管理决策分析第二版第三章贝叶斯决策分析
决策理论第三章风险型决策分析PPT课件

为最优方案。
若E(di )代表di的期望值,
p
(
j
)代
表自
然
状
态
的
j
概率
,
d
ij
代
表
d
i
在
自
然
状
态
下
j
的
损
益值
,
则
n
E(di ) p( j )dij j 1
称为决策变量d的期望值。
例1:某化工厂为扩大生产能力,拟定了三种扩建方案以供决策:1. 大型扩建;2.中型扩建;3.小型扩建.如果大型扩建,遇产品销路好, 可获利200万元,销路差则亏损60万元;如果中型扩建,遇产品销 路好,可获利150万元,销路差可获利20万元;如果小型扩建,遇产 品销路好,可获利100万,销路差可获利60万元.根据历史资料,预 测未来产品销路好的概率为0.7,销路差的概率为0.3,试作出最 佳扩建方案决策。
一、期望值
一个决策变量d的期望值,就是它在不同自然 状态下的损益值(或机会损益值)乘上相对应的 发生概率之和。
决策变量的期望值包括三类:
1.损失期望值(成本、投资等) 2.收益期望值(利润、产值等) 3.机会期望值(机会收益、机会损失等)
二﹑期望值决策准则:根据每个方案的期望
值选择收益期望最大者或者损失期望最小者
E (d i ) —第i个方案的期望损益值;
min j
(d ij
)
—第i个方案在各种状态下的最小损益值。
例5:设有一个四种状态、三个方案的决策问题。 各状态发生的概率及每一方案在各个状态下收益值 如表1所示。试用期望损益决策法确定最优方案。
表1: 收益值表
解:
3.2.13.2贝叶斯决策的基本步骤

状态( )
表1 三种情况的概率分布和利润
表3-8 三种情况的概率分布和利润
好(1 )
中(2 )
差(3 )
概率( )
0.25
0.30
0.45
利润(万元)
15
1
-6
贝叶斯决策的基本步骤——例题
• 为了进一步摸清市场对这种产品的需求情况,工厂通过调查和咨询等方式得到一份市场
值,比较得到最满意的解决方案,这一计算过程预验分析已经完成。
本节结束,感谢观看
• 最大期望收益值 1 = 7.937
• 当 = 2 时:
表3-8× 三种情况的概率分布和利润
• 1 = 0.236 × 15 + 0.509
1 + 0.255 × −6 = 2.519; 2 = 0
• 最大期望收益值 2 = 2.519
• 1 = 0.055 × 15 + 0.199 × 1 + 0.746 × −6 = −3.452; 2 = 0
1. 补充信息(市场调查表)价值多少?2. 如何决策可以使利润期望值最大?
贝叶斯决策的基本步骤——例题
• 首先,第一步,验前分析。该厂生产新产品有两种方案,即生产方案(1 ),不生产方案
(2 ) ,产品市场有三种状态,好(1 ),中(2 ) 和差(3 ) 。状态的先验概率为
• 1 = 0.25; 2 = 0.30; 3 = 0.45;
0.0900
0.3375
0.4525
贝叶斯决策的基本步骤——例题
• 计算出( ),之后,可以进一步用贝叶斯公式 =
( | )( )
( )
贝叶斯网络模型在决策分析中的应用

贝叶斯网络模型在决策分析中的应用近年来,随着数据的爆炸式增长,数据分析在各个领域的应用变得越来越普遍。
在决策分析领域,贝叶斯网络模型已经成为了一种非常有力的工具。
贝叶斯网络可以帮助我们将各种因素联系起来,预测事件的可能性,并帮助我们做出正确的决策。
接下来,我们将详细的介绍一下贝叶斯网络模型在决策分析中的应用。
一、什么是贝叶斯网络模型贝叶斯网络是一种概率图模型,通过图的节点和边来表示变量之间的联系,节点表示变量,边表示变量之间的依赖关系。
贝叶斯网络模型可以用来推断变量之间的关系,并进行预测。
其基本思想是,对于一个事件来说,我们不仅仅知道其中某些因素的概率,还要考虑这些因素之间的关系,从而得到事件发生的概率。
因此,贝叶斯网络模型可以帮助我们在不确定性的情况下,处理事实和数据之间的关系。
