回火及回火脆性

合集下载

正火退火淬火回火的区别与联系

正火退火淬火回火的区别与联系

退火与回火的区别在于:(简单地说,退火就是不要硬度,回火还保留一定硬度。

)回火:高温回火所得组织为回火索氏体。

回火一般不单独使用,在零件淬火处理后进行回火,主要目的是消除淬火应力,得到要求的组织,回火根据回火温度的不同分为低温、中温和高温回火。

分别得到回火马氏体、屈氏体和索氏体。

其中淬火后进行高温回火相结合的热处理称为调质处理,其目的是获得强度,硬度和塑性,韧性都较好的综合机械性能。

因此,广泛用于汽车,拖拉机,机床等的重要结构零件,如连杆,螺栓,齿轮及轴类。

回火后硬度一般为HB200-330。

退火:退火过程中发生得是珠光体转变,退火的主要目的是使金属内部组织达到或接近平衡状态,为后续加工和最终热处理做准备。

去应力退火是为了消除由于塑性形变加工、焊接等而造成的以及铸件内存在的残余应力而进行的退火工艺。

锻造、铸造、焊接以及切削加工后的工件内部存在内应力,如不及时消除,将使工件在加工和使用过程中发生变形,影响工件精度。

采用去应力退火消除加工过程中产生的内应力十分重要。

去应力退火的加热温度低于相变温度A1,因此,在整个热处理过程中不发生组织转变。

内应力主要是通过工件在保温和缓冷过程中自然消除的。

为了使工件内应力消除得更彻底,在加热时应控制加热温度。

一般是低温进炉,然后以100℃/h左右得加热速度加热到规定温度。

焊接件得加热温度应略高于600℃。

保温时间视情况而定,通常为2~4h。

铸件去应力退火的保温时间取上限,冷却速度控制在(20~50)℃/h,冷至300℃以下才能出炉空冷。

时效处理可分为自然时效和人工时效两种自然时效是将铸件置于露天场地半年以上,便其缓缓地发生形,从而使残余应力消除或减少,人工时效是将铸件加热到550~650℃进行去应力退火,它比自然时效节省时间,残余应力去除较为彻底.什么叫回火?--------------------------------------------------------------------------------回火是将淬火后的金属成材或零件加热到某一温度,保温一定时间后,以一定方式冷却的热处理工艺,回火是淬火后紧接着进行的一种操作,通常也是工件进行热处理的最后一道工序,因而把淬火和回火的联合工艺称为最终热处理。

回火的最简单方法

回火的最简单方法

回火的最简单方法低中高温回火的最简单方法如下:1、低温回火工件在150~250℃进行的回火。

目的是保持淬火工件高的硬度和耐磨性,降低淬火残留应力和脆性回火后得到回火马氏体,指淬火马氏体低温回火时得到的组织。

力学性能:58~64HRC,高的硬度和耐磨性。

应用范围:主要应用于各类高碳钢的工具、刃具、量具、模具、滚动轴承、渗碳及表面淬火的零件等。

2、中温回火工件在350~500℃之间进行的回火。

目的是得到较高的弹性和屈服点,适当的韧性。

回火后得到回火屈氏体,指马氏体回火时形成的铁素体基体内分布着极其细小球状碳化物(或渗碳体)的复相组织。

力学性能:35~50HRC,较高的弹性极限、屈服点和一定的韧性。

应用范围:主要用于弹簧、发条、锻模、冲击工具等。

3、高温回火工件在500~650℃以上进行的回火。

目的是得到强度、塑性和韧性都较好的综合力学性能。

回火后得到回火索氏体,指马氏体回火时形成的铁素体基体内分布着细小球状碳化物(包括渗碳体)的复相组织。

力学性能:25~35HRC,较好的综合力学性能。

应用范围:广泛用于各种较重要的受力结构件,如连杆、螺栓、齿轮及轴类零件等。

工件淬火并高温回火的复合热处理工艺称为调质。

调质不仅作最终热处理,也可作一些精密零件或感应淬火件预先热处理。

钢淬火后在300℃左右回火时,易产生不可逆回火脆性,为避免它,一般不在250~350℃范围内回火。

含铬、镍、锰等元素的合金钢淬火后在500~650℃回火,缓冷易产生可逆回火脆性,为防止它,小零件可采用回火时快冷;大零件可选用含钨或钼的合金钢。

回火

回火

回火中文名称:回火英文名称:tempering定义:将淬火后的钢,在AC1以下加热、保温后冷却下来的热处理工艺。

应用学科:电力(一级学科);热工自动化、电厂化学与金属(二级学科)名词定义中文名称:回火英文名称:tempering 定义:将淬火后的钢,在AC1以下加热、保温后冷却下来的热处理工艺。

