微积分(下册)主要知识点汇总
微积分知识点简单总结

微积分知识点简单总结1. 函数的导数函数的导数描述了函数在某一点处的变化率,可以简单理解为函数的斜率。
导数的定义为函数在某一点处的极限,即$f'(x_0)=\lim_{h\to 0}\frac{f(x_0+h)-f(x_0)}{h}$。
导数的计算可以使用求导法则,包括常数倍法则、幂函数法则、和差法则、乘积法则、商法则等。
2. 高阶导数函数的导数可以进行多次求导,得到的导数称为高阶导数。
高阶导数可以描述函数更加详细的变化情况,例如速度、加速度等概念。
3. 函数的微分微分是导数的一种形式,描述了函数在某一点附近的线性近似。
微分的定义为$dy=f'(x)dx$,可以理解为函数在某一点处的微小改变量。
微分可以用于估计函数的变化,以及在计算积分时的一些技巧和方法中。
4. 不定积分不定积分是积分的一种形式,用于求解函数的原函数。
不定积分的记号为$\intf(x)dx=F(x)+C$,其中$F(x)$为$f(x)$的一个原函数,$C$为积分常数。
不定积分的计算可以使用换元法、分部积分法、有理函数的积分等一系列的积分法则。
5. 定积分定积分是积分的一种形式,用于计算函数在一个区间上的累积变化。
定积分的计算可以使用牛顿-莱布尼茨公式,也可以使用定积分的近似计算法,如矩形法、梯形法、辛普森法等。
6. 微积分基本定理微积分基本定理是微积分的核心定理之一,描述了导数和积分的关系。
第一部分定理称为牛顿-莱布尼茨公式,表明了函数的不定积分可以表示为函数的定积分。
第二部分定理描述了定积分的求导运算,即若函数$f(x)$在区间$[a,b]$上连续,则$\int_{a}^{b}f(x)dx=F(b)-F(a)$,其中$F(x)$为$f(x)$的一个原函数。
7. 微分方程微分方程是微积分的一个重要应用,描述了含有未知函数及其导数的方程。
微分方程可以是常微分方程或偏微分方程,按照阶数、线性性质、系数等分类。
微分方程在物理、工程、经济等领域有着广泛的应用,例如描述物体的运动、电路的动态行为、人口增长等问题。
微积分知识点总结 pdf

微积分知识点总结
微积分知识点总结如下:
1.极限:极限是微积分的基础,描述函数在某个点附近的趋势。
极限有多种计算方法,包括直接代入法、因式分解法、有理化法、夹逼定理等。
2.导数:导数表示函数在某一点处的变化率或斜率。
导数的计算方法有定义法、四则运算法则、链式法则、乘积法则、商法则等。
3.积分:积分表示函数在某个区间上的累积量或面积。
定积分等于被积函数在该区间上与x轴围成的面积。
积分的计算方法有反导数法、换元法、分部法、定积分性质等。
4.无穷级数:无穷级数表示无穷多项相加的表达式。
它可以分为收敛和发散两种类型,收敛级数有有限或无限的和,而发散级数的和是无穷大。
5.微分学:微分学是微积分的重要组成部分,包括函数的微分、微分法则、微分的应用等。
6.积分学:积分学是微积分的另一个重要部分,包括定积分、不定积分、积分的应用等。
7.多元函数微积分:多元函数微积分包括多元函数的极限、连续性、偏导数、全微分、方向导数等,以及多元函数的积分和重积分等。
8.微分方程:微分方程是描述变量之间依赖关系的数学模型,包括一阶微分方程、高阶微分方程、线性微分方程和非线性微分方程等。
9.泰勒公式与麦克劳林公式:泰勒公式是一个将一个函数展开成无穷级数的公式,而麦克劳林公式则是泰勒公式的特殊形式。
10.幂级数与傅里叶级数:幂级数是一种无穷级数,可以用来展开函数;傅里叶
级数则是将一个函数展开成正弦和余弦函数的无穷级数。
微积分(下册)主要知识点汇总

一、第一换元积分法(凑微分法)C x F C u F du u g dx x x g +=+=='⎰⎰)]([)()()()]([ϕϕϕ.二、常用凑微分公式三、第二换元法C x F C t F dt t t f dx x f +=+='=⎰⎰)]([)()()]([)(ψϕϕ,注: 以上几例所使用的均为三角代换, 三角代换的目的是化掉根式, 其一般规律如下:当被积函数中含有a) ,22x a - 可令 ;sin t a x = b) ,22a x + 可令 ;tan t a x = c),22a x - 可令 .sec t a x =当有理分式函数中分母的阶较高时, 常采用倒代换tx 1=.