人教版七年级下册第九章 不等式与不等式组 应用题专题训练(无答案)
2022中考特训:人教版初中数学七年级下册第九章不等式与不等式组章节训练试题(含答案及详细解析)

初中数学七年级下册第九章不等式与不等式组章节训练(2021-2022学年 考试时间:90分钟,总分100分)班级:__________ 姓名:__________ 总分:__________一、单选题(10小题,每小题3分,共计30分)1、对有理数a ,b 定义运算:a ✬b =ma +nb ,其中m ,n 是常数,如果3✬4=2,5✬8>2,那么n 的取值范围是( )A .n >1-B .n <1-C .n >2D .n <22、下列式子:①5<7;②2x >3;③y ≠0;④x ≥5;⑤2a +l ;⑥113x ->;⑦x =1.其中是不等式的有( )A .3个B .4个C .5个D .6个3、若不等式(a +1)x >2的解集为x <21a +,则a 的取值范围是( ) A .a <1 B .a <-1 C .a >1 D .a >-14、若实数a ,b 满足a >b ,则下列不等式一定成立的是( )A .a >b +2B .a ﹣1>b ﹣2C .﹣a >﹣bD .a 2>b 25、已知x =2不是关于x 的不等式2x ﹣m >4的整数解,x =3是关于x 的不等式2x ﹣m >4的一个整数解,则m 的取值范围为( )A .0<m <2B .0≤m <2C .0<m ≤2D .0≤m ≤26、若关于x 的分式方程2x x -+1=22ax x --有整数解,且关于y 的不等式组2(1)15210y a y y -+-≤⎧⎨+<⎩恰有2个整数解,则所有满足条件的整数a 的值之积是( )A .0B .24C .﹣72D .127、若m >n ,则下列选项中不成立的是( )A .m +4>n +4B .m ﹣4>n ﹣4C .44m n >D .﹣4m >﹣4n8、不等式组1030x x ->⎧⎨-<⎩的解集是( ) A .1x > B .3x > C .13x << D .无解9、如果x >y ,则下列不等式正确的是( )A .x ﹣1<y ﹣1B .5x <5yC .33xy > D .﹣2x >﹣2y10、下列不等式组,无解的是( )A .1030x x ->⎧⎨->⎩B .1030x x -<⎧⎨-<⎩C .1030x x ->⎧⎨-<⎩D .1030x x -<⎧⎨->⎩ 二、填空题(5小题,每小题4分,共计20分)1、已知点(12,1)M m m --关于x 轴的对称点在第一象限,则m 的取值范围是________.2、如果a <2,那么不等式组2x a x >⎧⎨>⎩的解集为_______,2x a x <⎧⎨>⎩的解集为_______. 3、用“>”或“<”填空,并说明是根据不等式的哪条基本性质:(1)如果x +2>5,那么x _______3;根据是_______.(2)如果314a -<-,那么a _______43;根据是________.(3)如果233x <-,那么x ________92-;根据是________.(4)如果x -3<-1,那么x _______2;根据是________.4、已知关于x 的不等式组53120x a x -≥-⎧⎨-<⎩无解,则a 的取值范围是_____________. 5、根据“3x 与5的和是负数”可列出不等式 _________.三、解答题(5小题,每小题10分,共计50分)1、某工厂用如图甲所示的长方形和正方形纸板,做成如图乙所示的竖式与横式两种长方体形状的无盖的纸盒.(1)现有正方形纸板162张,长方形纸板340张,若要做两种纸盒共100个,设竖式纸盒x 个,需要长方形纸板________________张,正方形纸板_____________张(请用含有x 的式子)(2)在(1)的条件下,有哪几种生产方案?(3)若有正方形纸板162张,长方形纸板a 张,做成上述两种纸盒,纸板恰好用完.已知290<a <300,求a 的值.2、倡导垃圾分类,共享绿色生活.为了对回收的垃圾进行更精准的分类,某垃圾处理厂计划向机器人公司购买A 型号和B 型号垃圾分拣机器人共60台,其中B 型号机器人不少于A 型号机器人的1.4倍.设该垃圾处理厂购买x 台A 型号机器人.(1)该垃圾处理厂最多购买几台A 型号机器人?(2)机器人公司报价A 型号机器人6万元/台,B 型号机器人10万元/台,要使总费用不超过510万元,则共有哪几种购买方案?3、解下列不等式:(1)3(1)4(2)3x x +<--;(2)2151132x x -+-. 4、疫情期间,某物业公司欲购进A 、B 两种型号的防护服,若购入A 种防护服30套,B 种防护服50套,需6600元,若购入A 种防护服40套,B 种防护服10套,需3700元.(1)求购进A、B两种防护服的单价分别是多少元?(2)若该公司准备用不多于12300元的金额购进这两种防护服共150套,求A种防护服至少要购进多少套?5、用等号或不等号填空:(1)比较2x与x2+1的大小:当x=2时,2x x2+1当x=1时,2x x2+1当x=﹣1时,2x x2+1(2)任选取几个x的值,计算并比较2x与x2+1的大小;---------参考答案-----------一、单选题1、A【分析】先根据新运算的定义和3✬4=2将m用n表示出来,再代入5✬8>2可得一个关于n的一元一次不等式,解不等式即可得.【详解】解:由题意得:342m n+=,解得243nm-=,由5✬8>2得:582m n+>,将243nm-=代入582m n+>得:5(24)823nn-+>,解得1n>-,【点睛】本题考查了一元一次不等式的应用,理解新运算的定义是解题关键.2、C【分析】主要依据不等式的定义:用“>”、“≥”、“<”、“≤”、“≠”等不等号表示不相等关系的式子是不等式来判断.【详解】解:①②③④⑥均为不等式共5个.故选:C【点睛】本题考查不等式的识别,一般地,用不等号表示不相等关系的式子叫做不等式.解答此类题关键是要识别常见不等号:>、<、≤、≥、≠.3、B【分析】根据不等式的性质可得10a +<,由此求出a 的取值范围.【详解】 解:不等式(1)2a x +>的解集为21x a <+, ∴不等式两边同时除以(1)a +时不等号的方向改变,10a ∴+<,1a ∴<-,故选:B .本题考查了不等式的性质,解题的关键是掌握在不等式的两边同时乘以(或除以)同一个负数不等号的方向改变.4、B【分析】根据不等式的性质即可依次判断.【详解】解:当a>b时,a>b+2不一定成立,故错误;当a>b时,a﹣1>b﹣1>b﹣2,成立,当a>b时,﹣a<﹣b,故错误;当a>b时,a2>b2不一定成立,故错误;故选:B.【点睛】本题主要考查了不等式的性质的灵活应用,解题的关键是基本知识的熟练掌握.5、B【分析】由2x-m>4得x>42m+,根据x=2不是不等式2x-m>4的整数解且x=3是关于x的不等式2x-m>4的一个整数解得出42m+≥2、42m+<3,解之即可得出答案.【详解】解:由2x-m>4得x>42m+,∵x=2不是不等式2x-m>4的整数解,∴42m +≥2, 解得m ≥0;∵x =3是关于x 的不等式2x -m >4的一个整数解, ∴42m +<3, 解得m <2,∴m 的取值范围为0≤m <2,故选:B .【点睛】本题主要考查了一元一次不等式的整数解,解题的关键是根据不等式整数解的情况得出关于m 的不等式.6、D【分析】根据分式方程的解为正数即可得出a =﹣1或﹣3或﹣4或2或﹣6,根据不等式组有解,即可得出﹣1+3a ≤y <12-,找出﹣3<﹣1+3a ≤﹣2中所有的整数,将其相乘即可得出结论. 【详解】先解分式方程,再解一元一次不等式组,进而确定a 的取值. 解:∵2x x -+1=22ax x --, ∴x +x ﹣2=2﹣ax .∴2x +ax =2+2.∴(2+a )x =4.∴x =42a+ .∵关于x 的分式方程2x x -+1=22ax x --有整数解, ∴2+a =±1或±2或±4且42a +≠2. ∴a =﹣1或﹣3或﹣4或2或﹣6.∵2(y ﹣1)+a ﹣1≤5y ,∴2y ﹣2+a ﹣1≤5y .∴2y ﹣5y ≤1﹣a +2.∴﹣3y ≤3﹣a .∴y ≥﹣1+3a .∵2y +1<0,∴2y <﹣1.∴y <12-.∴﹣1+3a≤y <12-.∵关于y 的不等式组2(1)15210y a y y -+-≤⎧⎨+<⎩恰有2个整数解, ∴﹣3<﹣1+3a≤﹣2.∴﹣6<a ≤﹣3.又∵a =﹣1或﹣3或﹣4或2或﹣6,∴a =﹣3或﹣4.∴所有满足条件的整数a 的值之积是﹣3×(﹣4)=12.故选:D .【点睛】本题考查了分式方程的解以及解一元一次不等式,根据分式方程的解为正数结合不等式组有解,找出﹣3<﹣1+3a ≤﹣2是解题的关键.7、D【分析】根据不等式的基本性质进行解答即可.【详解】解:∵m >n ,A 、m +4>n +4,成立,不符合题意;B 、m ﹣4>n ﹣4,成立,不符合题意;C 、44m n >,成立,不符合题意;D 、﹣4m <﹣4n ,原式不成立,符合题意;故选:D .【点睛】本题考查了不等式的基本性质,熟练掌握不等式的基本性质是解本题的关键.8、C【分析】分别解出两个不等式,即可求出不等式组的解集.【详解】解:1030x x ->⎧⎨-<⎩①②解不等式①得 x >1,解不等式②得 x <3,∴不等式组的解集为1<x <3.故选:C【点睛】本题考查了解一元一次不等式组,正确解出两个不等式,并正确确定两个不等式的公共解是解题关键,求不等式组的解集可以借助口诀“同大取大,同小取小,大小小大中间找,大大小小无解了”确定,也可以根据数轴确定.9、C【分析】根据不等式的性质解答.①不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变;②不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;③不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.【详解】解:A .∵x >y ,∴x ﹣1>y ﹣1,故本选项不符合题意;B .∵x >y ,∴5x >5y ,故本选项不符合题意;C .∵x >y , ∴33xy ,故本选项符合题意; D .∵x >y ,∴﹣2x <﹣2y ,故本选项不符合题意;故选:C .【点睛】此题考查了不等式的性质,熟记不等式的性质并正确应用是解题的关键.10、D【分析】根据不等式组的解集的求解方法进行求解即可.【详解】解:A 、1030x x ->⎧⎨->⎩,解得13x x >⎧⎨>⎩,解集为:3x >,故不符合题意; B 、1030x x -<⎧⎨-<⎩,解得13x x <⎧⎨<⎩,解集为:1x <,故不符合题意; C 、1030x x ->⎧⎨-<⎩,解得13x x >⎧⎨<⎩,解集为:13x <<,故不符合题意; D 、1030x x -<⎧⎨->⎩,解得13x x <⎧⎨>⎩,无解,符合题意; 故选:D .【点睛】本题考查了求不等式组的解集,熟知“同大取大,同小取小,大小小大中间找,大大小小找不到”取不等式组的解集是关键.二、填空题1、12m <【分析】根据题意可知点(12,1)M m m --在第四象限,然后根据第四象限点的坐标特征求解即可.【详解】解:∵点(12,1)M m m --关于x 轴的对称点在第一象限,∴点(12,1)M m m --在第四象限,∴120m ->,10m -<, 解得:12m <, 故答案为:12m <.【点睛】本题考查了点的坐标特征以及解一元一次不等式组,根据题意得出点(12,1)M m m --在第四象限是解本题的关键.2、x >2 无解【分析】根据同大取大,同小取小,大小小大中间取判断即可;【详解】∵a <2,∴不等式组2x a x >⎧⎨>⎩的解集为x >2; 不等式组2x a x <⎧⎨>⎩中x 不存在,方程组无解; 故答案是:x >2;无解.【点睛】本题主要考查了不等式组的解集表示,准确分析判断是解题的关键.3、> 不等式基本性质1 > 不等式基本性质3 < 不等式基本性质2 < 不等式基本性质1;【分析】(1)根据不等式基本性质1,不等式两边同时加上或减去一个数,不等号方向不变,求解即可;(2)根据不等式基本性质3,不等式两边同时乘以或除以一个负数,不等号方向改变,据此求解即可;(3)根据不等式基本性质2,不等式两边同时乘以或除以一个正数,不等号方向不变,求解即可;(4)根据不等式基本性质1,不等式两边同时加上或减去一个数,不等号方向不变,求解即可.【详解】解:(1)如果x+2>5,那么3x>,不等号两边同时减去2,不等号方向不变,根据的是不等式基本性质1;(2)如果314a-<-,不等号两边同时乘以43-,那么43a>;根据是不等式基本性质3;(3)如果233x<-,不等号两边同时乘以32,那么92x<-;根据是不等式基本性质2;(4)如果x-3<-1,不等号两边同时加上3,那么2x<;根据是不等式基本性质1;故答案为:>,不等式基本性质1;>,不等式基本性质3;<,不等式基本性质2;<,不等式基本性质1.【点睛】此题考查了不等式的基本性质,解题的关键是掌握不等式的基本性质.4、4a≥【分析】先把a当作已知条件求出各不等式的解集,再根据不等式组无解求出a的取值范围即可.【详解】解:53120xa x-≥-⎧⎨-<⎩①②由①得:2x≤由②得:2a x >不等式组无解 ∴22a ≥ 4a ≥故答案为4a ≥.【点睛】本题主要考查了解一元一次不等式组,解题的关键关键是掌握解集的规律:同大取大;同小取小;大小小大中间找;大大小小无处找.5、350x +<【分析】3x 与5的和为35x +,和是负数即和小于0,列出不等式即可得出答案.【详解】3x 与5的和是负数表示为350x +<.故答案为:350x +<.【点睛】本题考查列不等式,根据题目信息确定不等式是解题的关键.三、解答题1、(1)长方形纸板用了(x +300)张,正方形纸板用了(200﹣x )张;(2)共有3种生产方案,方案1:生产竖式纸盒38个,横式纸盒62个;方案2:生产竖式纸盒39个,横式纸盒61个;方案3:生产竖式纸盒40个,横式纸盒60个;(3)293或298【解析】【分析】(1)可根据竖式纸盒+横式纸盒=100个,每个竖式纸盒需1个正方形纸板和4个长方形纸板,每个横式纸盒需3个长方形纸板和2个正方形纸板来填空;(2)根据题意,列不等式组求解即可;(3)设可以生产竖式纸盒m 个,横式纸盒1622m -个,可列出方程,再根据a 的取值范围求出a 的取值范围即可.