应用学科:电力(一级学科);热工自动化、电厂化学与金属(二级学科)回火是将淬火钢加热到奥氏体转变温度以下,保温1到2小时后冷却的工艺。

回火往往是与淬火相伴,并且是热处理的最后一道工序。

经过回火,钢的组织趋于稳定,淬火钢的脆性降低,韧性与塑性提高,消除或者减少淬火应力,稳定钢的形状与尺寸,防止淬火零件变形和开裂,高温回火还可以改善切削加工性能。

分类依据加热温度不同,回火分为:低温回火加热温度150-200℃。

淬火产生的马氏体保持不变,但是钢的脆性降低,淬火应力降低。

主要用于工具、滚动轴承、渗碳零件和表面淬火零件等要求高硬度的零件。

中温回火加热温度350-500℃。

回火组织为针状铁素体和细粒状渗碳体(FeC)的混合物,称为回火屈氏体。

中温回火能获得较高的弹性极限和韧性,主要用于弹簧和热作磨具回火。

高温回火加热温度500-600℃。

淬火加高温回火的连续工艺称为调质处理。

高温回火组织为多边形的铁素体(ferrite)和细粒状渗碳体(FeC)的混合组织,称为回火索氏体。

高温回火为了得到强度、硬度和塑性韧性等性能的均衡状态,主要用于重要结构零件的热处理,如轴、齿轮、曲轴等。

钢的回火回火是工件淬硬后加热到AC1以下的某一温度,保温一定时间,然后冷却到室温的热处理工艺。

回火一般紧接着淬火进行,其目的是:(a)消除工件淬火时产生的残留应力,防止变形和开裂;(b)调整工件的硬度、强度、塑性和韧性,达到使用性能要求;(c)稳定组织与尺寸,保证精度;(d)改善和提高加工性能。

因此,回火是工件获得所需性能的最后一道重要工序。

按回火温度范围,回火可分为低温回火、中温回火和高温回火。

回火工艺介绍

回火工艺介绍
含铬、镍、锰等元素的合金钢淬火后在 500~650℃回火,缓冷易产生可逆回火 脆性,为防止它,小零件可采用回火时快冷;大零件可选用含钨或钼的合金钢。
二、注意事项
将淬火成马氏体的钢加热到临界点 A1 以下某个温度,保温适当时间,再冷到室温的 一种热处理工艺。回火的目的在于消除淬火应力,使钢的组织转变为相对稳定状态。 在 不 降 低 或 适 当 降 低 钢 的 硬 度 和 强 度 的 条 件 下 改 善 钢 的 塑 性 和 韧 性 ,以 获 得 所 希 望 的 性 能 。中 碳 和 高 碳 钢 淬 火 后 通 常 硬 度 很 高 ,但 很 脆 ,一 般 需 经 回 火 处 理 才 能 使 用 。钢
第三阶段回火(200~350℃) 马氏体分解完成,正方度消失。ε-碳化物转化为渗碳 体 (Fe3C)。这一转化是通过 ε-碳化物的溶解和渗碳体重新形核长大方式进行的。最 初形成的渗碳体和基体保持严格的取向关系。渗碳体往往在 ε-碳化物和基体的界面 上、马氏体界面上、高碳马氏体片中的孪晶界上和原始奥氏体晶粒界上形核(图 3)。 形成的渗碳体开始时呈薄膜状,然后逐渐球化成为颗粒状的 Fe3C。 回火
第四阶段回火(350~700℃) 渗碳体球化和长大,铁素体回复和再结晶。渗碳体从 400℃ 开 始 球 化 , 600℃ 以 后 发 生 集 聚 性 长 大 。 过 程 进 行 中 , 较 小 的 渗 碳 体 颗 粒 溶 于
基 体 ,而 将 碳 输 送 给 选 择 生 长 的 较 大 颗 粒 。位 于 马 氏 体 晶 界 和 原 始 奥 氏 体 晶 粒 间 界 上 的碳化物颗粒球化和长大的速度最快,因为在这些区域扩散容易得多。
合 金 元 素 对 淬 火 后 的 残 留 奥 氏 体 量 也 有 很 大 影 响 。残 留 奥 氏 体 围 绕 马 氏 体 板 条 成 细网络;经 300℃回火后这些奥氏体分解,在板条界产生渗碳体薄膜。残留奥氏体含量 高 时 ,这 种 连 续 薄 膜 很 可 能 是 造 成 回 火 马 氏 体 脆 性 ( 300~ 350℃ )的 原 因 之 一 。合 金 元 素,尤其是 Cr、Si、W、Mo 等,进入渗碳体结构内,把渗碳体颗粒粗化温度由 350~4 00℃提高到 500~550℃,从而抑制回火软化过程,同时也阻碍铁素体的晶粒长大。