四、积分表续 4.3分部积分法xu x u x u x u x u x u a u e u x u x u b ax u x d x f dx xx f x d x f dx xx f x d x f xdx x f x d x f xdx x f x d x f xdx x f x d x f xdx x f da a f a dx a a f de e f dx e e f x d x f dx xx f x d x f dx x x f a b ax d b axf a dx b ax f xx xx x x xx x x arcsin arctan cot tan cos sin ln )(arcsin )(arcsin 11)(arcsin .11)(arctan )(arctan 11)(arctan .10cot )(cot csc )(cot .9tan )(tan sec )(tan .8cos )(cos sin )(cos .7sin )(sin cos )(sin .6)(ln 1)(.5)()(..4)(ln )(ln 1)(ln .3)0()()(1)(.2)0()()(1)(.1法分积元换一第换元公式积分类型22221==========+=-=-=+-==-=⋅=⋅=⋅=⋅=⋅≠=≠++=+⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰-μμμμμμμ分部积分公式:⎰⎰-=vdu uv udv (3.1) ⎰⎰'-='vdx u uv dx v u (3.2)分部积分法实质上就是求两函数乘积的导数(或微分)的逆运算. 一般地, 下列类型的被积函数常考虑应用分部积分法(其中m , n 都是正整数)..arctan arccos arcsin )(ln cos sin cos sin 等mx x mxx mxx x x e x mx e mx e mx x mx x n n n n mx n nx nx n n5.1定积分的概念 5.2定积分的性质两点补充规定:(a) 当b a =时, ;0)(=⎰badx x f (b) 当b a >时,⎰⎰-=abbadx x f dx x f )()(.性质1 .)()()]()([⎰⎰⎰±=±bababadx x g dx x f dx x g x f性质2 ,)()(⎰⎰=baba dx x f k dx x kf (k 为常数).性质3⎰⎰⎰+=bccab a dx x f dx x f dx x f )()()(.性质4 .1a b dx dx ba ba-==⋅⎰⎰性质5 若在区间],[b a 上有),()(x g x f ≤ 则,)()(⎰⎰≤babadx x g dx x f ).(b a <推论1 若在区间],[b a 上,0)(≥x f 则 ,0)(≥⎰badx x f ).(b a <推论2 ).(|)(|)(b a dxx f dx x f baba<≤⎰⎰性质6 (估值定理)设M 及m 分别是函数)(x f 在区间],[b a 上的最大值及最小值,则).()()(a b M dx x f a b m ba-≤≤-⎰性质7 (定积分中值定理) 如果函数)(x f 在闭区间],[b a 上连续,则在],[b a 上至少存在一个点ξ, 使).(),)(()(b a a b f dx x f ba≤≤-=⎰ξξ5.3微积分的基本公式 一、引例二、积分上限的函数及其导数:⎰=Φxadt t f x )()(定理2 若函数)(x f 在区间],[b a 上连续,则函数⎰=Φxadt t f x )()(就是)(x f 在],[b a 上的一个原函数. 三、牛顿—莱布尼兹公式定理3 若函数)(x F 是连续函数)(x f 在区间],[b a 上的一个原函数,则)()()(a F b F dx x f ba-=⎰. (3.6)公式(3.4)称为牛顿—莱布尼茨公式.5.4定积分的换元法积分法和分部积分法 一、定积分换元积分法定理1 设函数)(x f 在闭区间],[b a 上连续,函数)(t x ϕ=满足条件: (1),)(,)(b a ==βϕαϕ且b t a ≤≤)(ϕ;(2))(t ϕ在],[βα(或],[αβ)上具有连续导数,则有⎰⎰'=βαϕϕdt t t f dx x f ba)()]([)(. (4.1)公式(4.1)称为定积分的换元公式.定积分的换元公式与不定积分的换元公式很类似. 但是,在应用定积分的换元公式时应注意以下两点:(1)用)(t x ϕ=把变量x 换成新变量t 时, 积分限也要换成相应于新变量t 的积分限,且上限对应于上限,下限对应于下限;(2) 求出)()]([t t f ϕϕ'的一个原函数)(t Φ后,不必象计算不定积分那样再把)(t Φ变换成原变量x 的函数,而只要把新变量t 的上、下限分别代入)(t Φ然后相减就行了. 二、定积分的分部积分法⎰baudv ⎰-=bab a vdu uv ][ 或 ⎰'badx v u ⎰'-=bab a dx u v uv ][5.5广义积分一、无穷限的广义积分)()(|)()(a F F x F dx x f a a-+∞==∞++∞⎰)()(|)()(-∞-==∞-∞-⎰F b F x F dx x f b b)()(|)()(-∞-+∞==∞+∞-+∞∞-⎰F F x F dx x f二、无界函数的广义积分⎰⎰++→=ba ba dx x f dx x f εε)(lim )(0.)