【详解】解:(1)设生产竖式纸盒x 个,则生产横式纸盒(100﹣x )个,则长方形纸板用了43(100)300x x x +-=+张,正方形纸板用了2(100)200x x x +-=-张∴长方形纸板用了(x +300)张,正方形纸板用了(200﹣x )张.(2)依题意,得:300340200162x x +≤⎧⎨-≤⎩, 解得:3840x ≤≤. ∵x 为整数,∴x =38,39,40,∴共有3种生产方案,方案1:生产竖式纸盒38个,横式纸盒62个;方案2:生产竖式纸盒39个,横式纸盒61个;方案3:生产竖式纸盒40个,横式纸盒60个.(3)设可以生产竖式纸盒m 个,横式纸盒1622m -个,由此可得,m 为偶数,依题意,得:43(81)2m a m =+- ∵290300a << ∴43(8129030)02m m +-<<∴18.822.8x ≤≤∴20m =或22m =∴293a =或298a =答:a 的值为293或298.【点睛】本题考查一元一次不等式组的应用,列代数式,解题的关键是读懂题意,找到等量关系,正确列不等式求解,注意实际问题最后取整数解.2、(1)25台;(2)方案1:A23台,B37台;方案2:A24台;B36台;方案3:A25台,B35台.【解析】【分析】(1)设该垃圾处理厂购买x台A型号机器人,则购买(60一x)台B型号机器人,根据购进B型号机器人的数量不少于A型号机器人的1.4倍,即可得出关于x的一元一次不等式,解之取其中的最大值即可得出结论;(2)根据总价=单价×数量,结合总价不超过510万元,即可得出关于x的一元一次不等式,解之即可得出x的取值范围,结合x为整数且x≤25,即可得出各购买方案.【详解】解:(1)设该垃圾处理厂购买x台A型号机器人,则购买(60一x)台B型号机器人,依题意得:60-x≥1.4x解得:x≤25答:该垃圾处理厂最多购买25台A型号机器人.(2)依题意得:6x+10(60-x)≤510,解得:x≥45 2又∵x为整数,且x≤25∴x可以取23,24,25,∴共有3种购买方案,方案1:购买23台A型号机器人,37台B型号机器人;方案2:购买24台A型号机器人,36台B型号机器人;方案3:购买25台A 型号机器人,35台B 型号机器人.【点睛】本题考查了一元一次不等式的应用,根据各数量之间的关系,正确列出一元一次不等式是解题的关键.3、(1)14x >;(2)1x -.【解析】【分析】(1)由题意去括号,移项,合并同类项,不等式的两边同除以未知数的系数即可求得不等式的解集;(2)由题意去分母,去括号,移项,合并同类项,不等式的两边同除以未知数的系数即可求得不等式的解集.【详解】解:(1)3(1)4(2)3x x +<--,去括号得:33483x x +<--,移项,合并同类项得:14x -<-,不等式的两边同除以1-得:14x >.∴不等式的解集是:14x >.(2)2151132x x -+-, 去分母得:2(21)3(51)6x x --+,去括号得:421536x x---,移项,合并同类项得:1111x-,不等式的两边同除以11-得:1x-.∴不等式的解集是:1x-.【点睛】本题主要考查一元一次不等式的解法,熟练掌握并利用解一元一次不等式的一般步骤解答是解题的关键.4、(1)购进A、B两种防护服的单价分别是70元、90元;(2)A种防护服至少要购进60套【解析】【分析】(1)根据题意可以列出相应的二元一次方程组,然后求解即可;(2)根据题意可以列出相应的不等式,然后求解即可.【详解】解:(1)设购进A、B两种防护服的单价分别是a元、b元,由题意可得:30506600 40103700a ba b+=⎧⎨+=⎩,解得:7090ab=⎧⎨=⎩,答:购进A、B两种防护服的单价分别是70元、90元;(2)设购进A种防护服x套,则购进B种防护服(150﹣x)套,由题意可得70x+90(150﹣x)≤12300,即:201200-≤-x解得:x≥60,答:A种防护服至少要购进60套.【点睛】本题考查二元一次方程组的实际应用,以及一元一次不等式的应用,能够列出相关的方程组或不等关系是解题的重点.5、(1)<,=,<;(2)当x=3时,2x<x2+1,当x=﹣2时,2x<x2+1【解析】【分析】(1)将x的值代入不等号两边的代数式中,比较大小即可得;(2)任选两个值,按照(1)中方法代入求值,然后比较大小即可得.【详解】解:(1)比较2x与21x+的大小:当2x=,215x=时,24x+=,∴2<+;21x x当1x=,212x=时,22x+=,∴221=+;x x当1x=-,212x=-时,22x+=,∴2x x<+;21故答案为:<,=,<;(2)当3x=时,26x=,2110x+=,∴2<+;x x21当2x=-,215x=-时,24x+=,∴2<+.21x x【点睛】题目主要考查不等式的性质,熟练掌握不等式的性质是解题关键.。
人教版七年级下学期数学 第9章 不等式与不等式组 单元练习 含解析

第9章不等式与不等式组一.选择题(共9小题)1.有下列数学表达式:①3>0;②4x+5>0;③x=3;④x2+x;⑤x≠﹣4;⑥x+2<x+1.其中是不等式的有()A.2个B.3个C.4个D.5个2.若a>b,则下列不等式变形正确的是()A.ac2>bc2B.C.﹣ca<﹣cb D.3a﹣c>3b﹣c 3.下列不等式组中,是一元一次不等式组的是()A.B.C.D.4.不等式组无解,则a的取值范围是()A.a<1 B.a≤1 C.a>1 D.a≥15.若不等式组无解,则实数a的取值范围是()A.a≥﹣1 B.a<﹣1 C.a≤1 D.a≤﹣16.若关于x的不等式组,有解,则a的取值范围为()A.a≤﹣1 B.a<﹣1 C.a≥﹣1 D.a>﹣17.若不等式组的解集为x<1,则a的取值范围是()A.a>﹣1 B.a≥﹣1 C.a<﹣1 D.a≤﹣18.关于x的不等式组只有4个整数解,则a的取值范围是()A.﹣5≤a≤﹣B.﹣5≤a<﹣C.﹣5<a≤﹣D.﹣5<a<﹣9.我们定义=ad+bc,例如=2×5+3×4=22,若x满足﹣2≤<2则整数x的值有()A.0个B.1个C.2个D.3个二.填空题(共5小题)10.等腰三角形腰和底边长分别为xcm和ycm,周长小于20cm,则x和y必须满足的不等式组为.11.关于x的不等式组只有5个整数解,则a的取值范围是.12.若﹣2≥7是关于x的一元一次不等式,则m=.13.对于任意实数m、n,定义一种运运算m※n=mn+m﹣n+3,等式的右边是通常的加减和乘法运算,例如:3※5=3×5+3﹣5+3=16.请根据上述定义解决问题:若a≤2※x<7,且解集中有3个整数解,则a的取值范围是.14.定义运算a⊗b=a2﹣2ab,下面给出了关于这种运算的几个结论:①2⊗5=﹣16;②是无理数;③方程x⊗y=0不是二元一次方程:④不等式组的解集是﹣<x<﹣.其中正确的是(填写所有正确结论的序号)三.解答题(共9小题)15.解不等式﹣<1,并把它的解集在数轴上表示出来.16.m为何值时,关于x的方程x﹣1=6m+5(x﹣m)的解为非负数.17.已知:,求:|x﹣1|﹣|x﹣3|的最大值和最小值.18.已知关于x,y的二元一次方程组的解满足x<﹣2y,其中m是非负整数,求m的值.19.当2(k﹣3)<时,求关于x的不等式>x﹣k的解集.20.(1)观察发现:材料:解方程组将①整体代入②,得3×4+y=14,解得y=2,把y=2代入①,得x=2,所以这种解法称为“整体代入法”,你若留心观察,有很多方程组可采用此方法解答,请直接写出方程组的解为(2)实践运用:请用“整体代入法”解方程组(3)拓展运用:若关于x,y的二元一次方程组的解满足x+y>,请直接写出满足条件的m的所有正整数值.21.定义:对于任何有理数m,符号[m]表示不大于m的最大整数.例如:[4.5]=4,[8]=8,[﹣3.2]=﹣4.(1)填空:[π]=,[﹣2.1]+5=;(2)如果[]=﹣4,求满足条件的x的取值范围;(3)求方程4x﹣3[x]+5=0的整数解.22.某车间每天能生产甲种零件120个,或者乙种零件100个.甲、乙两种零件分别取2个、1个才能配成一套,要在80天内生产最多的成套产品,问:甲、乙两种零件各应生产多少天?23.每年的6月5日为世界环保日,为了提倡低碳环保,某公司决定购买10台节省能源的新设备,现有甲、乙两种型号的设备可供选购,经调查:购买3台甲型设备比购买2台乙型设备多花16万元,购买2台甲型设备比购买3台乙型设备少花6万元.(1)求甲、乙两种型号设备的价格;(2)该公司经预算决定购买节省能源的新设备的资金不超过110万元,你认为该公司有哪几种购买方案;(3)在(2)的条件下,已知甲型设备的产量为240吨/月,乙型设备的产量为180吨/月,若每月要求总产量不低于2040吨,为了节约资金,请你为该公司设计一种最省钱的购买方案.参考答案与试题解析一.选择题(共9小题)1.【分析】主要依据不等式的定义﹣﹣﹣﹣﹣用“>”、“≥”、“<”、“≤”、“≠”等不等号表示不相等关系的式子是不等式来判断.【解答】解:根据不等式的定义,只要有不等符号的式子就是不等式,所以①3>0;②4x+5>0;⑤x≠﹣4,⑥x+2<x+1共有4个.故选:C.2.【分析】直接利用不等式的基本性质分别分析得出答案.【解答】解:A、∵a>b,当c=0时,ac2>bc2不成立,故此选项错误;B、∵a>b,则>1不成立,故此选项错误;C、∵a>b,故﹣ca<﹣cb不成立,故此选项错误;D、∵a>b,∴3a﹣c>3b﹣c,故此选项正确;故选:D.3.【分析】根据一元一次不等式组的定义判定则可.【解答】解:A选项是一元一次不等式组;B选项中有2个未知数;C选项中最高次项是2;D选项中含有分式,不属于一元一次不等式的范围.故选:A.4.【分析】先求不等式组的解集,再逆向思维,要不等式组无解,x的取值正好在不等式组的解集之外,从而求出a的取值范围.【解答】解:原不等式组可化为,即,故要使不等式组无解,则a≤1.故选:B.5.【分析】分别求出各不等式的解集,再与已知不等式组无解相比较即可得出a的取值范围.【解答】解:,由①得,x≥﹣a,由②得,x<1,∵不等式组无解,∴﹣a≥1,解得:a≤﹣1.故选:D.6.【分析】先分别解两个不等式,然后有不等式组有解可得到关于a的不等式,从而可求得a的取值范围.【解答】解:∵x+a≥0,∴x≥﹣a.∵2(x+1)≥3x,∴x≤1.又∵不等式组有解,∴﹣a≤1,∴a≥﹣1.故选:C.7.【分析】利用不等式组取解集的方法判断即可确定出a的范围.【解答】解:不等式组变形得:,由不等式组的解集为x<1,得到﹣a>1,解得:a<﹣1,当a=﹣1时,满足题意,则a的取值范围是a≤﹣1,故选:D.8.【分析】首先确定不等式组的解集,先利用含a的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a的不等式,从而求出a的范围.【解答】解:不等式组的解集是2﹣3a<x<21,因为不等式组只有4个整数解,则这4个解是20,19,18,17.所以可以得到16≤2﹣3a<17,解得﹣5<a≤﹣.故选:C.9.【分析】首先根据定义把式子化成一般的不等式组,然后解不等式组求得解集,然后确定解集中的正整数即可.【解答】解:根据题意得:﹣2≤4x+6<2.解得:﹣2≤x<﹣1.则x的整数值是﹣2,共1个.故选:B.二.填空题(共5小题)10.【分析】此题中的不等关系有:周长小于20cm;任意两边之和大于第三边,即不等关系为两腰之和大于底边长.【解答】解:根据题意,得.11.【分析】先解每一个不等式,再根据不等式组有5个整数解,确定含a的式子的取值范围.【解答】解:,由①得:x≤21,由②得:x>2﹣3a,∵关于x的不等式组只有5个整数解,即:21,20,19,18,17,∴16≤2﹣3a<17,解得:﹣5<a≤﹣,故答案为:﹣5<a≤﹣.12.【分析】根据一元一次不等式的定义求解即可.【解答】解:∵﹣2≥7是关于x的一元一次不等式,∴m2﹣3=1,且m﹣2≠0.解得m=﹣2.故答案为:m=﹣2.13.【分析】利用题中的新定义列出不等式组,求出解集即可确定出a的范围.【解答】解:根据题中的新定义化简得:a≤2x+2﹣x+3<7,整理得:,即a﹣5≤x<2,由不等式组有3个整数解,即为﹣1,0,1,∴﹣1≤a﹣5<0,解得:4≤a<5,故答案为:4≤a<514.【分析】根据a⊗b=a2﹣2ab,可得答案.【解答】解:①2⊗5=22﹣2×2×5=﹣16,故①正确;②===0是有理数,故②错误;③方程x⊗y=0得x2﹣2xy=0是二元二次方程,故③正确:④不等式组等价于,解得﹣<x<﹣,故④正确;故答案为:①③④.三.解答题(共9小题)15.【分析】根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得解集,再表示在数轴上即可.【解答】解:去分母得:2(x+5)﹣3(3x﹣1)<6,去括号得:2x+10﹣9x+3<6,移项、合并得:﹣7x<﹣7,系数化为1得:x>1,将解集表示在数轴上如图:16.【分析】先求出方程的解,根据题意得出不等式,求出不等式的解集即可.【解答】解:解方程x﹣1=6m+5(x﹣m)得:x=﹣,∵方程的解为非负数,∴﹣≥0,解得:m≤﹣1,所以当m≤﹣1时,关于x的方程x﹣1=6m+5(x﹣m)的解为非负数.17.【分析】根据不等式的性质求出不等式的解集,根据x﹣1≥0和x﹣3≥0,求出x≥1和x≥3,分类讨论得出①x≤1,②1<x≤,求出代数式的值,根据结果即可求出答案.【解答】解:,∴8x+1﹣12≤12x﹣6x﹣6,移项、合并同类项得:2x≤5,∴x≤,当x≤1时,|x﹣1|﹣|x﹣3|=1﹣x﹣(3﹣x)=﹣2,当1<x≤时,|x﹣1|﹣|x﹣3|=x﹣1﹣(3﹣x)=2x﹣4,x=时,2x﹣4=1,∴当x≤时,|x﹣1|﹣|x﹣3|的最大值是1,最小值是﹣2.18.【分析】先把m当做已知数,求出x、y的值,再根据x<﹣2y列出关于m的不等式,求出m的取值范围即可.【解答】解:由方程组得:,将方程组的解代入x<﹣2y得:,即:,得:m<,又∵m为非负整数,即m的值为0.19.【分析】先根据2(k﹣3)<求出k的取值范围,再求出x的取值范围即可.【解答】解:∵2(k﹣3)<,∴6k﹣18<10﹣k,解得k<4,∵>x﹣k,即(k﹣4)x>k,∵k<4,∴k﹣4<0,∴x<.20.【分析】(1)由第一个方程求出x﹣y的值,代入第二个方程求出y的值,进而求出x 的值,即可确定出方程组的解.(2)由第一个方程求出2x﹣3y的值,代入第二个方程求出y的值,进而求出x的值,即可确定出方程组的解.