钢的淬火和回火

钢的淬火和回火


对于共析钢和过共析钢,淬火温度为Ac1+ (30-50)℃。共析钢淬火后的组织为马氏体 和少量残余奥氏体。过共析钢由于淬火前经过 球化退火,因而淬火后组织为细马氏体加颗粒 状的渗碳体和少量残余奥氏体,如下图所示。 分散分布的颗粒状渗碳体对提高钢的硬度和耐 磨性有利。如果将过共析钢加热到Accm以上, 则由于奥氏体晶粒粗大,含碳量提高,使淬火 后马氏体晶粒也粗大,且残余奥氏体量增多, 这将使钢的硬度、耐磨性下降,脆性和变形开 裂倾向增加。
淬透性的应用

力学性能是机械设计中选材的主要依据,而钢 的淬透性又直接影响其热处理后的力学性能。 因此,在选材时,必须对钢的淬透性有充分的 了解。

图为两种淬透性不同的钢制成相同的轴经调质处理后, 其力学性能的比较。高淬透性的钢的整个截面都是回火索 氏体组织,力学性能均匀,强度高,韧性好。低淬透性钢 的心部组织为片状索氏体加铁素体,韧性差。
淬火方法

采用适当的淬火 方法可以弥补冷 却介质的不足, 常用的淬火方法 如图所示。
1)单介质淬火方法

将加热工件在一种介质中连续冷却到室温的淬 火方法。如水淬和油淬都属于这种方法。该方 法操作简单,易实现机械化,应用较广。
2)双介质淬火

是指将工件先在一种冷却能力较强的介质中 冷却,避免珠光体转变,然后转入另一种冷却 能力较弱的介质中发生马氏体转变的方法。常 用的方法是水淬油冷或油淬空冷。其优点是冷 却比较理想,缺点是第一种介质中停留时间不 易控制,需要有实践经验。该方法主要用于形 状复杂的碳钢工件及大型合金钢工件。
温 度
Ac3
Ar1
时间
3. 控制马氏体组织形态的热处理


低碳马氏体淬火 中碳钢高温淬火 高碳钢低温短时加热淬火 低碳合金钢复合组织淬火

回火处理)

回火处理)

所谓回火处理是指将经过淬火硬化或正常化处理之钢材在浸置于一低于临界温度一段时间后,以一定的速率冷却下来,以增加材料之韧性的一种处理。

从冶金原理,我们知道将经过淬火及正常化处理在放回中温浸置(时效)一段时间,可促使一部分之碳化物析出,同时有可消除一部分因急速冷却所造成之残留应力,因此可提高材料之韧性与柔性。

显然回火处理之效果决定于回火温度、时间即在冷却速率等因素。

随着回火温度的提高材料之强度与硬度跟着降低,然而材料之延展性却跟着提高。

材料之耐冲性在300℃回火附近会有一显著降低现象,此现象称之为回火脆性。

由于碳原子或合金元素之析出与时间有正比的关系,随着回火时间的延长,材料之硬度会随着降低。

由于回火的温度是低于相变化之临界点,材料之强度不会与冷却速率有关。

然而由于回火脆化的原因,若材料在经过375~575℃间之冷却速率太慢,容易有脆化的现象。

这一点是在做回火处理时必须注意的。

一般填加合金元素于钢中,主要之目的是增加钢之硬化能力,亦即增大形成麻田散铁之能力。

由于合金元素(原子)之扩散能力较差,因此填加合金元素也就减慢了回火软化速率。

由于合金元素一般可分成两种功用。

第一种功用为非碳化物形成用,此类合金元素以镍、硅及锰等。

由于此类元素与碳化物之形成无关,因此对回火软化无关。

此类元素所造成之硬化效果,主要是靠固溶体硬化机构所达成的。

另一类合金元素,例如铬、钼、钨、钒等,由于其为碳化物形成之一份子,因此他们的扩散速率也就影响了回火软化的速率。

前面提到过一般碳钢及低合金钢若从高温回火缓慢冷却下来经过375~575℃温度区,会造成脆化的现象。

另外我们也提到过若在300℃附近回火,亦有脆化的现象,这是由于不利之板状碳化物析出所造成的。

应该是指相变临界点的温度,铁碳合金相图中碳钢在非常缓慢加热活冷却过程中,固态组织转变的临界温度可由铁碳合金相图中A1线(PSK)、A3线(GS)、Acm(ES)线来确定,A1、A3、Acm都是平衡临界点,即新相与旧相平衡的温度。