二、贝叶斯网络模型的应用1、风险预测贝叶斯网络模型可以用来进行风险预测,从而帮助我们做出更加明智的决策。
例如,在银行信贷风险评估中,我们可以利用这种模型来建立一个信用评级系统。
我们可以将客户申请的贷款金额、收入、已有贷款的还款情况、年龄、性别等因素作为节点,然后使用大量的数据对这些节点进行训练,从而得到一个准确的风险评估模型。
2、医疗诊断贝叶斯网络模型还可以用来进行医疗诊断。
我们可以将各种疾病、症状、家族史、饮食、运动等因素作为节点,然后使用医疗数据进行训练,从而得到一个准确的诊断模型。
这种模型可以帮助医生更加准确地诊断疾病,并提供更好的治疗方案。
3、工业决策贝叶斯网络模型还可以用来进行工业决策。
例如,在石油开采行业,我们可以将工程中的各种因素,如油藏性质、地质结构、工程参数等作为节点,并使用大量的数据进行训练,从而得到一个准确的决策模型。
这种模型可以帮助决策者更好地做出决策,提高开采效率。
三、贝叶斯网络模型的优势相比于其他模型,贝叶斯网络模型具有以下优势:1、深入分析因素之间的关系贝叶斯网络从本质上就是一种因果推断的模型,在分析过程中,它能够深入分析各个因素之间的关系,与其他模型相比,它更加准确、可靠。
贝叶斯分析介绍

先验概率与后验概率
先验概率:在获得新信息之前,根据已有知识或 经验对事件发生的概率进行估计
后验概率:在获得新信息之后,根据贝叶斯公式 对事件发生的概率进行修正
贝叶斯公式:用于计算后验概率的公式,表示先 验概率和似然函数之间的关系
贝叶斯分析介绍课件
演讲人
目录
01 贝 叶 斯 分 析 基 本 概
念
03 贝 叶 斯 分 析 的 优 缺
点
02 贝 叶 斯 分 析 的 应 用 04 贝 叶 斯 分 析 的 发 展
趋势
1
贝叶斯分析基本概 念
贝叶斯定理
贝叶斯定理是概率论和统计学中的一个基本定理,由英国数学家托马斯·贝叶斯 (Thomas Bayes)提出。
01 02 03 04
01
增加数据量:通过增加数据量来 提高估计的准确性
02
采用分层抽样:通过分层抽样来 减少估计的偏差
03
采用交叉验证:通过交叉验证来 减少估计的方差
04
采用贝叶斯网络:通过贝叶斯网 络来提高估计的准确性和效率
4
贝叶斯分析的发展 趋势
深度学习与贝叶斯分析的结合
深度学习在贝叶斯分 析中的应用:深度学 习可以自动学习贝叶 斯模型的参数,提高 模型的准确性和效率。
似然函数:表示在给定参数值的情况下,观测到 某个数据的概率密度或概率质量函数
贝叶斯决策理论
1
基本概念:贝叶斯决策理论是一种基于 概率的决策方法,用于解决不确定条件
下的决策问题。
2
贝叶斯定理:贝叶斯决策理论的核心是贝 叶斯定理,它描述了在已知一些证据的情
况下,如何更新对某个假设的信念。
决策分析之贝叶斯分析

第四章贝叶斯分析Bayesean Analysis§4.0引言一、决策问题的表格表示——损失矩阵对无观察(No-data)问题a=δ可用表格(损失矩阵)替代决策树来描述决策问题的后果(损失):或损失矩阵直观、运算方便二、决策原则通常,要根据某种原则来选择决策规则δ,使结果最优(或满意),这种原则就叫决策原则,贝叶斯分析的决策原则是使期望效用极大。
本章在介绍贝叶斯分析以前先介绍芙他决策原则。
三、决策问题的分类:1.不确定型(非确定型)自然状态不确定,且各种状态的概率无法估计.2.风险型自然状态不确定,但各种状态的概率可以估计.四、按状态优于:l ij ≤lik∀I, 且至少对某个i严格不等式成立, 则称行动aj按状态优于ak§4.1 不确定型决策问题一、极小化极大(wald)原则(法则、准则) a1a2a4minj maxil (θi, aj) 或maxjminiuij例:θ24 1 9 2θ313 16 12 14θ46 9 8 10各行动最大损失: 13 16 12 14其中损失最小的损失对应于行动a3.采用该原则者极端保守, 是悲观主义者, 认为老天总跟自己作对.二、极小化极小minj minil (θi, aj) 或maxjmaxiuij例:各行动最小损失: 4 1 7 2其中损失最小的是行动a2.采用该原则者极端冒险,是乐观主义者,认为总能撞大运。