(3)方程组两方程相加表示出x+y,代入已知不等式求出m的范围,确定出正整数值即可.【解答】解:(1)由①得:x﹣y=1③,将③代入②得:4﹣y=5,即y=﹣1,将y=﹣1代入③得:x=0,则方程组的解为.故答案为.(2)由①得:2x﹣3y=2③,将③代入②得:1+2y=9,即y=4,将y=4代入③得:2x﹣12=2,解得x=7,则方程组的解为.(3),①+②得:3(x+y)=﹣3m+6,即x+y=﹣m+2,代入不等式得:﹣m+2>﹣,解得:m<,则满足条件m的正整数值为1,2.故答案为1,2.21.【分析】(1)根据题目所给信息求解;(2)根据题意得出﹣4≤<﹣3,求出x的取值范围;(3)整理方程得[x]=,根据定义得出x﹣1<≤x,解不等式组求得x的取值范围,由[x]=是整数,设4x+5=3n(n是整数)得到x=,则﹣8<≤﹣5,解得﹣9<n≤﹣5,即可求得当n=﹣5,方程的整数解为x=﹣5.【解答】解:(1)由题意得:[π]=3,[﹣2.1]+5=﹣3+5=2,故答案为3,2;(2)根据题意得:﹣4≤<﹣3,解得:7<x≤,则满足条件的x的取值范围为7<x≤;(3)整理得:[x]=∴x﹣1<≤x解得不等式组的解集为:﹣8<x≤﹣5,∵[x]=是整数设4x+5=3n(n是整数)∴x=,∴﹣8<≤﹣5解得不等式组的解集为:﹣9<n≤﹣5,∵n是整数∴n为﹣8,﹣7,﹣6,﹣5,∴当n=﹣5,方程的整数解为x=﹣5.22.【分析】设甲种零件应生产x天,则乙种零件应生产(80﹣x)天,根据甲、乙两种零件分别取2个、1个才能配成一套,列出方程解答即可.【解答】解:设甲种零件应生产x天,则乙种零件应生产(80﹣x)天,120x=100(80﹣x)×2,解得:x=50,则80﹣x=30.答:甲种零件应生产50天,乙种零件应生产30天.23.【分析】(1)设甲,乙两种型号设备每台的价格分别为x万元和y万元,根据购买3台甲型设备比购买2台乙型设备多花16万元,购买2台甲型设备比购买3台乙型设备少花6万元,列出方程组,然后求解即可;(2)设购买甲型设备m台,乙型设备(10﹣m)台,根据公司经预算决定购买节省能源的新设备的资金不超过110万元,列出不等式,然后求解即可得出购买方案;(3)根据甲型设备的产量为240吨/月,乙型设备的产量为180吨/月和总产量不低于2040吨,列出不等式,求出m的取值范围,再根据每台的钱数,即可得出最省钱的购买方案.【解答】解:(1)设甲,乙两种型号设备每台的价格分别为x万元和y万元,由题意得:,解得:,则甲,乙两种型号设备每台的价格分别为12万元和10万元.(2)设购买甲型设备m台,乙型设备(10﹣m)台,则:12m+10(10﹣m)≤110,∴m≤5,∵m取非负整数∴m=0,1,2,3,4,5,∴有6种购买方案.(3)由题意:240m+180(10﹣m)≥2040,∴m≥4∴m为4或5.当m=4时,购买资金为:12×4+10×6=108(万元),当m=5时,购买资金为:12×5+10×5=110(万元),则最省钱的购买方案为,选购甲型设备4台,乙型设备6台.。
人教版七年级下册《第九章不等式与不等式组》单元练习题含答案

第九章 不等式与不等式组 一、选择题 1.一元一次不等式x+1≥2的解在数轴上表示为( ) A.
B.
C.
D.
2.下列各式不是一元一次不等式组的是( ) A.
B.
C.
D.
3.不等式组的解集是( ) A.x≤2 B. 1<x≤2 C.x>1 D.x≥2 4.下列叙述正确的是( ) A.a>b,则ac2>bc2
B. 当x<7时,3(x-7)是负数
C. 若-<0,则x>-3 D. 当x<0时,x2<3x
5.在关于x、y的方程组中,未知数满足x≥0,y>0,那么m的取值范围在数轴上
应表示为( ) A.
B.
C.
D.
6.下列各式中,是一元一次不等式的是( ) A. 5+4>8 B. 2x-1 C. 2x≤5 D.-3x≥0 7.把一些笔记本分给几个学生,如果每人分3本,那么余8本;如果前面的每个学生分5本,那么
最后一人就分不到3本,共有学生人数为( ) A. 6 B. 5 C. 6或5 D. 4 8.若a≠0,a,b互为相反数,则不等式ax+b<0的解集为( ) A.x>1 B.x<1 C.x<1或x>1 D.x<-1或x>-1 9.2015年4月份的尼泊尔强震曾经导致珠峰雪崩,在珠峰抢险时,需8组登山队员步行运送物资,
要求每组分配的人数相同,若按每组人数比预定人数多分配1人,则总数会超过100人;若按每组人数比预定人数少分配1人,则总数不够90人,那么预定每组分配的人数是( ) A. 10 B. 11 C. 12 D. 13 10.x的3倍减去2的差不大于0,列出不等式为( ) A. 3x-2≤0 B. 3x-2≥0 C. 3x-2<0 D. 3x-2>0 二、填空题 11.滨海市出租汽车起步价为10元(即行驶距离在5千米以内的都需付10元车费).达到或超过5千
米后,每增加1千米加价1.2元(不足1千米部分按1千米计),小华乘这种出租车从家到单位,支付车费多于15元,设小华从家到单位距离为x千米(x为整数),列关系式为 ______________________. 12.关于x的方程3(x+2)=k+2的解是正数,则k的取值范围是________.
最新人教版七年级数学下册第九章 不等式与不等式组 基础训练题(合集)(含答案)

最新人教版七年级数学下册第九章不等式与不等式组基础训练题(含答案)9.1.1 不等式及其解集1.下列式子:①1x<y+5;①1>-2;①3m-1≤4;①a+2≠a-2中,不等式有()A.2个B.3个C.4个D.1个2.“数x不小于2”是指()A.x≤2 B.x≥2 C.x<2 D.x>23.若m是非负数,则用不等式表示正确的是()A.m<0 B.m>0 C.m≤0 D.m≥04.某市一天最高气温是8 ①,最低气温是-2 ①,则当天该市气温变化范围t(①)是()A.t>8 B.t<2 C.-2<t<8 D.-2≤t≤85.用适当的符号表示下列关系:(1)a-b是负数:_________________;(2)a比5大:__________________;(3)x是非负数:__________________;(4)m不大于-3:__________________.6.“b的12与c的和是负数”用不等式表示为__________________.7.下列说法中,错误的是()A.x=1是不等式x<2的解B.-2是不等式2x-1<0的一个解C.不等式-3x>9的解集是x=-3 D.不等式x<10的整数解有无数个8.用不等式表示如图所示的解集,其中正确的是()A.x>-2 B.x<-2 C.x≥-2 D.x≤-29.以下所给的数值中,是不等式-2x+3<0的解的是()A.-2 B.-1 C.32D.210.不等式x<-2的解集在数轴上表示为()11.在下列各数:-2,-2.5,0,1,6中,不等式23x>1的解有6;不等式-23x>1的解有___________. 12.把下列不等式的解集在数轴上表示出来.(1)x≥-3; (2)x >-1; (3)x≤3; (4)x<-32.13.x 与3的和的一半是负数,用不等式表示为( )A.12x +3>0B.12x +3<0C.12(x +3)<0D.12(x +3)>0 14.下列数值中不是不等式5x≥2x +9的解的是( )A .5B .4C .3D .215.对于实数x ,我们规定[x]表示不大于x 的最大整数,例如[1.2]=1,[3]=3,[-2.5]=-3.若[x +410]=5,则x 的取值可以是( )A .40B .45C .51D .56 16.用不等式表示:(1)a 与5的和是非负数; (2)a 与2的差是负数; (3)b 的10倍不大于27.17.直接写出下列各不等式的解集:(1)x +1>0; (2)3x <6.18.学校要购买2 000元的图书,包括名著和辞典,名著每套65元,辞典每本40元,现已购买名著20套,问最多还能买几本辞典?(列式即可)参考答案:1.C2.B3.D4.D5.(1)a-b<0(2)a>5(3)x≥0(4)m≤-36.12b+c<07.C8.C9.D10.D11.-2,-2.512.解:(1)(2)(3)(4)13.C14.D15.C16.(1)解:a+5≥0.(2)解:a-2<0.(3)解:10b≤27.17.(1)解:x>-1.(2)解:x<2.18.解:设还能买x本辞典,得20×65+40x≤2 000.9.1.2 不等式的性质1.若x>y,则下列式子中错误的是()A.x-3>y-3 B.x3>y3C.x+3>y+3 D.-3x>-3y2.若a>b,则a-b>0,其依据是()A.不等式性质1 B.不等式性质2 C.不等式性质3 D.以上都不对3.下列变形不正确的是()A.由b>5得4a+b>4a+5 B.由a>b得b<aC.由-12x>2y得x<-4y D.-5x>-a得x>a54.若a>b,am<bm,则一定有()A.m=0 B.m<0 C.m>0 D.m为任何实数5.不等式x-2>1的解集是()A.x>1 B.x>2 C.x>3 D.x>46.在数轴上表示不等式x-1<0的解集,正确的是()7.不等式5x≤-10的解集在数轴上表示为()8.利用不等式的性质解下列不等式,并把解集在数轴上表示出来.(1)x+3<-2;(2)9x>8x+1;(3)12x≥-4;(4)-10x≤5.9.a 、b 都是实数,且a<b ,则下列不等式的变形正确的是( )A .a +x>b +xB .-a +1<-b +1C .3a<3b D.a 2>b210.不等式2x -6>0的解集是( )A .x >1B .x <-3C .x >3D .x <3 11.下列说法不一定成立的是( )A .若a>b ,则a +c>b +cB .若a +c>b +c ,则a>bC .若a>b ,则ac 2>bc 2D .若ac 2>bc 2,则a>b 12.若式子3x +4的值不大于0,则x 的取值范围是( )A .x <-43B .x≥43C .x <43D .x≤-43 13.利用不等式的性质填空(填“>”或“<”).(1)若a>b ,则2a +1________2b +1; (2)若-1.25y<-10,则y________8; (3)若a<b ,且c<0,则ac +c________bc +c ; (4)若a>0,b<0,c<0,则(a -b)c________0. 14.利用不等式的性质解下列不等式.(1)8-3x <4-x ; (2)2(x -1)<3(x +1)-2.(3)x -13≥12x -1.参考答案:1-7 DADBCCC8.(1)解:利用不等式性质1,两边都减3,得x<-5. 在数轴上表示为:(2)解:利用不等式性质1,两边都减8x ,得x>1. 在数轴上表示为:(3)解:利用不等式性质2,两边都乘以2,得x≥-8. 在数轴上表示为:(4)解:利用不等式性质3,两边都除以-10,得x≥-12.在数轴上表示为:9-12 CCCD13.> > > <14.(1)解:不等式两边同加x ,得8-2x <4. 不等式两边同减去8,得-2x <-4. 不等式两边同除以-2,得x>2.(2)解:去括号,得2x -2<3x +3-2. 不等式两边加上2,得2x<3x +3. 不等式两边减去3x ,得-x<3. 不等式两边乘以-1,得x>-3.(3)解:不等式两边都乘以6,得2(x -1)≥3x -6. 去括号,得2x -2≥3x -6.不等式两边都加2,得2x≥3x -4. 不等式两边都减去3x ,得-x≥-4. 不等式两边除以-1,得x≤4.9.2.1 一元一次不等式的解法1.下列不等式中,属于一元一次不等式的是( )A .4>1B .3x -24<4 C.1x <2 D .4x -3<2y -7 2.一元一次不等式x -1≥0的解集在数轴上表示正确的是( )3.不等式2x -1>0的解集是( )A .x >12B .x <12C .x >-12D .x <-12 4.不等式2x -3<1的解集在数轴上表示为( )5.不等式3x +2<2x +3的解集在数轴上表示正确的是( )6.不等式x 2-x -13≤1的解集是( )A .x≤4B .x≥4C .x≤-1D .x≥-1 7.不等式3(x -1)≤5-x 的非负整数解有( )A .1个B .2个C .3个D .4个8.如果关于x 的不等式(a +1)x>a +1的解集为x<1,那么a 的取值范围是( )A .a>0B .a<0C .a>-1D .a<-1 9.解不等式,并把解集在数轴上表示出来:(1)5x -2≤3x ; (2)4x -3>x +6; (3)2(x -1)+5<3x ;(4)2-x 4≥1-x 3; (5)2+x 2≥2x -13.10.不等式5x -1>2x +5的解集在数轴上表示正确的是( )11.使不等式x -1≥2与3x -7<8同时成立的x 的整数值是( )A .3,4B .4,5C .3,4,5D .不存在 12.关于x 的不等式x -b >0恰有两个负整数解,则b 的取值范围是( )A .-3<b <-2B .-3<b≤-2C .-3≤b≤-2D .-3≤b <-2 13.要使4x -32的值不大于3x +5,则x 的最大值是( )A .4B .6.5C .7D .不存在 14.不等式x +12>2x +23-1的正整数解的个数是( )A .1个B .2个C .3个D .4个 15.在实数范围内规定新运算“①”,其规则是:a①b =2a -b.已知不等式x①k≥1的解集在数轴上如图表示,则k 的值是____________. 16.如果a<2,那么不等式ax>2x +5的解集是___________. 17.解不等式,并把解集在数轴上表示出来:(1)2(x +1)-1≥3x +2; (2)x3>1-x -36;(3)2x -13-9x +26≤1; (4)x +12≥3(x -1)-4;参考答案:1.B 2.A 3.A 4.D5.D6.A7.C8.D9.(1)解:移项,得5x-3x≤2.合并同类项,得2x≤2.系数化为1,得x≤1.其解集在数轴上表示为:(2)解:移项,得4x-x>6+3.合并同类项,得3x>9.系数化为1,得x>3.其解集在数轴上表示为:(3)解:去括号,得2x-2+5<3x.移项,得2x-3x<2-5.合并同类项,得-x<-3.化系数为1,得x>3.其解集在数轴上表示为:(4)解:去分母,得3(2-x)≥4(1-x).去括号,得6-3x≥4—4x.移项,合并同类项,得x≥-2.