热处理习题及答案(吴超版)

金属热处理原理及工艺复习题一、金属固态相变有哪些主要特征?哪些因素构成相变阻力?哪些构成相变驱动力?1.相变特征:(1)新相和母相间存在不同的界面(相界面特殊),按结构特点可分为三种:共格界面、半共格界面、非共格界面。

(2)新相晶核与母相间有一定的位向关系、存在惯习面(3)产生应变能,相变阻力大(4)易出现过渡相:在有些情况下,固态相变不能直接形成自由能最低的稳定相,而是经过一系列的中间阶段,先形成一系列自由能较低的过渡相(又称中间亚稳相),然后在条件允许时才形成自由能最低的稳定相.相变过程可以写成:母相―→较不稳定过渡相―→较稳定过渡相―→稳定(5)母相晶体缺陷的促进作用:固态相变时,母相中晶体缺陷起促进作用。

新相优先在晶体缺陷处形核。

(6)原子的扩散速度对固态相变有显著的影响。

固态相变必须通过某些组元的扩散才能进行,扩散成为相变的主要控制因素。

2.相变阻力:相界面的存在,产生应变能,原子的扩散3.相变驱动力:存在位相关系和惯习面,过渡相的形成,晶体缺陷二、奥氏体晶核优先在什么地方形成?为什么?奥氏体晶核优先在铁素体和渗碳体的两相界面上形成,原因是:(1)两相界面处碳原子的浓度差较大,有利于获得奥氏体晶核形成所需的碳浓度;(2)两相界面处原子排列不规则,铁原子可通过短程扩散由母相点阵向新相点阵转移,形核所需结构起伏小(3)两相界面处杂质和晶体缺陷多,畸变能高,新相形核可能消除部分缺陷使系统自由能降低,新相形成的应变能也容易释放;三、简述珠光体转变为奥氏体的基本过程。

奥氏体转变(由α到γ的点阵重构、渗碳体的溶解、以及C在奥氏体中的扩散重新分布的过程):奥氏体形核→奥氏体晶核向α和Fe3C两个方向长大→剩余碳化物溶解→奥氏体均匀化四、什么是奥氏体的本质晶粒度、起始晶粒度和实际晶粒度,说明晶粒大小对钢的性能的影响。

本质晶粒度:根据标准试验方法,在930+ 10℃保温足够时间(3~8小时)后测得的奥氏体晶粒大小。

钢的退火、正火、淬火和回火

整理课件
利用淬透性可控制淬硬层深度。
对于截面承载均匀的重要件,要全 部淬透。如螺栓、连杆、模具等。 对于承受弯曲、扭转的零件可不 必淬透(淬硬层深度一般为半径的 1/2~1/3),如轴类、齿轮等。
高强螺栓
淬硬层深度与工件尺寸有关,设计 时应注意尺寸效应。
柴油机连杆
整理课件
齿轮
细A
温 度
不同冷却条件下的转变产物
回火托氏体
整理课件
④Fe3C聚集长大和铁素体多边形化
400℃以上, Fe3C开始 聚集长大。
450℃ 以上铁素体发生 多边形化,由针片状变 为多边形.
这种在多边形铁素体基 体上分布着颗粒状 Fe3C的组织称回火索 氏体,用S回表示。
回火索氏体
整理课件
回火时的性能变化 回火时力学性能变化总的趋势是随回火温度提高,钢的强度、
化物(- FeXC),使马氏体过饱和度降低。析出的碳化物以细 片状分布在马氏体基体上,这种组织称回火马氏体,用M回 表示。
整理课件
透射电镜下的回火马氏体形貌
在光镜下M回为黑色,A’为白色。 0.2%C 时,不析出碳化物。只发生碳在位错附近的偏聚。
②残余奥氏体分解 200-300℃时, 由于马
Ac3+30~50℃保温 后缓冷的退火工艺, 主要用于亚共析 钢.
整理课件
⑵ 等温退火 亚共析钢加热到Ac3+30~50℃, 共析、过共析钢加热到
Ac1+30~50℃,保温后快冷到Ar1以下的某一温度下停留,待 相变完成后出炉空冷。等温退火可缩短工件在炉内停留时间。
高速钢等温退火与普通退火的比较
整理课件
3、回火脆性 淬火钢的韧性并不总
是随温度升高而提高。 在某些温度范围内回