三、Hurwitz准则上两法的折衷,取乐观系数入minj [λminil (θi, aj)+(1-λ〕maxil (θi, aj)]例如λ=0.5时λmini lij: 2 0.5 3.5 13 / 18(1-λ〕maxi lij: 6.5 8 6 7两者之和:8.5 8.5 9.5 8其中损失最小的是:行动a4四、等概率准则(Laplace)用i∑l ij来评价行动a j的优劣选minji∑l ij上例:i∑l ij: 33 34 36 35 其中行动a1的损失最小五、后梅值极小化极大准则(svage-Niehans)定义后梅值sij =lij-minklik其中mink lik为自然状态为θi时采取不同行动时的最小损失.构成后梅值(机会成本)矩阵S={sij }m n⨯,使后梅值极小化极大,即:min max j i s ij例:损失矩阵同上, 后梅值矩阵为:3 1 0 23 0 8 11 4 0 20 3 2 4各种行动的最大后梅值为: 3 4 8 4其中行动a1 的最大后梅值最小,所以按后梅值极小化极大准则应采取行动1.六、Krelle准则:使损失是效用的负数(后果的效用化),再用等概率(Laplace)准则.七、莫尔诺(Molnor)对理想决策准则的要求(1954)1.能把方案或行动排居完全序;2.优劣次序与行动及状态的编号无关;3.若行动ak 按状态优于aj,则应有ak优于aj;4.无关方案独立性:已经考虑过的若干行动的优劣不因增加新的行动而改变;5.在损失矩阵的任一行中各元素加同一常数时,各行动间的优劣次序不变;6.在损失矩阵中添加一行,这一行与原矩阵中的某行相同,则各行动的优劣次序不变。
贝叶斯决策理论课件(PPT90页)

Some about Bayes(2)
一所学校里面有 60% 的男生,40% 的女生。男生总是穿长 裤,女生则一半穿长裤一半穿裙子。假设你走在校园中, 迎面走来一个穿长裤的学生(很不幸的是你高度近似,你 只看得见他(她)穿的是否长裤,而无法确定他(她)的 性别),你能够推断出他(她)是女生的概率是多大吗?
要决策分类的类别数是一定的
引言
在连续情况下,假设对要识别的物理对象有d种特征
观察量x1,x2,…xd,这些特征的所有可能的取值范围构 成了d维特征空间。
称向量 x x1, x2, , xd T x Rd 为d维特征向量。
假设要研究的分类问题有c个类别,类型空间表示
为:
1,2 , ,i ,c
P(B|LB)∝P(LB|B)P(B)∝0.75P(B) P(~B|LB)∝P(LB|~B)P(~B)∝0.25(1-P(B)) 而西安的出租车10辆中有9辆是绿色的,则给出了先验概率P(B)=0.1,于 是有 P(B|LB)∝0.75×0.1=0.075 P(~B|LB)∝0.25(1-P(B))=0.25×0.9=0.225 P(B|LB)=0.075/0.072+0.225=0.25 P(~B|LB)=0.225/0.072+0.225=0.75 因此肇事车辆为绿色。
Neyman-Pearson准则
问题:先验概率和损失未知
通常情况下,无法确定损失。 先验概率未知,是一个确定的值 某一种错误较另一种错误更为重要。
基本思想:
要求一类错误率控制在很小,在满足此条件的 前提下再使另一类错误率尽可能小。
用lagrange乘子法求条件极值
Neyman-Pearson准则
和绿色的区分的可靠度是75%; 假设随后你又了解到第3条信息:(3)西安的出租车10辆
管理决策分析2
0.7×80×3+0.7×930+0.3×60×(3+7)-280=719 前三年 后七年 第一次决策 第二次决策
决策方案为:前三年建小厂,如销路好进行扩建;总收益为719万元 19 .