其解集在数轴上表示为:(5)解:去分母,得3(2+x)≥2(2x-1).去括号,得6+3x≥4x-2.移项,得3x-4x≥-2-6.合并同类项,得-x≥-8.系数化为1,得x≤8.其解集在数轴上表示为:10.A11.A12.D13.B14.D15.-316.x<5a-2.17.(1)解:去括号,得2x+2-1≥3x+2.移项,得2x-3x≥2-2+1.合并同类项,得-x≥1.系数化为1,得x≤-1.其解集在数轴上表示为:(2)解:去分母,得2x>6-(x-3).去括号,得2x>6-x+3.移项,得2x+x>6+3.合并同类项,得3x>9.系数化为1,得x>3.其解集在数轴上表示为:(3)解:去分母,得2(2x-1)-(9x+2)≤6.去括号,得4x-2-9x-2≤6.移项,得4x-9x≤6+2+2.合并同类项,得-5x≤10.系数化为1,得x≥-2.把不等式的解集在数轴上表示为:(4)解:去分母,得x+1≥6(x-1)-8.去括号,得x+1≥6x-6-8.移项,得x-6x≥-6-1-8.合并同类项,得-5x≥-15.系数化为1,得x≤3.不等式的解集在数轴上表示为:9.2.2 一元一次不等式的应用1.某经销商销售一批电话手表,第一个月以550元/块的价格售出60块,第二个月起降价,以500元/块的价格将这批电话手表全部售出,销售总额超过了5.5万元.这批电话手表至少有()A.103块B.104块C.105块D.106块2.小明准备用22元钱买笔和笔记本,已知每支笔3元,每本笔记本2元,他买了3本笔记本后,用剩余的钱来买笔,那么他最多可以买()A.3支笔B.4支笔C.5支笔D.6支笔3.有10名菜农,每人可种茄子3亩或辣椒2亩,已知茄子每亩可收入0.5万元,辣椒每亩可收入0.8万元,要使总收入不低于15.6万元,则最多只能安排______人种茄子.4.为了举行班级晚会,孔明准备去商店购买20个乒乓球做道具,并买一些乒乓球拍作奖品,已知乒乓球每个1.5元,球拍每个22元,如果购买金额不超过200元,且买的球拍尽可能多,那么孔明应该买多少个球拍?5.某商店5月1日举行促销优惠活动,当天到该商店购买商品有两种方案.方案一:用168元购买会员卡成为会员后,凭会员卡购买商店内任何商品,一律按商品价格的8折优惠;方案二:若不购买会员卡,则购买商店内任何商品,一律按商品价格的9.5折优惠.已知小敏5月1日前不是该商店的会员.(1)若小敏不购买会员卡,所购买商品的价格为120元时,实际应支付多少元?(2)请帮小敏算一算,所购买商品的价格在什么范围内时,采用方案一更合算?6.为响应市政府“创建国家森林城市”的号召,某小区计划购进A、B两种树苗共17棵,已知A种树苗每棵80元,B种树苗每棵60元.(1)若购进A、B两种树苗刚好用去1 220元,问购进A、B两种树苗各多少棵?(2)若购买B种树苗的数量少于A种树苗的数量,请你给出一种费用最省的方案,并求出该方案所需费用.参考答案:1.C2.C3.44.解:设孔明应该买x 个球拍,根据题意,得 5×20+22x≤200,解得x≤7811.由于x 取整数,故x 的最大值为7. 答:孔明应该买7个球拍. 5.解:(1)120×0.95=114(元). 答:实际应支付114元.(2)设购买商品的价格为x 元,由题意得 0.8x +168<0.95x ,解得x>1 120.答:当购买商品的价格超过1 120元时,采用方案一更合算. 6.解:(1)设购进A 种树苗x 棵,则购进B 种树苗(17-x)棵,根据题意,得 80x +60(17-x)=1 220, 解得x =10. ①17-x =7.答:购进A 种树苗10棵,B 种树苗7棵.(2)设购进A 种树苗y 棵,则购进B 种树苗(17-y)棵,根据题意,得 17-y <y ,解得y >812.购进A 、B 两种树苗所需费用为80y +60(17-y)=20y +1 020,则费用最省需y 取最小整数9,此时17-y =8,这时所需费用为20×9+1 020=1 200(元). 答:费用最省方案为:购进A 种树苗9棵,B 种树苗8棵.这时所需费用为1 200元.9.3 一元一次不等式组1.下列不等式组中,是一元一次不等式组的是( )A.⎩⎨⎧x>2x<-3B.⎩⎨⎧x +1>0y -2<0C.⎩⎨⎧3x -2>0(x -2)(x +3)>0D.⎩⎪⎨⎪⎧3x -2>0x +1>1x2.下列四个数中,为不等式组⎩⎨⎧3x -6<0,3+x>3的解的是( )A .-1B .0C .1D .2 3.不等式组⎩⎨⎧x≥-1,x<2的解集在数轴上表示正确的是( )4.不等式组⎩⎨⎧x +1>0,x -3>0的解集是( )A .x >-1B .x >3C .-1<x <3D .x <3 5.不等式组⎩⎨⎧2x -1≤3,x +3>4的解集是( )A .x >1B .1<x≤2C .x≤2D .无解 6.不等式组⎩⎨⎧x -3>2,x<3的解集是( )A .x <3B .3<x <5C .x >5D .无解 7.不等式组⎩⎨⎧x -1≤1,5-2x≥-1的解集在数轴上表示为( )8.不等式组⎩⎨⎧-2x +3≥0,x -1>0的解集是_______________。
人教版七年级数学下册 第九章不等式和不等式组练习题(附答案)

人教版七年级数学下册 第九章不等式与不等式组练习题(附答案)一、选择题1.已知x >y ,则下列不等式成立的是( )A. x −1<y −1B. 3x <3yC. −x <−yD. x 2<y 22.若不等式组{5x +2≤3x −5−x +5<a 无解,则a 的取值范围是( ) A. a ≤172 B. a ≤12 C. a <172 D. a <123.已知关于不等式2<(1−a)x 的解集为x <21−a ,则a 的取值范围是( ) A. a >1 B. a >0 C. a <0 D. a <14.已知关于x 的不等式4x+a3>1的解都是不等式2x+13>0的解,则a 的范围是( )A. a =5B. a ≥5C. a ≤5D. a <55.不等式4−2x >0的解集在数轴上表示为( )A.B. C. D.6.某种商品的进价为900元,出售时标价为1650元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于10%,则最多可打( )A. 6折B. 7折C. 8折D. 9折7.若不等式ax +x >1+a 的解集是x <1,则a 必须满足的条件是( )A. a <−1B. a <1C. a >−1D. a >18.关于x 的不等式组{x −a >01−x >0只有3个整数解,则a 的取值范围是( ) A. −3≤a ≤−2 B. −3≤a <−2 C. −3<a ≤−2 D. −3<a <−29.若关于x 的一元一次不等式组{2x −1>3(x −2)x <m的解集是x <5,则m 的取值范围是( )A. m ≥5B. m >5C. m ≤5D. m <510.如果不等式组{x <7x >m有解,那么m 的取值范围是( ) A. m >7 B. m ≥7 C. m <7 D. m ≤7二、计算题11.解下列不等式,并把它的解集在数轴上表示出来.(1)2(x +1)−3(x +2)<0(2)x−13<x+14−2.12.解不等式组{3(x −2)+4<5x 1−x 4+x ≥2x −1.三、解答题13.人民商场准备购进甲、乙两种牛奶进行销售,若甲种牛奶的进价比乙种牛奶的进价每件少5元,其用90元购进甲种牛奶的数量与用100元购进乙种牛奶的数量相同.(1)求甲种牛奶、乙种牛奶的进价分别是多少元?(2)若该商场购进甲种牛奶的数量是乙种牛奶的3倍少5件,两种牛奶的总数不超过95件,该商场甲种牛奶的销售价格为49元,乙种牛奶的销售价格为每件55元,则购进的甲、乙两种牛奶全部售出后,可使销售的总利润(利润=售价−进价)超过371元,请通过计算求出该商场购进甲、乙两种牛奶有哪几种方案?14.某商城销售A,B两种自行车.A型自行车售价为2100元/辆,B型自行车售价为1750元/辆,每辆A型自行车的进价比每辆B型自行车的进价多400元,商城用80000元购进A型自行车的数量与用64000元购进B型自行车的数量相等.(1)求每辆A,B两种自行车的进价分别是多少?(2)现在商城准备一次购进这两种自行车共100辆,设购进A型自行车m辆,这100辆自行车的销售总利润为y元,要求购进B型自行车数量不超过A型自行车数量的2倍,总利润不低于13 000元,求获利最大的方案以及最大利润.答案一、选择题1.【答案】C2.【答案】A3.【答案】A4.【答案】C5.【答案】D6.【答案】A7.【答案】A8.【答案】B9.【答案】A10.【答案】C二、计算题11.【答案】解:(1)去括号得2x+2−3x−6<0,移项得2x−3x<6−2,合并得−x <4,系数化为1得x >−4; 则不等式的解集在数轴上表示为(2)去分母得4(x −1)<3(x +1)−24,去括号得4x −4<3x +3−24,移项得4x −3x <3−24+4,合并得x <−17. 则不等式的解集在数轴上表示为12.【答案】解:{3(x −2)+4<5x ①1−x 4+x ≥2x −1 ②, 由①得:x >−1;由②得:x ≤1;∴不等式组的解集是−1<x ≤1.三、解答题13.【答案】解:(1)设乙种牛奶的进价为每件x 元,则甲种牛奶的进价为每件(x −5)元, 由题意得,90x−5=100x ,解得x =50.经检验,x =50是原分式方程的解,且符合实际意义,故乙种牛奶的进价是50元,甲种牛奶的进价是45元.(2)设购进乙种牛奶y 件,则购进甲种牛奶(3y −5)件,由题意得{3y −5+y ⩽95(49−45)(3y −5)+(55−50)y >371, 解得23<y ≤25.∵y 为整数,∴y =24或25,∴共有两种方案:方案一:购进甲种牛奶67件,乙种牛奶24件;方案二:购进甲种牛奶70件,乙种牛奶25件.14.【答案】解:(1)设每辆B 型自行车的进价为x 元,则每辆A 型自行车的进价为(x +400)元,根据题意,得80000x+400=64000x ,解得x =1600,经检验,x =1600是原方程的解,x +400=1 600+400=2 000,答:每辆A 型自行车的进价为2 000元,每辆B 型自行车的进价为1 600元;(2)由题意,得y =(2100−2000)m +(1750−1600)(100−m)=−50m +15000,根据题意,得{100−m ≤2m −50m +15000≥13000, 解得:3313≤m ≤40,∵m 为正整数,∴m =34,35,36,37,38,39,40.∵y =−50m +15000,k =−50<0,∴y 随m 的增大而减小,∴当m =34时,y 有最大值,最大值为:−50×34+15000=13300(元).答:当购进A 型自行车34辆,B 型自行车66辆时获利最大,最大利润为13300元.。
人教版数学七年级下册第九章不等式与不等式组测试卷附解析

人教版数学七年级下册第九章不等式与不等式组测试卷附解析一、单选题(共10题;共30分)1.x =3是下列不等式( )的一个解.A. x +1<0B. x +1<4C. x +1<3D. x +1<5 2.下列不等式求解的结果,正确的是( )A. 不等式组 {x ≤−3x ≤−5 的解集是 x ≤−3B. 不等式组 {x >−5x ≥−4 的解集是 x ≥−5C. 不等式组 {x >5x <−7 无解 D. 不等式组 {x ≤10x >−3 的解集是 −3≤x ≥103.在数轴上表示-2≤x <1正确的是( ) A.B.C. D.4.关于x 的不等式 2x +m >−6 的解集是 x >−3 ,则m 的值为( ) A. 1. B. 0. C. -1. D. -25.若m >n ,则下列不等式正确的是( )A. m -4<n -4B. m4>n4 C. 4m <4n D. -2m >-2n 6.已知关于x 、y 的方程组 {x +y =1−a x −y =3a +5 ,满足 x ≥12y ,则下列结论:① a ≥−2 ;② a =−53时, x =y ;③当 a =−1 时,关于x 、y 的方程组 {x +y =1−ax −y =3a +5 的解也是方程 x +y =2 的解;④若 y ≤1 ,则 a ≤−1 ,其中正确的有( )A. 1个B. 2个C. 3个D. 4个 7.若代数式4x - 32 的值不大于代数式3x +5的值,则x 的最大整数值是( ) A. 4 B. 6 C. 7 D. 88.如果关于x 的不等式组 {5x −2a >07x −3b ≤0 的整数解仅有7,8,9,那么适合这个不等式组的整数a ,b 的有序数对(a ,b )共有( )A. 4对B. 6对C. 8对D. 9对9.某种商品的进价为1200元,标价为1575元,后来由于该商品积压,商店准备打折出售,但要保持利润率不低于5%,则至多可打( )A. 6折B. 7折C. 8折D. 9折10.运行程序如图所示,从“输入实数 x”到“结果是否<18”为一次程序操作,若输入 x 后程序操作仅进行了三次就停止,那么 x 的取值范围是( )A. x ≥329B. 329≤x ≤143C. 329<x ≤143D. x ≤143二、填空题(共8题;共24分)11.如果关于 x 的不等式 2x −m <0 的正整数解恰有2个,则 m 的取值范围是________. 12.“x 与y 的平方和大于8. ”用不等式表示: ________. 13.若 y =2x −6 ,当 x ________时, y >0 ;14.某校规定把期中考试成绩的40%与期末考试成绩的60%的和作为学生的总成绩.该校李红同学在期中考试中数学考了86分,她希望自己这学期数学总成绩不低于92分,她在期末考试中数学至少应得多少分?设她在期末考试中数学考了 x 分,则可列不等式________.15.关于 x 的不等式 bx <a 的解集为 x >−2 ,写出一组满足条件的实数 a ,b 的值:a= ________,b= ________.16.如果不等式组 {x2+a ≥22x −b <3的解集是 0≤x <1 ,那么 a +b 的值为________.17.按下面的程序计算,若开始输入的值 x 为正整数:规定:程序运行到“判断结果是否大于10”为一次运算,例如当 x =2 时,输出结果等于11,若经过2次运算就停止,则 x 可以取的所有值是________.18.关于 x,y 的方程组 {x −y =1+3mx +3y =1+m 的解 x 与 y 满足条件 x +y ≤2 ,则 4m +3 的最大值是________.