Cr_Mo钢制高温加氢反应器回火脆性及控制

J = ( S i + M n ) ( P + S n ) × 1 0 4 (% ) ……称为 J 系数;
X=(10P+5Sb+4Sn+As)× 10-2(ppm) ……称为 X 系数。
式中:J 系数中的化学成分按重量百分比 计;
X 系数中的化学成分按 p p m 含量计。 现在设计对 2 . 2 5 C r - 1 M o 钢、2 . 2 5 C r - 1 M o - 0 . 2 5 V 钢和 3 C r - 1 M o - 0 . 2 5 V 钢的 J 系 数、X 系数规定值为:J ≤ 100%;X ≤ 15ppm。

随着加氢反应器的制造水平的提高,其主 体材料的冶炼、锻造及焊接热处理工艺也越来 越先进。由于冶炼时就控制了钢材的化学成分 中杂质含量,所以对加氢反应器回火脆化度的 控制也越来越严格。在几种常用的抗高温氢腐 蚀的 C r - M o 钢中,2 . 2 5 C r - 1 M o 及 3 C r - 1 M o 钢的回火脆性敏感性较高,1 . 2 5 C r - 0 . 5 M o 和 5Cr-0.5Mo 钢稍有脆化敏感性,而 1Cr-0.5Mo 和 9 C r - 1 M o 钢几乎没有脆化现象。新研制开发 的 2.25Cr-1Mo-0.25V 和 3Cr-1Mo-0.25V 回 火脆性也较小。
● Mn 和 Si 一样,对钢的回火脆化起了促进 作用,它并不是自己单独引起脆化,而是促进 P 的脆化作用。
● C r 也会使回火脆性敏感性显著提高,特 别是 Cr 含量在 2.0~3.0% 范围内时,脆化敏感性 较高。
● Ni 对回火脆性影响不大,但在有 P、Sn 等 元素的合金钢中加入 N i 时,回火脆性就增加。
2. 回火脆化现象的特征及机理
2.1 回火脆化现象

回火问题基础知识

回火问题基础知识奥氏体回火处理奥氏体回火处理是一种较?特殊的热处理方法,主要程序是将钢材淬入温度介於S曲线鼻部与Ar’’(Ms点)温度之间的热浴,直到过冷奥氏体完全变态成变韧体才取出空冷的一种热处理方法,亦称?变韧淬火,它不需要再行回火处理。

奥氏回火的最大特色是可得高硬度、高韧性兼具的材质,一般而言,转变温度愈高,强硬度愈低,但可增进低温韧性;转变温度愈接近Ms温度,所得之强度、硬度皆大增,且伸长率及断面收缩率亦大增,颇适合小型工件之大量生?。

马氏体回火处理马氏体回火处理是将钢材淬入Ms与Mf温度范围之间的热浴,经过长时间持温后,使过冷合金奥氏体体一部分变态成马氏体,一部分变态成下贝氏体。

此种热处理后,可不必再行回火处理,且可降低一般淬火回火之急剧程度;其最终组织为回火马氏体及贝氏体之混合,因此拥有高硬度和高韧性的组合。

主要的缺点是需要保持?温的时间甚久,在工业应用上较不经济。

回火的种类及应用根据工件性能要求的不同,按其回火温度的不同,可将回火分为以下几种:(一)低温回火(150-250度)低温回火所得组织为回火马氏体。

其目的是在保持淬火钢的高硬度和高耐磨性的前提下,降低其淬火内应力和脆性,以免使用时崩裂或过早损坏。

它主要用于各种高碳的切削刃具,量具,冷冲模具,滚动轴承以及渗碳件等,回火后硬度一般为HRC58-64。

(二)中温回火(350-500度)中温回火所得组织为回火屈氏体。

其目的是获得高的屈服强度,弹性极限和较高的韧性。

因此,它主要用于各种弹簧和热作模具的处理,回火后硬度一般为HRC35-50。

(三)高温回火(500-650度)高温回火所得组织为回火索氏体。

习惯上将淬火加高温回火相结合的热处理称为调质处理,其目的是获得强度,硬度和塑性,韧性都较好的综合机械性能。

因此,广泛用于汽车,拖拉机,机床等的重要结构零件,如连杆,螺栓,齿轮及轴类。

回火后硬度一般为HB200-330。

回火脆性处理回火处理要避开几个会?生回火脆性的温度范围,这些脆化温度范围视钢材种类而有所不同,包括:(1)270℃至350℃脆化(又称低温回火脆性或A脆性),大多数的碳钢及低合金钢,都在此温度范围内发生脆化现象;(2)400℃至550℃脆化,通常构造用合金钢在此温度范围内会?生脆化现象;(3)475℃脆化(特别指Cr含量超过13%的肥粒体系不湫钢);(4)500℃至570℃脆化,针对工具钢或高速钢在此温度范围加热,会析出分?均匀的碳化物,?生二次硬化效果,但也易导致脆性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