第三节 贝叶斯决策
一、先验概率和后验概率
先验概率:根据历史资料或主观判断,未经实验证实所 确定的概率。
后验概率:利用补充信息修订的概率。
26
第三节 贝叶斯决策
例2
某企业为开发某种新产品需要更新设备,有三种方案 可供选择:引进大型设备(a1)、引进中型设备(a2)、引进小 型设备(a3)。市场对该新产品的需求状态也有三种:需求量 大(θ1)、需求量一般(θ2) 、需求量小(θ3) 。根据市场预测, 企业的收益矩阵如下(单位:万元):
即先计算出树形结构的末端的条件结果,然后由此开始, 从后向前逐步分析。
与收益矩阵表相比,决策树的适应面更广,它并不要求所
有的方案具有相同的状态空间和概率分布。
它特别适用于求解复杂的多阶段决策问题。
16
第二节 风险型决策
3700
2
5000
θ1, 0.2 θ2, 0.7
θ3, 0.1
a1
a2 a3
P( A1 B) = P( A1 ) P( B | A1 )
若A1和A2构成互斥和完整的两个事件, A1和A2中的一个出 现是事件B发生的必要条件,那么事件B全概率公式为:
P( B) = P( A1 ) P( B | A1 ) + P( A2 ) P( B | A2 )
21
第三节 贝叶斯决策
两个事件的贝叶斯定理:
18
0.7×200×10+0.3×(-40)×10-600=680
贝叶斯统计在决策分析中的应用
贝叶斯统计在决策分析中的应用在当今这个充满不确定性的世界里,决策分析成为了我们生活和工作中不可或缺的一部分。
从企业的战略规划到个人的日常选择,我们都需要在有限的信息和多种可能性中做出最优的决策。
而贝叶斯统计,作为一种强大的统计工具,为我们提供了一种更科学、更合理的决策分析方法。
在决策分析中,贝叶斯统计可以帮助我们更好地处理不确定性。
让我们以医疗诊断为例。
医生在诊断一位患者是否患有某种疾病时,通常会根据患者的症状、病史等先验信息做出初步判断。
然后,通过各种检查手段(如血液检查、影像学检查等)获取新的信息。
贝叶斯统计可以将这些先验信息和新的检查结果结合起来,计算出患者患有该疾病的概率,从而为医生的诊断和治疗决策提供有力的支持。
再比如,在金融领域,投资者在决定是否投资某只股票时,会考虑公司的财务状况、行业前景等先验信息。
同时,他们也会关注市场的动态、宏观经济数据等新的信息。
利用贝叶斯统计,投资者可以根据这些信息不断更新对股票收益的预期,从而做出更明智的投资决策。
贝叶斯统计在市场营销中也有广泛的应用。
企业在推出新产品之前,往往会对市场需求进行预测。
通过市场调研和历史销售数据等先验信息,企业可以初步估计产品的潜在市场规模。
在产品上市后,通过实际销售数据和消费者反馈等新的信息,企业可以运用贝叶斯统计方法来调整对市场需求的估计,进而优化生产和营销策略。
在风险管理中,贝叶斯统计同样发挥着重要作用。
例如,保险公司在评估某个地区的自然灾害风险时,可以结合该地区的历史灾害数据(先验信息)和最新的气候数据、地质监测数据等(新的信息),运用贝叶斯统计来更准确地估计未来可能的损失,从而制定合理的保险费率和风险防范措施。
贝叶斯统计的优势在于它能够充分利用先验信息,并且可以随着新数据的不断积累进行动态更新和优化。
这使得决策更加具有适应性和灵活性。
然而,贝叶斯统计也并非完美无缺。
在实际应用中,确定合理的先验分布可能会存在一定的主观性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
引言
决策是需要信息的,信息包括两个方面:1、 结果值;2、自然状态的概率。
贝叶斯决策是分析有关自然状态概率的信息对 决策的影响。
面临的问题是:一方面信息越准确对决策越有 利;一方面获得信息是有成本的。这两者之间会有 一个平衡,因此需要知道信息的价值。
要想知道信息的价值,必须了解贝叶斯分析的 原理。
贝叶斯公式:
p / H p(H /i ) p(i )
i
p(H )
p(H / j ) p( j )
n
p(H / j ) p( j )
j1
(i 1,2, , n; p(H ) 0)
§5.1 贝叶斯决策的基本方法
5.1.2 贝叶斯决策的基本方法 补充信息(信息值)
贝叶斯决策的基本步骤
1.验前分析 依据数据和资料以及经验和判断,去测算和
估计状态变量θ的先验分布p(θ) ;
❖ 计算各可行方案在不同θ下的条件结果值; ❖ 根据某种决策准则评价选择,找出最满意方
案。 2.预验分析
比较分析补充信息的价值和成本的过程。 目的:判断是否值得去补充信息?
贝叶斯决策的基本步骤
P(Hi/θj) H1 H2
θ1 0.95 0.05
θ2 0.10 0.90
例5.1
解:
1、验前分析
记方案a1 为生产该新产品,方案a2 为不生产。
则:
E (a1)=1.1(万元),E (a2)=0
记验前分析的最大期望收益值为E1,有:
为在事件 A 发生的条件下事件 B 发生的条件概率.