三、计算题(共1题;共10分)19.解下列不等式(1)4x-2+1x−5>1x−5+3x +2 (2)7x−62x+3>2四、解答题(共7题;共54分)20.(6分)解不等式组: {x −3(x −2)≥42x−15<x+12 并求该不等式组的非负整数解.21.(7分)解不等式 1−2x 3+x+22≥1 ,并把解集在数轴上表示出来.22.(7分)已知关于x ,y 的二元一次方程组 {3x −y =ax −3y =5−4a 的解满足 x <y ,试求a 的取值范围.23.(7分)某居民小区污水管道里积存污水严重,物业决定请工人清理.工人用每分钟可抽30吨水的抽水机来抽污水管道里积存的污水,估计积存的污水不少于1200吨且不超过1500吨,若工人抽污水每小时的工钱是60元,那么抽完污水最少需要支付多少元?24.(8分)新冠状病毒肺炎疫情发生后,全社会积极参与疫情防控工作,某市为了尽快完成100万只口罩的生产任务,安排甲、乙两个大型工厂共同完成.已知甲厂每天能生产口罩的数量是乙厂每天能生产口罩的数量的1.5倍,并且在独立完成60万只口罩的生产任务时,甲厂比乙厂少用5天,问至少应安排两个工厂共同工作多少天才能完成任务25.(9分)北京奥运会期间,某旅行社组团去北京观看某场足球比赛,入住某宾馆.已知该宾馆一楼房间比二楼房间少5间,该旅游团有48人,若全部安排在一楼,每间住4人,房间不够,每间住5人,有房间没住满.若全部安排在二楼,每间住3人,房间不够,每间住4人,则有房间没住满.你能根据以上信息确定宾馆一楼有多少房间吗?26(10分).对x,y定义了一种新运算T,规定T(x,y)= ax+by2x+y(其中a,b均为非零常数),这里等式右边是通常的四则运算,例如:T(0,1)= a×0+b×12×0+1,已知T(1,﹣1)=﹣2,T(4,2)=1.(1)求a,b的值;(2)若关于m的不等式组{T(2m,5−4m)≤4T(m,3−2m)>p恰好有3个整数解,求p的取值范围.答案解析部分一、单选题 1.【答案】 D【解析】【解答】解:A 、3+1=4>0,故A 不成立; B 、3+1=4,故B 不成立; C 、3+1=4>3,故C 不成立; D 、3+1=4<5,故D 成立; 故答案为:D.【分析】直接将x=3代入各个不等式,不等式成立的即为所选. 2.【答案】 C【解析】【解答】解:A 、不等式组 {x ≤−3x ≤−5 的解集根据“同小取较小”的原则可知,此不等式组的解集为x≤-5;B 、不等式组 {x >−5x ≥−4 的解集是根据“同大取较大”的原则可知,此不等式组的解集为x≥-4;C 、不等式组 {x >5x <−7 根据“大大小小解为空”的原则可知,此不等式组无解;D 、不等式组 {x ≤10x >−3 的解集根据“小大大小中间找”的原则可知,-3<x≤10.故答案为:C .【分析】根据不等式组解集的确定方法分别求出各不等式组的解集即可. 3.【答案】 D【解析】【解答】解:解:x≥-2表示-2右边的部分,含-2这点,应为实心点,x<1表示1左边的部分,不含1这点,应为空心点,则正确的是D .【分析】根据不等式解集的表示法,在数轴上表示出两个不等式即可. 4.【答案】 B【解析】【解答】解: 2x +m >−6 , 2x >−6−m ,x >−6+m2由题知x >-3, 则 −6+m 2=−3 ,解得:m=0, 故答案为:B .【分析】解不等式求出 x >−6+m 2,结合 x >−3 ,从而得出 −6+m 2=−3 ,解之可得.5.【答案】 B【解析】【解答】解:A 、∵m >n ∴m-4>n-4,故A 不符合题意; B 、∵m >n ∴m4>n4 , 故B 符合题意; C 、∵m >n∴4m >4n ,故C 不符合题意; D 、∵m >n∴-2m <-2n ,故D 不符合题意; 故答案为:B.【分析】利用不等式的性质1,可对A 作出判断;利用不等式的性质2可对B ,C 作出判断,利用不等式的性质3,可对D 作出判断。
最新人教版初中数学七年级下册第九章不等式与不等式组专项练习试题(含答案及详细解析)
初中数学七年级下册第九章不等式与不等式组专项练习(2021-2022学年 考试时间:90分钟,总分100分)班级:__________ 姓名:__________ 总分:__________一、单选题(10小题,每小题3分,共计30分) 1、把不等式36x ≥-的解集在数轴上表示正确的是( )A .B .C .D .2、若a b >,则下列不等式不一定成立的是( )A .22a b +>+B .22a b >C .22ab > D .22a b >3、若不等式(a +1)x >2的解集为x <21a +,则a 的取值范围是( ) A .a <1 B .a <-1 C .a >1 D .a >-14、在数轴上表示不等式﹣1<x ≤2,其中正确的是( )A .B .C .D .5、如图,数轴上表示的解集是( )A .﹣3<x ≤2B .﹣3≤x <2C .x >﹣3D .x ≤26、关于x 的方程3﹣2x =3(k ﹣2)的解为非负整数,且关于x 的不等式组2(1)323x x k x x --≤⎧⎪+⎨≥⎪⎩有解,则符合条件的整数k 的值之和为( )A .5B .4C .3D .27、对于不等式4x +7(x -2)>8不是它的解的是( )A .5B .4C .3D .28、下列说法中,正确的是( )A .x =3是不等式2x >1的解B .x =3是不等式2x >1的唯一解C .x =3不是不等式2x >1的解D .x =3是不等式2x >1的解集9、已知关于x 的不等式(4)4a x a -<-的解集为1x <-,则a 的取值范围是( )A .4a >B .4a ≠C .4a <D .4a10、若a b >成立,则下列不等式成立的是( )A .a b ->-B .11a b -+>-+C .2121a b ->-D .22m a m b >二、填空题(5小题,每小题4分,共计20分)1、若关于x 的不等式122334455a x x x x x ≥+++++++++有解,则a 的取值范围是__________.2、如果a >b ,那么﹣2﹣a ___﹣2﹣b .(填“>”、“<”或“=”)3、如果a <2,那么不等式组2x a x >⎧⎨>⎩的解集为_______,2x a x <⎧⎨>⎩的解集为_______. 4、以下说法正确的是:_______.①由ab bc >,得a c >;②由22ab cb >,得a c >③由b a b c -<-,得a c >;④由20212021a c >,得a c >⑤n a -和()n a -互为相反数;⑥3x >是不等式21x +>的解5、若21(2)15m m x --->是关于x 的一元一次不等式,则m 的值为______________.三、解答题(5小题,每小题10分,共计50分)1、(1)解不等式:3x ﹣2≤5x ,并把解集在数轴上表示出来.(2)解不等式组2(2)213123x x x x -≤-⎧⎪+-⎨>+⎪⎩,并写出它的最大整数解.2、解不等式1226123x x ++≥-,并将解集在数轴上表示;3、解下列不等式组,并将其解集在数轴上表示出来.(1)2(1)31134x x x x +≤-⎧⎪+⎨<⎪⎩; (2)1<3x -2<4;4、解下列不等式组32122x x x +>⎧⎪⎨≤⎪⎩. 5、人和人之间讲友情,有趣的是,数与数之间也有相类似的关系.若两个不同的自然数的所有真因数(即除了自身以外的正因数)之和相等,我们称这两个数为“亲和数”.例如:18的正因数有1、2、3、6、9、18,它的真因数之和为1236921++++=;51的正因数有1、3、17、51,它的真因数之和为131721++=,所以称18和51为“亲和数”.又如要找8的亲和数,需先找出8的真因数之和为1247++=,而7133=++,所以8的亲和数为1339⨯⨯=,数还可以与动物形象地联系起来,我们称一个两头(首位与末位)都是1的数为“两头蛇数”.例如:121、1351等.(1)10的真因数之和为_______;(2)求证:一个四位的“两头蛇数”11ab与它去掉两头后得到的两位数的3倍的差,能被7整除;(3)一个百位上的数为4的五位“两头蛇数”,能被16的“亲和数”整除,若这个五位“两头蛇数”的千位上的数字小于十位上的数字,求满足条件的五位“两头蛇数”.---------参考答案-----------一、单选题1、D【分析】解一元一次不等式求出不等式的解集,由此即可得出答案.【详解】解:不等式36x≥-,x≥-的解集为2在数轴上的表示如下:故选:D.【点睛】本题考查了将一元一次不等式的解集在数轴上表示出来,熟练掌握不等式的解法是解题关键.2、D【分析】根据不等式的性质判断即可.【详解】解:A 、两边都加2,不等号的方向不变,故A 不符合题意;B 、两边都乘以2,不等号的方向不变,故B 不符合题意;C 、两边都除以2,不等号的方向不变,故C 不符合题意;D 、当b <0<a ,且a b <时,a 2<b 2,故D 符合题意;故选:D .【点睛】本题主要考查了不等式的基本性质.(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.3、B【分析】根据不等式的性质可得10a +<,由此求出a 的取值范围.【详解】 解:不等式(1)2a x +>的解集为21x a <+, ∴不等式两边同时除以(1)a +时不等号的方向改变,10a ∴+<,1a ∴<-,故选:B .【点睛】本题考查了不等式的性质,解题的关键是掌握在不等式的两边同时乘以(或除以)同一个负数不等号的方向改变.4、A【分析】不等式﹣1<x≤2在数轴上表示不等式x>﹣1与x≤2两个不等式的公共部分,据此求解即可.【详解】解:“>”空心圆圈向右画折线,“≤”实心圆点向左画折线.故在数轴上表示不等式﹣1<x⩽2如下:故选A.【点睛】本题考查了在数轴上表示不等式的解集,不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.5、A【分析】根据求不等式组的解集的表示方法,可得答案.【详解】解:由图可得,x>﹣3且x≤2∴在数轴上表示的解集是﹣3<x≤2,故选A.【点睛】本题考查了在数轴上表示不等式组的解集,不等式组的解集在数轴上的表示方法是:大大取大,小小取小,大小小大中间找,小小大大无解.6、A【分析】先求出方程的解与不等式组的解集,再根据题意相确定k 的取值范围即可.【详解】解:解方程3﹣2x =3(k ﹣2),得:932k x -=, 由题意得930k -,解得:3k , 解不等式2(1)3x x --,得:1x -, 解不等式23k x x +,得:x k , 不等式组有解,1k ∴-,则13k -,∴符合条件的整数k 的值的和为101235-++++=,故选A .【点睛】本题主要考查了一元一次方程的解、一元一次不等式组的整数解等知识点,明确题意、正确求解不等式成为解答本题的关键.7、D【分析】根据不等式的解的含义把每个选项的数值代入不等式的左边进行计算,满足左边大于右边的是不等式的解,不满足左边大于右边的就不是不等式的解,从而可得答案.【详解】解:当x =5时,4x +7(x -2)=41>8,当x =4时,4x +7(x -2)=30>8,当x =3时,4x +7(x -2)=19>8,当x =2时,4x +7(x -2)=8.故知x=2不是原不等式的解.故A,B,C不符合题意,D符合题意,故选D【点睛】本题考查的是不等式的解的含义,理解不等式的解的含义并进行判断是解本题的关键.8、A【分析】对A、B、C、D选项进行一一验证,把已知解代入不等式看不等式两边是否成立.【详解】解:A、当x=3时,2×3>1,成立,故A符合题意;B、当x=3时,2×3>1成立,但不是唯一解,例如x=4也是不等式的解,故B不符合题意;C、当x=3时,2×3>1成立,是不等式的解,故C不符合题意;,故D不符合D、当x=3时,2×3>1成立,是不等式的解,但不是不等式的解集,其解集为:x>12题意;故选:A.【点睛】此题着重考查不等式中不等式的解、唯一解、解集概念之间的区别和联系,是一道非常好的基础题.9、C【分析】由题意直接根据已知解集得到40->,即可确定出a的范围.a【详解】解:不等式(4)4-<-的解集为1a x ax<-,a∴->,40解得:4a<.故选:C.【点睛】本题考查不等式的解集,熟练掌握不等式的基本性质是解答本题的关键.10、C【分析】根据不等式两边加或减某个数或式子,乘或除以同一个正数,不等号的方向不变;不等式两边乘或除以一个负数,不等号的方向改变解答.【详解】解:A 、不等式a >b 两边都乘-1,不等号的方向没有改变,不符合题意;B 、不等式a >b 两边都乘-1,不等号的方向没有改变,不符合题意;C 、不等式a >b 两边都乘2,不等号的方向不变,都减1,不等号的方向不变,符合题意;D 、因为2m ≥0,当2m =0时,不等式a >b 两边都乘2m ,不等式不成立,不符合题意;故选:C .【点睛】本题考查了不等式的基本性质.不等式两边同时乘以或除以同一个数或式子时,一定要注意不等号的方向是否改变.二、填空题1、15a ≥【分析】 根据绝对值的几何意义,可把122334455x x x x x +++++++++视为数轴上表示数x 的点到表示数-1(1个),-2(2个),-3(3个),-4(4个),-5(5个)的点的距离之和,得到当x 位于第8个点时,122334455x x x x x +++++++++取得最小值15,即可求出a 的取值范围.【详解】解:由绝对值的几何意义可得, 把122334455x x x x x +++++++++视为数轴上表示数x 的点到表示数-1(1个),-2(2个),-3(3个),-4(4个),-5(5个)的点的距离之和,∴当x 位于第8个点时,即当x =-4时,122334455x x x x x +++++++++的最小值为15, ∵122334455a x x x x x ≥+++++++++,∴当关于x 的不等式122334455a x x x x x ≥+++++++++有解时,a 的取值范围是15a ≥.故答案为:15a ≥.【点睛】 此题考查了绝对值的几何意义和不等式性质,解题的关键是根据题意求得122334455x x x x x +++++++++的最小值.2、<【分析】根据不等式的基本性质:不等式的两边乘(或除以)同一个负数,不等号的方向改变;不等式两边加上同一个数,不等式的方向不变.【详解】解:∵a >b ,∴﹣a <﹣b ,∴﹣2﹣a <﹣2﹣b ,故答案为:<.