回火脆性!回火tempering将经过淬火的工件重新加热到低于下临界温度的适当温度,保温一段时间后在空气或水、油等介质中冷却的金属热处理。

钢铁工件在淬火后具有以下特点:①得到了马氏体、贝氏体、残余奥氏体等不平衡(即不稳定)组织。

②存在较大内应力。

③力学性能不能满足要求。

因此,钢铁工件淬火后一般都要经过回火。

作用回火的作用在于:①提高组织稳定性,使工件在使用过程中不再发生组织转变,从而使工件几何尺寸和性能保持稳定。

②消除内应力,以便改善工件的使用性能并稳定工件几何尺寸。

③调整钢铁的力学性能以满足使用要求。

回火之所以具有这些作用,是因为温度升高时,原子活动能力增强,钢铁中的铁、碳和其他合金元素的原子可以较快地进行扩散,实现原子的重新排列组合,从而使不稳定的不平衡组织逐步转变为稳定的平衡组织。

内应力的消除还与温度升高时金属强度降低有关。

一般钢铁回火时,硬度和强度下降,塑性提高。

回火温度越高,这些力学性能的变化越大。

有些合金元素含量较高的合金钢,在某一温度范围回火时,会析出一些颗粒细小的金属化合物,使强度和硬度上升。

这种现象称为二次硬化。

要求用途不同的工件应在不同温度下回火,以满足使用中的要求。

①刀具、轴承、渗碳淬火零件、表面淬火零件通常在250℃以下进行低温回火。

低温回火后硬度变化不大,内应力减小,韧性稍有提高。

②弹簧在 350~500℃下中温回火,可获得较高的弹性和必要的韧性。

③中碳结构钢制作的零件通常在500~600℃进行高温回火,以获得适宜的强度与韧性的良好配合。

淬火加高温回火的热处理工艺总称为调质。

钢在300℃左右回火时,常使其脆性增大,这种现象称为第一类回火脆性。

一般不应在这个温度区间回火。

某些中碳合金结构钢在高温回火后,如果缓慢冷至室温,也易于变脆。

这种现象称为第二类回火脆性。

在钢中加入钼,或回火时在油或水中冷却,都可以防止第二类回火脆性。

将第二类回火脆性的钢重新加热至原来的回火温度,便可以消除这种脆性。

________________________________________回火tempering将淬火成马氏体的钢加热到临界点A1以下某个温度,保温适当时间,再冷到室温的一种热处理工艺。

回火的目的在于消除淬火应力,使钢的组织转变为相对稳定状态。

在不降低或适当降低钢的硬度和强度的条件下改善钢的塑性和韧性,以获得所希望的性能。

中碳和高碳钢淬火后通常硬度很高,但很脆,一般需经回火处理才能使用。

钢中的淬火马氏体,是碳在α-Fe中的过饱和固溶体,具有体心正方结构,其正方度c/a随含碳量的增加而增大(c/a=1+0.045wt%C)。

马氏体组织在热力学上是不稳定的,有向稳定组织过渡的趋势。

许多钢淬火后还有一定量的残留奥氏体,也是不稳定的,回火过程中将发生转变。

因此,回火过程本质上是在一定温度范围内加热粹火钢,使钢中的热力学不稳定组织结构向稳定状态过渡的复杂转变过程。

转变的内容和形式则视淬火钢的化学成分和组织,以及加热温度而有所不同(见马氏体相变。

碳钢的回火过程淬火碳钢回火过程中的组织转变对于各种钢来说都有代表性。

回火过程包括马氏体分解,碳化物的析出、转化、聚集和长大,铁素体回复和再结晶,残留奥氏体分解等四类反应。

低、中碳钢回火过程中的转变示意地归纳在图1中。

根据它们的反应温度,可描述为相互交叠的四个阶段。

第一阶段回火(250℃以下)马氏体在室温是不稳定的,填隙的碳原子可以在马氏体内进行缓慢的移动,产生某种程度的碳偏聚。

随着回火温度的升高,马氏体开始分解,在中、高碳钢中沉淀出ε-碳化物(图2),马氏体的正方度减小。

高碳钢在 50~100℃回火后观察到的硬度增高现象,就是由于ε-碳化物在马氏体中产生沉淀硬化的结果(见脱溶)。

ε-碳化物具有密排六方结构,呈狭条状或细棒状,和基体有一定的取向关系。

初生的ε-碳化物很可能和基体保持共格。

在250℃回火后,马氏体内仍保持含碳约0.25%。

