 碳纳米管表面处理对储氢性能的影响 朱宏伟 ,徐才录 ,堕 2毛宗强2魏秉庆 ,梁吉 ,吴德海 (1.清华大学机械系,北京100084) (2.清华大学核研院,北京100084)
色T6 ;
丁&r 7 /J 摘要:碳纳米管的表面特性决定着与氢之间的相互作用。为获得良好的吸附表面,使用浓硝酸和NaOH溶液对 碳纳米管进行了表面处理,改善了比表面积和表面活性.从而使氢吸附率达到了5%(室温和】0 MPa的条件 下).实验结果稳定。 关键词:碳纳米管;储氢;吸附;表面处理 中围分类号:O613.71;TB383;TK91 文献标识码:A 文章编号:1001-3741(2000)04-0012-2
THE EFFECT OF SURFACE TREATMENTS ON HYDROGEN SToRAGE OF CARBON NANOTUBES
ZHU Hong-wet ,XU Cat-lu',CHEN An ,MAO Zong-qiang ̄,WEI Bing-qing‘,LIANG Ji ,WU De-hai (1_Department of Mechanical Engineering,Tsinghua University,Beijing 100084,China) (2.1ristitute of Nuclear Energy Technology,Tsinghua University,Beijing 100084,Chinaj
Abstract:Carbon nano/ubes used in this experiment were grown from n aeelylene一 dmgen mixture on a support using diferent catalyet D甩cⅢ n .The surf ̄e characteristics of carb。n na ̄otubes determir ̄ed the interaclion with hydrogen. s0 the materiale thu8 l ̄,:dueed were sabmitred Ito two diferent treatnrents.namely nitric acid and alkali soluliott to gairt favorable adsorption surface.the ̄e treatments impmvd surface fl/' ̄a and surface activity effectively.At last i【can"absorb 5%of hydrogen at r0∞I temperature u/l ̄r tO MPa.and the reauh is stable. Key words:Carbon nanotubefCNT);hydmgen slorage;adsorption;surface treatment
氲在高能量密度充电电池和氢燃料电池中作 为燃料时.要求达到较高的储存量。目前.纳米碳材 料储氢被广泛研究,它的价值在于储氢量大大高于 传统储氢系统。Dollin等人发现单壁碳纳米管 (SWNT)粉末在133 K和加kPa的压力下能够吸附 大约5%一1O%的氢…。Chambers等人发现在12 MPa和室温条件下鱼骨状的石墨纳米纤维的氢吸 附率可高达200%1210 Ye等人使用高纯度的SWNT 在eOK和10 MP.a下获得了8.25%的氢吸附率“ 。 Chen等人使用碱金属掺杂碳纳米管作为吸附剂,掺 杂锂的碳纳米管可在653 K下获得2O%的氢吸附 率,掺杂钾的碳纳米管可在室温下获得14%的的氢 吸附率…。c.Liu等最近使用经37%的盐酸浸泡48 h和773 K真空热处理2 h的单壁碳纳米管,在室 温和10—12 MPa的条件下获得了4.2%的氢吸附 率‘ 。 我们认为碳纳米管的表面特性决定着其与氢的 相互作用,对碳纳米管的表面活化处理是储氢过程
作者简介:朱宏伟男25岁博士生,主要从事聩纳米管表面处理及储氢等方面的研究
维普资讯 http://www.cqvip.com 维普资讯 http://www.cqvip.com 2000年第4期 总第109期 CARBON TECHNIQUES 炭素技术 2000№4
SUM109
反应温度对CVD法批量制备碳纳米管的影响 肖旭,张先锋,吴军,梁吉,徐才录,吴德海,魏秉庆 (清华大学机械工程系.北京100084) 摘要:用催化裂解法批量制备碳纳米管时,反应温度,反应时间.原料气体流量和催化剂用量等因索耐碳纳米 管的产量、转化率、微观组织形态有较大影响,其中以反应温度的影响最大。在一定范围内调整裂解温度,可以 得到宏观上产量、转化率较高,微观上组织形态较好的碳纳米管。 关键词:碳纳米管;催化裂解法;TEM 中图分类号:O613.71;TB383 文献标识码:A 文章编号:i 001—3741(2000)04-0014—3
THE INFLUENCE oF REACTIoN TEMPERATURE oN THE PREPARATIoN oF CNTS BY CVD IN LARGE SCALE