【点睛】本题考查不等式的性质,熟练掌握不等式的基本性质是解题的关键.3、x >2 无解【分析】根据同大取大,同小取小,大小小大中间取判断即可;【详解】∵a <2,∴不等式组2x a x >⎧⎨>⎩的解集为x >2; 不等式组2x a x <⎧⎨>⎩中x 不存在,方程组无解; 故答案是:x >2;无解.【点睛】本题主要考查了不等式组的解集表示,准确分析判断是解题的关键.4、②③④【分析】根据不等式的基本性质得出结论即可.【详解】解:①由ab bc >,当0b <时,得a c <,故结论①错误;②由22ab cb >,得a c >,故结论②正确;③由b a b c -<-,得a c >;故结论③正确;④由20212021a c >,得a c >;故结论④正确;⑤n a -和()n a -互为相反数,当n 为奇数时,()n n a a -=-,故结论⑤错误;⑥1x >-是不等式21x +>的解,故结论⑥错误;故正确的结论为:②③④.【点睛】本题考查了不等式的基本性质,熟知不等式的基本性质是解本题的关键.5、1【分析】根据一元一次不等式的定义可得:211m-=且20m-≠,求解即可.【详解】解:根据一元一次不等式的定义可得:211m-=且20m-≠解得1m=故答案为1【点睛】此题考查了一元一次不等式的定义,解题的关键是掌握一元一次不等式的概念.三、解答题1、(1)x≥﹣1,数轴见解析;(2)﹣3<x≤2,最大整数解2【解析】【分析】(1)根据一元一次不等式的解法,去分母,移项,合并同类项,系数化为1即可得解;(2)先求出两个不等式的解集,再求其公共解,然后写出最大整数解即可.【详解】(1)解:移项得3x﹣5x≤2,合并同类项得﹣2x≤2,系数化为1得x≥﹣1,在数轴上表示如下:(2)解:2(2)2?131?23x x x x -≤-⎧⎪⎨+->+⎪⎩①②, 由①得,x ≤2,由②得,x >﹣3,不等式组的解集是﹣3<x ≤2,所以该不等式组的最大整数解2.【点睛】本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).2、7x ≥-,数轴表示见解析【解析】【分析】先去分母,然后再求解一元一次不等式即可.【详解】 解:1226123x x ++≥- 去分母得:()()3162226x x +≥-+,去括号得:336452x x +≥--,移项、合并同类项得:749x ≥-,系数化为1得:7x ≥-;数轴表示如下:【点睛】本题主要考查一元一次不等式的解法,熟练掌握一元一次不等式的解法是解题的关键.3、(1)无解,数轴见解析;(2)1<x <2,数轴见解析【解析】【分析】根据解不等式组的步骤,先求出每个不等式的解集,然后根据口诀“同大取大,同小取小,大小小大中间找,大大小小找不到”求出不等式组的解集,表示在数轴上即可.【详解】解:(1)2(1)31134x x x x +≤-⎧⎪⎨+<⎪⎩①② 由①得解集为x ≥3,由②得解集为x <3,在数轴上表示①、②的解集,如图,所以不等式组无解.(2)原式整理为321324x x ->⎧⎨-<⎩①②, 解不等式①得:1x >,解不等式②得:2x <,∴不等式组的解集为1<x <2,表示在数轴上如图:【点睛】本题考查了求不等式组的解集,熟练掌握求不等组的方法是解本题的关键.4、14x -<≤【解析】【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【详解】解:解不等式3x +2>x 得:x >-1, 解不等式122x ≤,得:4x ≤,则不等式组的解集为:14x -<≤.【点睛】本题考查了解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解题的关键.5、(1)8;(2)见解析;(3)10461,11451,12441.【解析】【分析】(1)先求出10的真因数,再求10的真因数之和即可;(2)先把给出的数用代数式表示111001+10010ab a b =+,10ab a b =+,根据要求列代数式得1121001100103(10)ab ab a b a b -=++-+=7(10143)a b ++,说明括号中的数为整式即可;(3)设五位“两头蛇数”为141x y (x y <),先求出16的真因数之和15,找到16的亲和数为131133⨯⨯= ,根据能被16的“亲和数”整除,将五位数写成33的倍数与剩余部分为14133315333010106x y x x y =⨯+⨯+++,可得553x y ++能被33整除,根据08x ≤≤,19y ≤≤且x y <,得出555388x y ≤++≤能被33整除得出6x y +=即可.【详解】.解:(1)10的真因数为1,2,5,10的真因数之和为1+2+5=8,故答案为8;(2)11100010010+1=1001+10010ab a b a b =+++,10ab a b =+, ∵1131001100103(10)ab ab a b a b -=++-+,=7071001a b ++,=7(10143)a b ++,又因为09a ≤≤,09b ≤≤的整数,∴10143a b ++为整数,∴一个四位“两头蛇数”与它去掉两头后得到的两位数的3倍的差能被7整除;(3)设五位“两头蛇数”为141x y (x y <),∵末位数为1,∴不能被2(真因数)整除,∵16的真因数之和1248151311=+++==++,∴16的亲和数为131133⨯⨯= , 1411040110001033315633301010x y x y x x y =++=⨯++⨯++能被33整除,101062(553)x y x y ∴++=++能被33整除, 又2不能被33整除,553x y ∴++能被33整除,08x ≤≤又,19y ≤≤且x y <,∴555388x y ≤++≤,55333x y ∴++=或66.5530x y ∴+=或5563x y +=(舍去),6x y ∴+=,09x y ≤≤<,∴06x y ==,或1,5x y ==或2,4x y ==,所以五位“两头蛇数”为10461,11451,12441.【点睛】本题考查数字之间的新定义,仔细阅读题目,把握实质,明确真因数与亲和数,整除性质,五位数的代数式表示,不等式组的解集,二元一次方程的非负整数解,掌握真因数与亲和数,整除性质,五位数的代数式表示,不等式组的解集,二元一次方程的非负整数解是解题关键.。
新人教版七年级下册数学第九章不等式与不等式组练习含答案
七下数学第九章不等式与不等式组一、选择题1.在数轴上与原点的距离小于8的点对应的x满足( )A.−8<x<8B.x<−8或x>8C.x<8D.x>82.下列式子一定成立的是( )A.若ac2=bc2,则a=b B.若ac>bc ,则a>bC.若a>b,则ac2>bc2D.若a<b,a(c2+1)<b(c2+1) 3.由x<y能得到mx>my,则( )A.m>0B.m≥0C.m<0D.m≤04.若0<m<1,m,m2,1m的大小关系是( )A.m<m2<1m B.m2<m<1mC.1m<m<m2D.1m<m2<m5.下列四个命题:①若a>b,则a−3>b−3;②若a>b,则a+c>b+c;③若a>b,则−3a<−3b;④若a>b,则ac>bc.其中,真命题的个数有( )A.3B.2C.1D.06.若不等式组{x+8<4x−1,x>m的解集是x>3,则m的取值范围是( )A.m≤3B.m>3C.m<3D.m=37.运行程序如图所示,规定:从“输入一个值x”到“结果是否>95”为一次程序操作,如果程序操作进行了三次才停止,那么x的取值范围是( )A.x≥11B.11≤x<23C.11<x≤23D.x≤238.我们用[a]表示不大于a的最大整数,例如:[2.5]=2,[3]=3,[−2.5]=−3,已知x,y满足方程组{3[x]+2[y]=9,3[x]−[y]=0.则[x+y]可能的值有( )A.1个B.2个C.3个D.4个9.某品牌电脑的成本为2400元,售价为2800元,该商店准备举行打折促销活动,要求利润率不低于5%,如果将这种品牌的电脑打x折销售,则下列不等式中能正确表示该商店的促销方式的是( )A.2800x≥2400×5%B.2800x−2400≥2400×5%C.2800×x10≥2400×5%D.2800×x10−2400≥2400×5%10. 今年学校举行足球联赛,共赛 17 轮(即每队均需参赛 17 场),记分办法是胜 1 场得 3 分,平 1 场得 1 分,负 1 场得 0 分.在这次足球比赛中,小虎足球队得 16 分,且踢平场数是所负场数的整数倍,则小虎足球队所负场数的情况有A .2 种B .3 种C .4 种D .5 种11. 若关于 x 的不等式组 {x−12≥2k,x −k ≤4k +6有解,且关于 x 的方程 kx =2(x −2)−(3x +2) 有非负整数解,则符合条件的所有整数 k 的和为 ( )A . −5B . −9C . −12D . −1612. 若关于 x ,y 的方程组 {2x +y =4,x +2y =−3m +2 的解满足 x −y >−32,则 m 的最小整数解为 ( )A . −3B . −2C . −1D . 0二、填空题13. 已知 x ≥2 的最小值是 a ,x ≤−6 的最大值是 b ,则 a +b = . 14. 用“>”或“<”填空:① 若 m +2<n +2,则 −4m +5 −4n +5; ② 若 2m <2n ,则 −3(1−3m )2−3(1−3n )2.15. 若不等式 (a −2)x <1,两边除以 a −2 后变成 x <1a−2,则 a 的取值范围是 . 16. 若不等式组 {2x −a <1,x −2b >3的解集为 −3<x <1,则 (a +1)(b −1) 的值为 .17. 关于 x 的不等式 (2a −b )x +a −2b >0 的解集为 x <107,则不等式 ax >b 的解集为 .18. 已知 x −y =3,且 x >2,y <1,则 x +y 的取值范围是 . 三、解答题19. 一种药品的说明书上写着:“每日用量 120∼180 mg ,分 3∼4 次服完.”一次服用这种药的剂量在什么范围?20. 解不等式 3x −2≥2(2+3x ),并把它的解集在数轴上表示出来.21.已知方程组{x−y=1+3a,x+y=−7−a中x为非正数,y为负数.(1) 求a的取值范围;(2) 在a的取值范围中,当a为何整数时,不等式2ax+x>2a+1的解集为x<1?22.延安市2018年举行迎新春首届灯展,承办方计划在现场安装小彩灯和大彩灯,已知:安装5个小彩灯和4个大彩灯共需155元;安装7个小彩灯和6个大彩灯共需225元.(1) 求安装1个小彩灯和1个大彩灯各需多少元;(2) 若承办方安装小彩灯和大彩灯的数量共300个,费用不超过5000元,则最多安装大彩灯多少个?23.若不等式5(x−2)+8≤6(x−1)+7的最小整数解是方程3x−ax=−3的解,求−∣10−a2∣的值.24.李大爷一年前买入了相同数量的A,B两种种兔,目前,他所养的这两种种兔数量仍然相同,且A种种兔的数量比买入时增加了20只,B种种兔的数量比买入时的2倍少10只.(1) 求一年前李大爷共买了多少只种兔;(2) 李大爷目前准备卖出30只种兔,已知卖A种种兔可获利15元/只,卖B种种兔可获利6元/只.如果要求卖出的A种种兔少于B种种兔,且总共获利不低于280元,那么他有哪几种卖兔方案?哪种方案获利最大?请求出最大获利.25.某商场准备进一批两种不同型号的衣服,已知购进A种型号衣服9件,B种型号衣服10件,则共需1810元;若购进A种型号衣服12件,B种型号衣服8件,共需1880元.已知销售一件A型号衣服可获利18元,销售一件B型号衣服可获利30元,要使在这次销售中获利不少于699元,且A型号衣服不多于28件.(1) 求A,B型号衣服进价各是多少元;(2) 若已知购进A型号衣服是B型号衣服的2倍还多4件,求商店在这次进货中可有几种方案,并简述购货方案.答案一、选择题 1. 【答案】A 2. 【答案】D 3. 【答案】C 4. 【答案】B 5. 【答案】A 6. 【答案】A 7. 【答案】C【解析】由题意得,{2x +1≤95, ⋯⋯①2(2x +1)+1≤95, ⋯⋯②2[2(2x +1)+1]+1>95. ⋯⋯③解不等式 ① 得,x ≤47, 解不等式 ② 得,x ≤23, 解不等式 ③ 得,x >11,∴x 的取值范围是 11<x ≤23. 8. 【答案】B【解析】解方程组 {3[x ]+2[y ]=9,3[x ]−[y ]=0.可得 {[x ]=1,[y ]=3.又 ∵[a ] 表示不大于 a 的最大整数, ∴1≤x <2,3≤y <4, ∴4≤x +y <6,∴[x +y ] 可能的值有 4 和 5 . 9. 【答案】D 10. 【答案】B【解析】设小虎足球队胜了 x 场,平了 y 场,负了 z 场 k 为整数.依题意得:{x +y +z =17,3x +y =16,y =kz.解得z =352k+3. ∵ z 为正整数, ∴ 2k +3=1,5,7,35, 可得 k =−1,1,2,16,舍去不合题意得 k 的值,可得 k =1,2,16. 综上所述,小虎足球队所负场数的情况有 3 种. 11. 【答案】B【解析】 {x−12≥2k, ⋯⋯①x −k ≤4k +6. ⋯⋯②解 ① 得:x ≥1+4k , 解 ② 得:x ≤6+5k ,∴ 不等式组的解集为 1+4k ≤x ≤6+5k , 1+4k ≤6+5k , k ≥−5,解关于 x 的方程 kx =2(x −2)−(3x +2) 得 x =−6k+1, ∵ 关于 x 的方程 kx =2(x −2)−(3x +2) 有非负整数解, 当 k =−4 时,x =2, 当 k =−3 时,x =3, 当 k =−2 时,x =6, ∴−4−3−2=−9. 12. 【答案】C【解析】 {2x +y =4, ⋯⋯①x +2y =−3m +2. ⋯⋯②①−② 得:x −y =3m +2, ∵ 关于 x ,y 的方程组 {2x +y =4,x +2y =−3m +2的解满足 x −y >−32,∴3m +2>−32, 解得:m >−76,∴m 的最小整数解为 −1. 二、填空题13. 【答案】 −414. 【答案】 > ; < 15. 【答案】 a >2 16. 【答案】 −8【解析】{2x −a <1, ⋯⋯①x −2b >3. ⋯⋯②∵ 解不等式 ① 得:x <a+12,解不等式 ② 得:x >3+2b,∴ 不等式组的解集为3+2b <x <a+12,∵ 不等式组的解集为 −3<x <1,∴3+2b=−3,且a+12=1,解得:a=1,b=−3,∴(a+1)(b−1)=(1+1)×(−3−1)=−8.17. 