含碳低于0.2%的马氏体在200℃以下回火时不发生ε-碳化物沉淀,只有碳的偏聚,而在更高的温度回火则直接分解出渗碳体。

第二阶段回火(200~300℃) 残留奥氏体转变。

回火到200~300℃的温度范围,淬火钢中原来没有完全转变的残留奥氏体,此时将会发生分解,形成贝氏体组织。

在中碳和高碳钢中这个转变比较明显。

含碳低于 0.4%的碳钢和低合金钢,由于残留奥氏体量很少,所以这一转变基本上可以忽略不计。

第三阶段回火(200~350℃) 马氏体分解完成,正方度消失。

ε-碳化物转化为渗碳体 (Fe3C)。

这一转化是通过ε-碳化物的溶解和渗碳体重新形核长大方式进行的。

最初形成的渗碳体和基体保持严格的取向关系。

渗碳体往往在ε-碳化物和基体的界面上、马氏体界面上、高碳马氏体片中的孪晶界上和原始奥氏体晶粒界上形核(图3)。

形成的渗碳体开始时呈薄膜状,然后逐渐球化成为颗粒状的Fe3C。

第四阶段回火(350~700℃) 渗碳体球化和长大,铁素体回复和再结晶。

渗碳体从400℃开始球化,600℃以后发生集聚性长大。

过程进行中,较小的渗碳体颗粒溶于基体,而将碳输送给选择生长的较大颗粒。

位于马氏体晶界和原始奥氏体晶粒间界上的碳化物颗粒球化和长大的速度最快,因为在这些区域扩散容易得多。

铁素体在350~600℃发生回复过程。

此时在低碳和中碳钢中,板条马氏体的板条内和板条界上的位错通过合并和重新排列,使位错密度显著降低,并形成和原马氏体内板条束密切关联的长条状铁素体晶粒。

原始马氏体板条界可保持稳定到600℃;在高碳钢中,针状马氏体内孪晶消失而形成的铁素体,此时也仍然保持其针状形貌。

在600~700℃间铁素体内发生明显的再结晶,形成了等轴铁素体晶粒。

此后,Fe3C颗粒不断变粗,铁素体晶粒逐渐长大。

合金元素的影响对一般回火过程的影响合金元素硅能推迟碳化物的形核和长大,并有力地阻滞ε-碳化物转变为渗碳体;钢中加入2%左右硅可以使ε-碳化物保持到400℃。

在碳钢中,马氏体的正方度于300℃基本消失,而含Cr、Mo、W、V、Ti和Si等元素的钢,在450℃甚至500℃回火后仍能保持一定的正方度。

说明这些元素能推迟铁碳过饱和固溶体的分解。

反之,Mn和Ni促进这个分解过程(见合金钢)。

合金元素对淬火后的残留奥氏体量也有很大影响。

残留奥氏体围绕马氏体板条成细网络;经300℃回火后这些奥氏体分解,在板条界产生渗碳体薄膜。

残留奥氏体含量高时,这种连续薄膜很可能是造成回火马氏体脆性(300~350℃)的原因之一。

合金元素,尤其是Cr、Si、W、Mo等,进入渗碳体结构内,把渗碳体颗粒粗化温度由350~400℃提高到500~550℃,从而抑制回火软化过程,同时也阻碍铁素体的晶粒长大。

特殊碳化物和次生硬化当钢中存在浓度足够高的强碳化物形成元素时,在温度为450~650℃范围内,能取代渗碳体而形成它们自己的特殊碳化物。

形成特殊碳化物时需要合金元素的扩散和再分配,而这些元素在铁中的扩散系数比C、N等元素要低几个数量级。

因此在形核长大前需要一定的温度条件。

基于同样理由,这些特殊碳化物的长大速度很低。

在450~650℃形成的高度弥散的特殊碳化物,即使长期回火后仍保持其弥散性。

图4表明,在450~650℃之间合金碳化物的形成对基体产生强化作用,使钢的硬度重新升高,出现峰值。

这一现象称为次生硬化。

钢在回火后的性能淬火钢回火后的性能取决于它的内部显微组织;钢的显微组织又随其化学成分、淬火工艺及回火工艺而异。

碳钢在100~250℃之间回火后能获得较好的力学性能。

合金结构钢在200~700℃之间回火后的力学性能的典型变化如图5所示。

从图5可以看出,随着回火温度的升高,钢的抗拉强度σb单调下降;屈服强度σ0.3 先稍升高而后降低;断面收缩率ψ 和伸长率δ 不断改善;韧性(用断裂韧度K1c为指标)总的趋势是上升,但在300~400℃之间和500~550℃之间出现两个极小值,相应地被称为低温回火脆性与高温回火脆性。