XIAO Xu,ZHANG Xian-feng,WU Jun,LIANG Ji,XU Cai—lu,WU De—hai,WEI Bing-qing (Department of Mechanical Engineering,Tsinghua University,Beijing 1 00084,China) Abstract:All of the expetlmenls involved;n this山e 3 used ihe method of catalytic pyrolysis of acryl to synthesize Car— hen Nanutubes(CNTs).In a stainless steel布be.the reaction room,catalytic pyrolysis of ac州over qua ̄z boats coated
uniformly with Ni—Al—dlatomlte catalyst in the range 0f 400~850℃resulted in the formation of a large number of CNTs which were observed dlrecfly transmission electron microscopyfTEM)The reaction temperature,one of the main factors which affect the productivity of CNTs.is studied systematically.The result of the experiments showed that the reaction temperature had comparatively strong effect oR the productivity of CNTs.All the parameters about the i"eac— lion temperature indicated above were optimized. Key words:CNTstcatalytic pyrolysis of acryl;TEM
碳纳米管具有纳米级的管状结构,因而在力 学、电学等方面表现出独特的性能。从l991年碳纳 米管被发现至今,碳纳米管的制备已由最初的石墨 电弧法发展为许多种方法,其中催化裂解法设备简 单,成本低廉,操作方便,转化率也较高,因而被广泛 应用于大批量制备碳纳米管。在催化裂解法制备碳 纳米管的过程中,对于同一套设备,碳纳米管的产 量、转化率及微观组织形态均受到反应温度,反应时 间,反应气体流量,催化剂用量等因素的影响,其中 最主要的影响因素是反应温度。为了摸清反应温度 对催化裂解法批量制备碳纳米管的影响,使生产过 程更具有可控性,生产工艺更加成熟,本文进行了比 较系统的实验和研究。 1实验装置和方法 碳纳米管的制备过程如下:把州一Al一硅藻土 催化剂粉末分别均匀铺洒在反应室上下层的石英舟 反应器内。反应前通以足量氢气还原催化剂。升温 至裂解温度后通人原料气——丙烯,开始台成碳纳 米管.装置示意图见图1。为了研究反应温度对批量 制备碳纳米管过程的影响,在保证碳源供应充足的 前提下.固定反应时间、原料气流量、催化剂用量等 其他反应参数。
作者简介:肖旭男25岁.硕士生,清华大学机械系,主要从事用催化裂解法批量制备碳纳米管的研究。
维普资讯 http://www.cqvip.com 第4期 肖旭反应温度对CVD法批量制备碳纳米管的影响 铁丝托 不诱钢管反应富
圈l催化裂解法批量制备碳纳米管的装置示意图 2实验结果与分析 2.1实验结果 在400~850℃的温度范围内,每隔5O℃进行 次催化裂解反应的实验。在这组实验中催化剂用 量为上下层各1 g,丙烯流量500 mL/min,反应时间 30 rain。实验结果如表1所示。 表1反应温度与C的转化率 注:表1中碳纳米管为石英舟内未经清洗的原始碳纳米管(质量 为m ) 管壁杂质是指反应室内壁上收集到的块状黑色杂质(经 透射电镜观测确定其基本成分为粗大的炭纤维)(质量为肺);碳 纳米首的转化率=碳纳米管产物/(丙烯流量×反应时问);炭纤 维的转化率:管壁炭纤维杂质/(丙烯流量×反应时间)。 图2是根据表1中的数据绘制的温度一产率曲 线图 ,由表1和图2可以看出,600℃时碳纳米管的 产量最高;在反应温度低于300℃时,随着温度升 高,碳纳米管的产量增加得很快。但是在500℃以下 反应时,由于反应温度偏低,造成催化裂解反应困 难,反应完毕后石英舟内有催化剂残余,增加反应时 间仍有催化剂剩余,由此证明这一现象与反应时间 关系不大,主要是受反应温度影响,温度过低使得裂 解反应不充分。在500—600℃之间虽然碳纳米管产 量仍有所增加,但已不明显,曲线趋于平缓,表明在 这一温度范围内催化剂活性较好且比较稳定。600 ℃以后随着温度的升高,碳纳米管的产量反而降低 图2反应温度与C的转化率 了.这意味着催化剂活性在逐渐降低;而且温度越 高,产量降低得越快,所以可以得出这样的结论:催 化剂活性主要受温度的影响,在500~600℃问比 较好,低于和高于这一温度范围其活性都会降低。 另外,由于不锈钢管内壁上炭纤维杂质的产量 在600 ac以后明显增加,消耗了更多的碳源,在碳源 (丙烯气体流量)恒定的情况下,这同时也意味着用 于生成碳纳米管的碳源减少。