(lim)(0⎰⎰-+→=εεb aba dx x f dx x f5.6定积分的几何应用一、微元法定积分的所有应用问题,一般总可按“分割、求和、取极限”三个步骤把所求的量表示为定积分的形式.可以抽象出在应用学科中广泛采用的将所求量U (总量)表示为定积分的方法——微元法,这个方法的主要步骤如下:(1) 由分割写出微元 根据具体问题,选取一个积分变量,例如x 为积分变量,并确定它的变化区间],[b a ,任取],[b a 的一个区间微元],[dx x x +,求出相应于这个区间微元上部分量U ∆的近似值,即求出所求总量U 的微元 dx x f dU )(=;(2) 由微元写出积分 根据dx x f dU )(=写出表示总量U 的定积分⎰⎰==bab adx x f dU U )(微元法在几何学、物理学、经济学、社会学等应用领域中具有广泛的应用,本节和下一节主要介绍微元法在几何学与经济学中的应用.应用微元法解决实际问题时,应注意如下两点:(1) 所求总量U 关于区间],[b a 应具有可加性,即如果把区间],[b a 分成许多部分区间, 则U 相应地分成许多部分量, 而U 等于所有部分量U ∆之和. 这一要求是由定积分概念本身所决定的;(2) 使用微元法的关键是正确给出部分量U ∆的近似表达式dx x f )(,即使得U dU dx x f ∆≈=)(. 在通常情况下,要检验dx x f U )(-∆是否为dx 的高阶无穷小并非易事,因此,在实际应用要注意dx x f dU )(=的合理性. 二、平面图形的面积(1)直角坐标系下平面图形的面积 (2)极坐标系下平面图形的面积曲边扇形的面积微元 θθd r dA 2)]([21=所求曲边扇形的面积 .)]([212θθϕβαd A ⎰=三、旋转体:由一个平面图形绕这平面内一条直线旋转一周而成的立体称为旋转体. 这条直线称为旋转轴.旋转体的体积微元 ,)]([2dx x f dV π=所求旋转体的体积 .)]([2⎰=badx x f V π四、平行截面面积为已知的立体的体积:如果一个立体不是旋转体,但却知道该立体上垂直于一定轴的各个截面面积,那么,这个立体的体积也可用定积分来计算.体积微元 ,)(dx x A dV = 所求立体的体积 .)(⎰=ba dx x A V5.7积分在经济分析的应用6.1空间解析几何简介 一、空间直角坐标系在平面解析几何中,我们建立了平面直角坐标系,并通过平面直角坐标系,把平面上的点与有序数组(即点的坐标),(y x )对应起来. 同样,为了把空间的任一点与有序数组对应起来,我们来建立空间直角坐标系.过空间一定点O , 作三条相互垂直的数轴, 依次记为x 轴(横轴)、y 轴(纵轴)、z 轴(竖轴),统称为坐标轴. 它们构成一个空间直角坐标系Oxyz (图6-1-1). 空间直角坐标系有右手系和左手系两种. 我们通常采用右手系.二、空间两点间的距离.)()()(||21221221221z z y y x x M M -+-+-=三曲面及其方程定义1在空间直角坐标系中,如果曲面S 上任一点坐标都满足方程0),,(=z y x F ,而不在曲面S 上的任何点的坐标都不满足该方程,则方程0),,(=z y x F 称为曲面S 的方程, 而曲面S 就称为方程0),,(=z y x F 的图形空间曲面研究的两个基本问题是:(1) 已知曲面上的点所满足的几何条件,建立曲面的方程; (2) 已知曲面方程,研究曲面的几何形状. 平面平面是空间中最简单而且最重要的曲面. 可以证明空间中任一平面都可以用三元一次方程0=+++D Cz By Ax (1.3)来表示,反之亦然. 其中A 、B 、C 、D 是不全为零常数. 方程(1.3)称为平面的一般方程.柱面定义2 平行于某定直线并沿定曲线C 移动的直线L 所形成的轨迹称为柱面. 这条定曲线C 称为柱面的准线, 动直线L 称为柱面的母线.二次曲面在空间直角坐标系中,我们采用一系列平行于坐标面的平面去截割曲面,从而得到平面与曲面一系列的交线(即截痕),通过综合分析这些截痕的形状和性质来认识曲面形状的全貌. 这种研究曲面的方法称为平面截割法,简称为截痕法.椭球面 1222222=++c z b y a x )0,0,0(>>>c b a (1.4)椭圆抛物面 q y p x z 2222+=(同号与q p ) 双曲抛物面 z qy p x =+-2222 ( p 与q 同号) 单叶双曲面 1222222=-+c z b y a x )0,0,0(>>>c b a双叶双曲面 1222222-=+-cz b y a x )0,0,0(>>>c b a二次锥面 0222222=-+cz b y a x )0,0,0(>>>c b a6.2多元函数的基本概念一、平面区域的概念:内点、外点、边界点、开集、连通集、区域、闭区域 二、二元函数的概念定义1 设D 是平面上的一个非空点集,如果对于D 内的任一点),(y x ,按照某种法则f ,都有唯一确定的实数z 与之对应,则称f 是D 上的二元函数,它在),(y x 处的函数值记为),(y x f ,即),(y x f z =,其中x ,y 称为自变量, z 称为因变量. 