因此,为了获得良好的综合力学性能,合金结构钢往往在三个不同温度范围回火:超高强度钢约在200~300℃;弹簧钢在460℃附近;调质钢在550~650℃回火。

碳素及合金工具钢要求具有高硬度和高强度,回火温度一般不超过200℃。

回火时具有次生硬化的合金结构钢、模具钢和高速钢等都在500~650℃范围内回火。

回火脆性是回火中必须注意的问题:低温回火脆性许多合金钢淬火成马氏体后在250~400℃回火中发生的脆化现象。

已经发生的脆化不能用重新加热的方法消除,因此又称为不可逆回火脆性。

引起低温回火脆性的原因已作了大量研究。

普遍认为,淬火钢在250~400℃范围内回火时,渗碳体在原奥氏体晶界或在马氏体界面上析出,形成薄壳,是导致低温回火脆性的主要原因。

钢中加入一定量的硅,推迟回火时渗碳体的形成,可提高发生低温回火脆性的温度,所以含硅的超高强度钢可在300~320℃回火而不发生脆化,有利于改进综合力学性能。

高温回火脆性许多合金钢淬火后在500~550℃之间回火,或在600℃以上温度回火后以缓慢的冷却速度通过500~550℃区间时发生的脆化现象。

如果重新加热到600℃以上温度后快速冷却,可以恢复韧性,因此又称为可逆回火脆性。

已经证明,钢中P、Sn、Sb、As 等杂质元素在500~550℃温度向原奥氏体晶界偏聚,导致高温回火脆性;Ni、Mn等元素可以和P、Sb等杂质元素发生晶界协同偏聚(cosegregation),Cr元素则又促进这种协同偏聚,所以这些元素都加剧钢的高温回火脆性。

相反,钼与磷交互作用,阻碍磷在晶界的偏聚,可以减轻高温回火脆性。

稀土元素也有类似的作用。

钢在600℃以上温度回火后快速冷却可以抑止磷的偏析,在热处理操作中常用来避免发生高温回火脆性。

淬火钢回火时,随着回火温度的升高,通常其强度,硬度降低,而塑性,韧性提高。

但在某些温度范围内回火时,钢的冲击韧性不仅没有提高,反而显著降低,这种脆化现象称为回火脆性。

因此,一般不在250-350度进行回火,这就是因为淬火钢在这个温度范围内回火时要发生回火脆性。

这种回火脆性称为低温回火脆性或第一类回火脆性。

产生低温回火脆性的原因,目前还不十分清楚。

一般认为是由于碳化物以断续的薄片状沿马氏体片或马氏体条的界面析出所造成的。

这种硬而脆的薄片碳化物与马氏体间的结合较弱,降低了马氏体晶界处的强度,因而使冲击韧性反而下降。

凡是淬成马氏体的钢均有这类脆性,具有不可逆性。

400-550℃发生的回火脆性经快速冷却可以消除。

Mn钢、Cr钢、Cr-Mn钢、Cr-Ni钢等钢易发生第二类回火脆性。

补充一下,常用材料的回火脆性温度范围钢号第一类回火脆性第二类回火脆性30Mn2 250~350 500~55020MnV 300~36025Mn2V 250~350 510~61035SiMn 500~65020Mn2B 250~35045Mn2B 450~55015MnVB 250~35020MnVB 200~260 520左右40MnVB 200~350 500~600 40Cr 300~370 450~650 38CrSi 250~350 450~550 35CrMo 250~400 无明显脆性20CrMnMo250~35030CrMnTi 400~450 30CrMnSi 250~380 460~65020CrNi3A 250~350 450~55012CrNi4A 250~35037CrNi3 300~400 480~550 40CrNiMo 300~400 一般无脆性38CrMoAlA300~450 无脆性70Si3MnA 400~4254Cr9Si2 450~600 65Mn 60Si2Mn 有回火脆性50CrV A 200~3004CrW2Si 250~3505CrW2Si 300~4006CrW2Si 300~450MnCrWV 250左右4SiCrV >6003Cr2W8V 550~6509SiCr 210~250CrWMn 250~3009Mn2V 190~230T8~T12 200~300GCr15 200~2401Cr13 520~5602Cr13 450~560 600~7503Cr13 350~550 600~7501Cr17Ni2 400~580 1#tegong3333回火脆性是指淬火钢回火后出现韧性下降的现象。

相关文档
最新文档