【答案】x<98【解析】由关于x的不等式(2a−b)x+a−2b>0,解得x<2b−a2a−b 或x>2b−a2a−b,∵x<107,∴2a−b<0,即2a<b,∴2b−a2a−b =107,20a−10b=14b−7a,∴27a=24b,即b=98a,∵2a<b,即2a<98a,∴a<0,∵ax>b,且a<0,解得:x<98.18. 【答案】1<x+y<5【解析】∵x−y=3,∴x=y+3,又∵x>2,∴y+3>2,∴y>−1,又∵y<1,∴−1<y<1, ⋯⋯①同理得:2<x<4, ⋯⋯②由①+②得:−1+2<y+x<1+4,∴x+y的取值范围是1<x+y<5.三、解答题19. 【答案】∵120÷3=40,120÷4=30,180÷3=60,180÷4=45,∴若每天服用3次,则所需剂量为40∼60mg之间,若每天服用4次,则所需剂量为30∼45mg之间,∴ 一次服用这种药的剂量为 30∼60 mg 之间.20. 【答案】去括号,得3x −2≥4+6x.移项,得3x −6x ≥4+2.合并同类项,得−3x ≥6.化系数为 1,得x ≤−2.表示在数轴上为:21. 【答案】(1) 解方程组 {x −y =1+3a,x +y =−7−a,得 {x =−3+a,y =−4−2a.∵ 方程组 {x −y =1+3a,x +y =−7−a中 x 为非正数,y 为负数,∴{−3+a ≤0,−4−2a <0,解得:−2<a ≤3.(2) 2ax +x >2a +1, (2a +1)x >2a +1,∵ 要使不等式 2ax +x >2a +1 的解集为 x <1,必须 2a +1<0,解得:a <−0.5,∵−2<a ≤3,a 为整数, ∴a =−1,∴ 当 a 为 −1 时,不等式 2ax +x >2a +1 的解集为 x <1.22. 【答案】(1) 设安装 1 个小彩灯需要 x 元,安装 1 个大彩灯需要 y 元,根据题意得 {5x +4y =155,7x +6y =225,解得:{x =15,y =20.即:安装 1 个小彩灯需要 15 元,安装 1 个大彩灯需要 20 元. (2) 设安装大彩灯 z 个,则安装小彩灯 (300−z ) 个, 根据题意得:20z +15(300−z )≤5000, 解得:z ≤100.即:最多安装大彩灯 100 个.23. 【答案】去括号,得:5x −10+8≤6x −6+7,移项,得:5x −6x ≤−6+7+10−8, 合并同类项,得:−x ≤3, 系数化为 1,得:x ≥−3,则该不等式的最小整数解为 x =−3,根据题意,将 x =−3 代入方程 3x −ax =−3,得:−9+3a =−3,解得:a =2,则 原式=−∣10−4∣=−6.24. 【答案】(1) 设李大爷一年前买A ,B 两种种兔各 x 只, 则由题意得 x +20=2x −10, 解得 x =30,即一年前李大爷共买了 60 只种兔.(2) 设李大爷卖A 种种兔 y 只,则卖B 种种兔 (30−y ) 只,则由题意得 {y <30−y, ⋯⋯①15y +(30−y )×6≥280, ⋯⋯②解 ① 得 y <15, 解 ② 得 y ≥1009,即1009≤y <15.∵y 是整数, ∴y =12,13,14,即李大爷有三种卖兔方案,方案一:卖A 种种兔 12 只,B 种种兔 18 只;可获利 12×15+18×6=288(元); 方案二:卖A 种种兔 13 只,B 种种兔 17 只;可获利 13×15+17×6=297(元); 方案三:卖A 种种兔 14 只,B 种种兔 16 只;可获利 14×15+16×6=306(元). 显然,方案三获利最大,最大利润为 306 元.25. 【答案】(1) 设A 种型号的衣服进价为 x 元,B 种型号的衣服进价为 y 元,则 {9x +10y =1810,12x +8y =1880,解得 {x =90,y =100.即:A 种型号的衣服进价为 90 元,B 种型号的衣服进价为 100 元. (2) 设B 型号衣服购进 m 件,则A 型号衣服购进 (2m +4) 件,可得:{18(2m +4)+30m ≥699,2m +4≤28,解之得 192≤m ≤12,∵m 为正整数,∴m =10,11,12,则 2m +4=24,26,28, 即:有三种进货方案:方案一:B 型号衣服购进 10 件,A 型号衣服购进 24 件;方案二:B型号衣服购进11件,A型号衣服购进26件;方案三:B型号衣服购进12件,A型号衣服购进28件.。
人教版初中数学七年级下册第9章《不等式与不等式组》测试题及答案
人教版初中数学七年级下册第9章《不等式与不等式组》测试题(一)一、选择题:1,下列各式中,是一元一次不等式的是( ) A.5+4>8 B.2x -1 C.2x ≤5D.1x-3x ≥0 2,已知a<b,则下列不等式中不正确的是( )A. 4a<4bB. a+4<b+4C. -4a<-4bD. a-4<b-4 3,下列数中:76, 73,79, 80, 74.9, 75.1, 90, 60,是不等式23x >50的解的有( ) A.5个 B.6个 C.7个 D.8个 4,若t>0,那么12a+12t 与a 的大小关系是( ) A .2a +t>2a B .12a+t>12a C .12a+t ≥12a D .无法确定5,如图,a 、b 、c 分别表示苹果、梨、桃子的质量.同类水果质量相等 则下列关系正确的是( )A .a >c >bB .b >a >cC .a >b >cD .c >a >b6,若a<0关于x 的不等式ax+1>0的解集是( )A .x>1a B .x<1a C .x>-1a D .x<-1a7,不等式组31027x x +>⎧⎨<⎩的整数解的个数是( )A .1个B .2个C .3个D .4个8,从甲地到乙地有16千米,某人以4千米/时~8千米/时的速度由甲到乙,则他用的时间大约为( )A 1小时~2小时 B2小时~3小时 C3小时~4小时 D2小时~4小时9,某种出租车的收费标准:起步价7元(即行使距离不超过3千米都须付7元车费),超过3千米以后,每增加1千米,加收2.4元(不足1千米按1千米计).某人乘这种出租车从甲地到乙地共付车费19元,那么甲地到乙地路程的最大值是( )A .5千米 B.7千米 C.8千米 D.15千米 10,在方程组2122x y mx y +=-⎧⎨+=⎩中若未知数x 、y 满足x+y ≥0,则m 的取值范围在数轴上表示应是( )二、填空题11,不等号填空:若a<b<0 ,则5a -5b -;a1 b 1;12-a 12-b .12,满足2n-1>1-3n 的最小整数值是________.13,若不等式ax+b<0的解集是x>-1,则a 、b 应满足的条件有______.14,满足不等式组122113x x x -⎧>-⎪⎪⎨-⎪-≥⎪⎩的整数x 为__________.15,若|12x --5|=5-12x -,则x 的取值范围是________.16,某种品牌的八宝粥,外包装标明:净含量为330g ±10g ,表明了这罐八宝粥的净含量x 的范围是 .17,小芳上午10时开始以每小时4km 的速度从甲地赶往乙地,•到达时已超过下午1时,但不到1时45分,则甲、乙两地距离的范围是_________. 18,代数式x-1与x-2的值符号相同,则x 的取值范围________.三、解答题19,解不等式组,并把它的解集在数轴上表示出来.(1)9-4(x-5)<7x+4; (2)0.10.81120.63x x x ++-<-;(3)523(1),317;22x x x x ->+⎧⎪⎨-≤-⎪⎩ (4)6432,2111.32x x x x +≥+⎧⎪+-⎨>+⎪⎩20,代数式213 1--x的值不大于321x-的值,求x的范围21,方程组3,23x yx y a-=⎧⎨+=-⎩的解为负数,求a的范围.22,已知,x满足3351,11.4x xx+>-⎧⎪⎨+>-⎪⎩化简:52++-xx.23,已知│3a+5│+(a-2b+52)2=0,求关于x的不等式3ax-12(x+1)<-4b(x-2)的最小非负整数解.24,是否存在这样的整数m,使方程组24563x y mx y m+=+⎧⎨-=+⎩的解x、y为非负数,若存在,求m•的取值?若不存在,则说明理由.25,有一群猴子,一天结伴去偷桃子.分桃子时,如果每只猴子分3个,那么还剩下59个;如果每个猴子分5个,就都分得桃子,但有一个猴子分得的桃子不够5个.你能求出有几只猴子,几个桃子吗?参考答案一、1,C;2,C;3,A;4,A.解:不等式t>0利用不等式基本性质1,两边都加上12a得12a+t>12a.5,C.6,D.解:不等式ax+1>0,ax>-1,∵a<0,∴x<-1a因此答案应选D.7,D.解:先求不等式组解集-13<x<72,则整数x=0,1,2,3共4个.8,D;9,C.10,D.解:2122x y m x y+=-⎧⎨+=⎩①+②,得3x+3y=3-m,∴x+y=33m-,∵x+y≥0,∴33m-≥0,∴m≤3在数轴上表示3为实心点.射线向左,因此选D.二、11,>、>、<;12,1.解:先求解集n>25,再利用数轴找到最小整数n=1.13,a<0,a=b 解析:ax+b<0,ax<-b,而不等式解集x>-1不等号改变了方向.因此可以确定运用不等式性质3,所以a<0,而-ab=-1,∴b=a.14,-2,-1,0,1 解析:先求不等式组解集-3<x≤1,故整数x=0,1,-1,-2.15,x≤11 解析:∵│a│=-a时a≤0,∴12x--5≤0,解得x≤11.16,320≤x≤340.17,(12~15)km.解:设甲乙两地距离为xkm,依题意可得4×(13-10)<x<4•×(134560-10),即12<x<15.18,x>2或x<1 解析:由已知可得10102020 x xx x->-<⎧⎧⎨⎨->-<⎩⎩或者.三、19,(1)9-4(x-5)<7x+4.解:去括号9-4x+20<7x+4,移项合并11x>25,化系数为1,x>2511.(2)0.10.81120.63x x x++-<-.解:811263x x x++-<-,去分母 3x-(x+8)<6-2(x+1),去括号 3x-x-8<6-2x-2,移项合并 4x<12,化系数为1,x<3.(3)523(1)31722x xxx->+⎧⎪⎨-≤-⎪⎩解:解不等式①得 x>52,解不等式②得 x≤4,∴不等式组的解集52<x ≤4. (4)6432211132x x x x+≥+⎧⎪+-⎨>+⎪⎩解:解不等式①得x ≥-23,解不等式②得x>1,∴不等式组的解集为x>1. 20,57≥x ;21,a<-3;22,7; 23,解:由已知可得535035520212a a ab b ⎧+==-⎧⎪⎪⎪⎨⎨-+=⎪⎪=⎩⎪⎩解得代入不等式得-5x-12(x+1)<-53(x-2),解之得 x>-1,∴最小非负整数解x=0.24,解:24563x y m x y m +=+⎧⎨-=+⎩得11139529m x m y +⎧=⎪⎪⎨-⎪=⎪⎩∵x ,y 为非负数00x y ≥⎧⎨≥⎩∴1113095209m m +⎧≥⎪⎪⎨-⎪≥⎪⎩解得-1311≤m ≤52,∵m 为整数,∴m=-1,0,1,2.答:存在这样的整数m=-1,0,1,2,可使方程24563x y m x y m +=+⎧⎨-=+⎩的解为非负数.点拨:先求到方程组的解,再根据题意设存在使方程组的解00x y ≥⎧⎨≥⎩的m ,•从而建立关于m 为未知数的一元一次不等式组,求解m 的取值范围,选取整数解.25,设有x 只猴子,则有(3x+59)只桃子,根据题意得:0<(3x+59)-5(x-1)<5,解得29.5<x<32,因为x 为整数,所以x=30或x=31,当x=30时,(3x+59)=149,当x=31时,(3x+59)=152.答:有30只猴子,149只桃子或有31只猴子,152只桃子.1. 将不等式组13x x ⎧⎨⎩≥≤的解集在数轴上表示出来,应是 ( )2. 下面给出的不等式组中①23x x >-⎧⎨<⎩②020x x >⎧⎨+>⎩③22124x x x ⎧>+⎪⎨+>⎪⎩④307x x +>⎧⎨<-⎩⑤101x y x +>⎧⎨-<⎩其中是一元一次不等式组的个数是( ) A.2个B.3个C.4个D.5个3. 不等式组24030x x ->⎧⎨->⎩,的解集为( )A.23x << B. 3x > C. 2x <D. 23x x ><-或4. 下列不等式中哪一个不是一元一次不等式( )A.3x >B.1y y -+>C.12x> D.21x >5. 下列关系式是不等式的是( )A.25x += B.2x + C.25x +>D.235+=6. 若使代数式312x -的值在1-和2之间,x 可以取的整数有( ) A.1个B.2个C.3个D.4个7. 不等式组2030x x -<⎧⎨->⎩的正整数解是( )A.0和1 B.2和3 C.1和3 D.1和2 8. 下列选项中,同时适合不等式57x +<和220x +>的数是( )A.3 B.3- C.1- D.19. 不等式211133x ax +-+>的解集是53x <,则a 应满足( ) A.5a > B.5a = C.5a >- D.5a =-10. a 是一个整数,比较a 与3a 的大小是( )C1DA3BA.3a a >B.3a a <C.3a a =D.无法确定二、填空题(每题3分,共30分) 11. 不等式(3)1a x ->的解集是13x a <-,则a 的取值范围 . 12. 某商品进价是1000元,售价为1500元.为促销,商店决定降价出售,但保证利润率不低于5%,则商店最多降 元出售商品.13. 一个两位数,十位数字与个位数字的和为6,且这个两位数不大于42,则这样的两位数有 ______个. 14. 若a b >,则22____ac bc .15. 关于x 的方程32x k +=的解是非负数,则k 的取值范围是 . 16. 若(1)20mm x++>是关于x 的一元一次不等式,则m 的取值是 .17. 关于x 的方程4132x m x -+=-的解是负数,则m 的取值范围 .18. 若0m n <<,则222x m x n x n >⎧⎪>-⎨⎪<⎩的解集为 .19. 不等式15x +<的正整数解是 .20. 不等式组⎩⎨⎧-<+<632a x a x 的解集是32+<a x ,则a 的取值 .