全概率公式 贝叶斯公式
PH
m
PH
|
i
Pi
,
Pi
0
i 1
Pi
|
H
PH | i Pi PH
PH |
m
PH
i Pi | i Pi
,
PH
0
i 1
贝叶斯公式把条件概率和似然函数联系起来,因此可以用先 验概率求出后验概率。
例:小概率事件不会发生,因为如果发生,就不是小概率事件。
2.预验分析 判断:如果信息的价值高于其成本,则补充信
息给企业带来正效益,应该补充信息.反之, 补充信息大可不必。
注:如果获取补充信息的费用很小,甚至可以 忽略不计,本步骤可以省略,直接进行调查 和收集信息,并依据获取的补充信息转入下 一步骤。
贝叶斯决策的基本步骤
3.验分析 利用补充信息修正先验分布,得到更加符合
贝叶斯决策的意义
贝叶斯决策可以做到少花钱多办事,提高决 策分析的科学性和效益性。
有关的概率公式
离散情况 设有完备事件组{θj}(j=1, 2, …, n),满 足:
则对任一随机事件H,有全概率公式:
n
pH p(H / j ) p( j ) ( p( j ) 0) j 1
有关的概率公式
先验概率 p(小)=0.9; p(大)=0.1
似然矩阵
p(发生小)
p(不发生 小)
pp(不(发发生生大大) )=00..909091
0.8 0.2
事件发生的总概率
p(发生)=p(发生小) p(小) p(发生 大) p(大)
后验概率
=0.001 0.9 0.8 0.1 0.0809
p(小发生)=
某工厂计划生产一种新产品,产品的销售情
况有畅销(θ1),滞销(θ2)两种,据以往 的经验,估计两种情况发生的概率分布和利
润如下表所示:
状态θ 概率P(θi) 利润(万元)
畅销(θ1) 0.8 1.5
滞销(θ2) 0.2
-0.5
例5.1
为了进一步摸清市场对这种产品的需求情况,
拟聘请某咨询公司进行市场调查和分析,该 公司对销售情况预测也有畅销(H1)和滞销 (H2)两种,对畅销预测的准确率为0.95,对 滞销预测的准确率为0.9:
预备知识
一、先验概率与后验概率
先验概率 ( Prior probability)
先验概率是在缺乏某个事实的情况下描述一个 随机变量; 先验概率通常是经验丰富的专家的纯 主观的估计. 比如在法国大选中女候选罗雅尔的 支持率 p, 在进行民意调查之前, 可以先验概率 来表达这个不确定性.
后验概率 ( posterior probability)
实际的后验分布;
再利用后验分布进行决策分析,选出最满意 的可行方案;
对信息的价值和成本作对比分析,对决策分 析的经济效益情况作出合理的说明.
验后分析和预验分析的异同: 相同:都是通过贝叶斯公式修正先验分布 不同:主要在于侧重点不同
贝叶斯决策的基本步骤
4.序贯分析(主要针对多阶段决策) 指把复杂的决策问题的决策分析全过程划分 为若干阶段,每一阶段都包括先验分析、预 验分析和验后分析等步骤, 每个阶段前后相 连,形成决策分析全过程.
5.1.2 贝叶斯决策的基本方法
利用市场调查获取的补充信息值Hi 或τ去修 正状态变量θ的先验分布,即依据似然分布 矩阵所提供的充分信息,用贝叶斯公式求出 在信息值H或τ发生的条件下,状态变量θ的 条件分布 p(θ/H)。 先验概率—p(θ) :由以往的数据分析得到的 概率; 后验概率—p(θ/H):在得到信息之后,重新 加以修正的概率。
p(发生小) p(小)=0.0009
p(发生)
0.0809
0.011
§5.1 贝叶斯决策的基本方法
5.1.1 贝叶斯决策的基本方法 管理决策的两种偏向:(1)缺少调查,(2)调
查费用过高。
贝叶斯决策:为了提高决策质量,需要通过 市场调查,收集有关状态变量的补充信息, 对先验分布进行修正,用后验状态分布进行 决策。
后验概率是在考虑了一个事实之后的条件概率. 后验概率可以根据通过Bayes定理, 用先验概率和 似然函数计算出来.
二、全概率公式和贝叶斯公式 条件概率
如在事件A发生的条件下求事件B发生的概率,将此概率记作P(B|A).
设 A, B 是两个事件,且 P( A) 0, 称 P(B A) P( AB) P( A)
指通过市场调查分析所获取的补充信息, 用已发生的随机事件H或已取值的随机变量 τ表示,称H或τ为信息值。 信息值的可靠程度 用在状态变量θ的条件下,信息值H的条件 分布p(H/θ)表示。
5.1.2 贝叶斯决策的基本方法
离散情形 若θ取n个值θj(j=l, 2, …, n),H取m个值Hi (i=1, 2, …, m),则信息值的可靠程度对 应一个矩阵—贝叶斯决策的似然分布矩阵