三、解答题(21、22每小题8分,23、24第小题10分,共36分) 21. 解不等式5(1)33x x x +->+22. 解不等式组3(2)41214x x x x --⎧⎪⎨-<-⎪⎩≤23. 关于x ,y 的方程组322441x y k x y k +=+⎧⎨+=-⎩的解x ,y 满足x y >,求k 的取值范围.24.有学生若干人,住若干间宿舍,若每间住4人,则有20人无法安排住宿;若每间住8 人,则有一间宿舍不满也不空,问宿舍间数和学生人数分别是多少?25.喷灌是一种先进的田间灌水技术.雾化指标P是它的技术要素之一.当喷嘴的直径d(mm).喷头的工作压强为h(kPa)时.雾化指标P=100hd.如果树喷灌时要求3000≤P≤4000.若d=4mm.求h的范围.四、解答题(本题共2小题,每题12分,共24分)26.某同学在A,B两家超市发现他看中的随身听的单价相同,书包单价也相同,随身听和书包单价之和是452元,且随身听的单价比书包的单价的4倍少8元.(1)求该同学看中的随身听和书包的单价各是多少元?(2)某一天该同学上街,恰好赶上商家促销,超市A所有商品打八折销售,超市B全场购物满100元返购物券30元销售(不足100元不返券,购物券全场通用),但他只带了400元钱,如果他只在一家超市购买看中的这两样商品,你能说明他可以选择哪一家购买吗?若两家都可以选择,在哪一家购买更省钱?27.在“512大地震”灾民安置工作中,某企业接到一批生产甲种板材240002m和乙种板材120002m的任务.(1)已知该企业安排140人生产这两种板材,每人每天能生产甲种板材302m或乙种板材202m .问:应分别安排多少人生产甲种板材和乙种板材,才能确保他们用相同的时间完成各自的生产任务?(2)某灾民安置点计划用该企业生产的这批板材搭建A B ,两种型号的板房共400间,在搭建过程中,按实际需要调运这两种板材.已知建一间A 型板房和一间B 型板房所需板材问:这400间板房最多能安置多少灾民?参考答案:一、选择题:1. B2. B.3. A4. C.5. C.6. B7. D.8. D.9. B.10. D. 二、填空题:11. 3a <. 12. 450元. 13. 4个. 14. ≥. 15. 2k ≤. 16. 1m =.17. 3m <. 18. 无解. 19. 1,2,3. 20..a ≤ -9 三、解不等式(组):21. 2x >-. 22. 312x <≤ 23. 1k > 24.解:设宿舍间数为x ,学生人数为y. 由题意得⎪⎩⎪⎨⎧>--<--+=0)1(88)1(8204x y x y x y解得: 5 < x < 7∵x 是正整数 ∴ x = 6 故y=44 答:宿舍间数为6,学生人数为44 . 24.解:把d=4代入公式P=100h d 中得P=1004h,即P=25h ,又∵3000≤P≤4000,∴3000≤25h≤4000,120≤h≤160,故h 的范围为120~160(kPa )26. (1)随身听的单价为360元,书包单价为92元.(2)在超市A 购买更省钱. 27.(1)设安排x 人生产甲种板材,应安排80人生产甲种板材,60人生产乙种板材.(2)设建造A 型板房m 间,则建造B 型板房为(400)m -间,由题意有:5478(400)240002641(400)12000m m m m +-⎧⎨+-⎩≤≤,.解得300m ≥.又0400m ≤≤,300400m ∴≤≤.这400间板房可安置灾民58(400)33200w m m m =+-=-+. ∴当300m =时,w 取得最大值2300名.答:这400间板房最多能安置灾民2300名.。
七年级数学下册《第九章 不等式与不等式组》单元练习题及答案(人教版)
第 1 页 共 5 页七年级数学下册《第九章 不等式与不等式组》单元练习题及答案(人教版)一、单选题 1.不等式330x -->的解集是( ) A .1x < B .1x <- C .1x > D .1x >-2.已知m n <,则下列不等式一定成立的是( )A .20202020m n ->-B .20202020m n <C .20202020m n +>+D .20202020m n >3.已知实数a ,b ,若a >b ,则下列结论错误的是( )A .a -5>b -5B .3+a >b +3C .5a >5bD .-3a >-3b4.已知a <b,则下列式子正确的是( )A .B .C .D .3a >3b 5.不等式组10{240x x +-><的解集是( ) A .x >-1 B .-1<x <2 C .x <2 D .x <-1或x >26.不等式组1020x x +>⎧⎨-≥⎩的解集在数轴上表示正确的是( ) A .B .C .D .7.如果关于x 的不等式组1x x a >-⎧⎨≤⎩只有3个整数解,那么a 的取值范围是( ) A .3≤a<4B .3<a≤4C .2≤a<3D .2<a≤38.不等式组的最小整数解为( ) A .﹣1 B .0 C .1 D .2 9.不等式组1212x x -≥⎧⎨+>⎩ 的最小正整数解是( ) A .1 B .2 C .3 D .44A.B.C.D.x-4二、填空题第2页共5页第 3 页 共 5 页18.已知不等式组153x a x a <<⎧⎨<<+⎩的解集为a <x <5.则a 的范围是______________.三、解答题 19.解不等式组:343(2)0x x x -<⎧⎨-->⎩.20.解方程组(不等式组).(1)3243x y x y +=⎧⎨-=⎩(2)36021x x +>⎧⎨-≤-⎩.(将不等式组的解集在数轴上表示出来)21.解不等式组211322x x x +≥-⎧⎨-<⎩①②,请按下列步骤完成解答: (1)解不等式①,得______;(2)解不等式②,得______;(3)将不等式①和②的解集在数轴上表示出来;(4)原不等式组的解集为______.第4页共5页参考答案第5页共5页。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
不等式经典应用题专题训练
专题一、分配问题
1.一堆玩具分给若干个小朋友,若每人分3件,则剩余4件,若前面每人分4件,则最后一人得
到的玩具最多3件,问小朋友的人数至少有多少人?
2.解放军某连队在一次执行任务时,准备将战士编成8个组,如果每组人数比预定人数多1名,
那么战士人数将超过100人,则预定每组分配战士的人数要超过多少人?
3.把一些书分给几个学生,如果每人分3本,那么余8本;如果前面的每个学生分5本,那么
最后一人就分不到3本。问这些书有多少本?学生有多少人?
4.将不足40只鸡放入若干个笼中,若每个笼里放4只,则有一只鸡无笼可放;若每个笼里放5只,
则有一笼无鸡可放,且最后一笼不足3只。问有笼多少个?有鸡多少只?
5.一群女生住若干家间宿舍,每间住4人,剩下19人无房住;每间住6人,有一间宿舍住不满。
(1)如果有x间宿舍,那么可以列出关于x的不等式组:
(2)可能有多少间宿舍、多少名学生?你得到几个解?它符合题意吗?
专题二、积分问题
1.某次数学测验共20道题(满分100分)。评分办法是:答对1道给5分,答错1道扣2分,不
答不给分。某学生有1道未答。那么他至少答对几道题才能及格?
2.在一次竞赛中有25道题,每道题目答对得4分,不答或答错倒扣2分,如果要求在本次竞赛中
的得分不底于60分,至少要答对多少道题目?
3.一次知识竞赛共有15道题。竞赛规则是:答对1题记8分,答错1题扣4分,不答记0分。结
果神箭队有2道题没答,飞艇队答了所有的题,两队的成绩都超过了90分,两队分别至少答对了
几道题?
4.在比赛中,每名射手打10枪,每命中一次得5分,每脱靶一次扣1分,得到的分数不少于35分
的射手为优胜者,要成为优胜者,至少要中靶多少次?
5.有红、白颜色的球若干个,已知白球的个数比红球少,但白球的两倍比红球多,若把每一个白球
都记作数2,每一个红球都记作数3,则总数为60,求白球和红球各几个?
专题三、比较问题
1.某校校长暑假将带领该校“三好学生”去三峡旅游,甲旅行社说:如果校长买全票一张,则其余
学生可享受半价优惠;乙旅行社说:包括校长在内全部按全票的6折优惠。已知两家旅行社的全票
价都是240元,至少要多少名学生选甲旅行社比较好?
2.李明有存款600元,王刚有存款2000元,从本月开始李明每月存款500元,王刚每月存款200
元,试问到第几个月,李明的存款能超过王刚的存款。
3.暑假期间,两名家长计划带领若干名学生去旅游,他们联系了报价为每人500元的两家旅行社,
经协商,甲旅行社的优惠条件是:两名家长全额收费,学生都按七折;乙旅行社的优惠条件是:家
长,学生都按八折收费。假设这两位家长至带领多少名学生去旅游,他们应该选择甲旅行社?
专题四、行程问题
1.抗洪抢险,向险段运送物资,共有120公里原路程,需要1小时送到,前半小时已经走了50公
里后,后半小时速度多大才能保证及时送到?
2.爆破施工时,导火索燃烧的速度是0.8cm/s,人跑开的速度是5m/s,为了使点火的战士在施工时
能跑到100m以外的安全地区,导火索至少需要多长?
3.王凯家到学校2.1千米,现在需要在18分钟内走完这段路。已知王凯步行速度为90米/ 分,跑
步速度为210米/分,问王凯至少需要跑几分钟?
4.抗洪抢险,向险段运送物资,共有120公里原路程,需要1小时送到,前半小时已经走了50公
里后,后半小时速度多大才能保证及时送到?
专题五、车费问题
1.出租汽车起价是10元(即行驶路程在5km以内需付10元车费),达到或超过5km后,每增加1km
加价1.2元(不足1km部分按1km计),现在某人乘这种出租 汽车从甲地到乙地支付车费17.2元,从
甲地到乙地的路程超过多少km?
2.某种出租车的收费标准是:起步价7元(即行驶距离不超过3km都需要7元车费),超过3km,
每增加1km,加收2.4元(不足1km按1km计)。某人乘这种出租车从A地到B地共支付车费19
元。设此人从A地到B地经过的路程最多是多少km?
专题六、工程问题
1.一个工程队规定要在6天内完成300土方的工程,第一天完成了60土方,现在要比原计划至少
提前两天完成,则以后平均每天至少要比原计划多完成多少方土?
2 .用每分钟抽1.1吨水的A型抽水机来抽池水,半小时可以抽完;如果改用B型抽水机,估计20
分钟到22分可以抽完。B型抽水机比A型抽水机每分钟约多抽多少吨水?
3.某工人计划在15天里加工408个零件,最初三天中每天加工24个,问以后每天至少要加工多少
个零件,才能在规定的时间内超额完成任务?
4.某车间有组装1200台洗衣机的任务,若最多用8天完成,每天至少要组装多少台?
专题七、浓度问题
1.在1千克含有40克食盐的海水中,在加入食盐,使他成为浓度不底于20%的食盐水,问:至少
加入多少食盐?
2.一种灭虫药粉30千克,含药率是15%,现在要用含药率比较高的同种药粉50千克和它混合,使
混合的含药率大于20%,求所用药粉的含药率的范围。
专题八、增减问题)
1.一根长20cm的弹簧,一端固定,另一端挂物体。在弹簧伸长后的长度不超过30cm的限度内,每
挂1㎏质量的物体,弹簧伸长0.5cm.求弹簧所挂物体的最大质量是多少?
2.几个同学合影,每人交0.70元,一张底片0.68元,扩印一张相片0.5元,每人分一张,将收来
的钱尽量用完,这张照片上的同学至少有多少个?
3.某人点燃一根长度为25㎝的蜡烛,已知蜡烛每小时缩短5㎝,几个小时以后,蜡烛的长度不足
10㎝?
专题九、销售问题
1.商场购进某种商品m件,每件按进价加价30元售出全部商品的65%,然后再降价10%,这样每
件仍可获利18元,又售出全部商品的25%。
(1)试求该商品的进价和第一次的售价;
(2)为了确保这批商品总的利润率不低于25%,剩余商品的售价应不低于多少元?
2.水果店进了某中水果1t,进价是7元/kg。售价定为10元/kg,销售一半以后,为了尽快售完,
准备打折出售。如果要使总利润不低于2000元,那么余下的水果可以按原定价的几折出售?
3.“中秋节”期间苹果很热销,一商家进了一批苹果,进价为每千克1.5元,销售中有6%的苹果损
耗,商家把售价至少定为每kg多少元,才能避免亏本?
4.某电影院暑假向学生优惠开放,每张票2元。另外,每场次还可以售出每张5元的普通票300
张,如果要保持每场次票房收入不低于2000元,那么平均每场次至少应出售学生优惠票多少张?
5.某中学需要刻录一批电脑光盘,若到电脑公司刻录,每张需8元(包括空白光盘费);若学校自
刻,出租用刻录机需120元外,每张光盘还需成本4元(包括空白光盘费)。问刻录这批电脑光盘,
该校如何选择,才能使费用较少?
专题十、数字问题
1.有一个两位数,其十位上的数比个位上的数小2,已知这个两位数大于20且小于40,求这个两
位数。
专题十一、方案选择与设计
1.某厂有甲、乙两种原料配制成某种饮料,已知这两种原料的维生素C含量及购买这两种原料的
价格如下表:
原料
维生素C及价格
甲种原料 乙种原料
维生素C/(单位/千克) 600 100
原料价格/(元/千克) 8 4
现配制这种饮料10千克,要求至少含有4200单位的维生素C,并要求购买甲、乙两种原料的费
用不超过72元,
(1)设需用千克甲种原料,写出x应满足的不等式组。
(2)按上述的条件购买甲种原料应在什么范围之内?
2.红星公司要招聘A、B两个工种的工人150人,A、B工种的工人的月工资分别为600和1000
元,现要求B工种的人数不少于A工种人数的2倍,那么招聘A工种工人多少时,可使每月所付
的工资最少?此时每月工资为多少元?
3.某工厂接受一项生产任务,需要用10米长的铁条作原料。现在需要截取3米长的铁条81根,4
米长的铁条32根,请你帮助设计一下怎样安排截料方案,才能使用掉的10米长的铁条最少?最少
需几根?
4.某校办厂生产了一批新产品,现有两种销售方案,方案一:在这学期开学时售出该批产品,可获
利30000元,然后将该批产品的投入资金和已获利30000元进行再投资,到这学期结束时再投资又
可获利4.8%;方案二:在这学期结结束时售出该批产品,可获利35940元,但要付投入资金的0.2%
作保管费,问:
(1)当该批产品投入资金是多少元时,方案一和方案二的获利是一样的?
(2)按所需投入资金的多少讨论方案一和方案二哪个获利多。
5.某城市平均每天处理垃圾700吨,有甲和乙两个处理厂处理,已知甲每小时可处理垃圾55吨,
需要费用550元,乙厂每小时可处理垃圾45吨,需要费用495员。如果规定该城市每天用于处理
垃圾的费用不得超过7370元,甲厂每天处理垃圾至少要多少吨?