点集D 称为该函数的定义域,数集}),(),,(|{D y x y x f z z ∈=称为该函数的值域.类似地,可定义三元及三元以上函数. 当2≥n 时, n 元函数统称为多元函数. 二元函数的几何意义三、二元函数的极限定义2 设函数),(y x f z =在点),(000y x P 的某一去心邻域内有定义,如果当点),(y x P 无限趋于点),(000y x P 时,函数),(y x f 无限趋于一个常数A ,则称A 为函数),(y x f z =当),(y x ),(00y x →时的极限. 记为A y x f y y x x =→→),(lim 00.或 A y x f →),( (),(),(00y x y x →) 也记作A P f P P =→)(lim 0或 A P f →)( )(0P P →二元函数的极限与一元函数的极限具有相同的性质和运算法则,在此不再详述. 为了区别于一元函数的极限,我们称二元函数的极限为二重极限.四、二元函数的连续性定义3 设二元函数),(y x f z =在点),(00y x 的某一邻域内有定义,如果),(),(lim 0000y x f y x f y y x x =→→,则称),(y x f z =在点),(00y x 处连续. 如果函数),(y x f z =在点),(00y x 处不连续,则称函数),(y x f z =在),(00y x 处间断.与一元函数类似,二元连续函数经过四则运算和复合运算后仍为二元连续函数. 由x 和y 的基本初等函数经过有限次的四则运算和复合所构成的可用一个式子表示的二元函数称为二元初等函数. 一切二元初等函数在其定义区域内是连续的. 这里定义区域是指包含在定义域内的区域或闭区域. 利用这个结论,当要求某个二元初等函数在其定义区域内一点的极限时,只要算出函数在该点的函数值即可.特别地,在有界闭区域D 上连续的二元函数也有类似于一元连续函数在闭区间上所满足的定理. 下面我们不加证明地列出这些定理.定理1(最大值和最小值定理) 在有界闭区域D 上的二元连续函数, 在D 上至少取得它的最大值和最小值各一次.定理2(有界性定理)在有界闭区域D 上的二元连续函数在D 上一定有界.定理3(介值定理)在有界闭区域D 上的二元连续函数, 若在D 上取得两个不同的函数值, 则它在D 上取得介于这两值之间的任何值至少一次. 6.3偏导数一、偏导数的定义及其计算法定义1 设函数),(y x f z =在点),(00y x 的某一邻域内有定义, 当y 固定在0y 而x 在0x 处有增量x ∆时, 相应地函数有增量),,(),(0000y x f y x x f -∆+如果xy x f y x x f x ∆-∆+→∆),(),(lim00000存在, 则称此极限为函数),(y x f z =在点),(00y x 处对x 的偏导数, 记为).,(,,00000000y x f z xf xz x y y x x xy y x x y y x x 或======∂∂∂∂例如,有),(00y x f x xy x f y x x f x ∆-∆+=→∆),(),(lim00000.类似地,函数),(y x f z =在点),(00y x 处对y 的偏导数为yy x f y y x f y ∆-∆+→∆),(),(lim00000,记为).,(,,00000000y x f z yfy z y y y x x yy y x x y y x x 或======∂∂∂∂上述定义表明,在求多元函数对某个自变量的偏导数时, 只需把其余自变量看作常数,然后直接利用一元函数的求导公式及复合函数求导法则来计算之. 二、关于多元函数的偏导数,补充以下几点说明:(1)对一元函数而言,导数dxdy可看作函数的微分dy 与自变量的微分dx 的商. 但偏导数的记号xu∂∂是一个整体. (2)与一元函数类似,对于分段函数在分段点的偏导数要利用偏导数的定义来求.(3)在一元函数微分学中,我们知道,如果函数在某点存在导数,则它在该点必定连续. 但对多元函数而言,即使函数的各个偏导数存在,也不能保证函数在该点连续.例如,二元函数⎪⎩⎪⎨⎧=≠+=)0,0(),(,0)0,0(),(,),(22y x y x y x xyy x f 在点)0,0(的偏导数为,00lim )0,0()0,0(lim)0,0(00=∆=∆-∆+=→∆→∆x xf x f f x x x .00lim )0,0()0,0(lim)0,0(00=∆=∆-∆+=→∆→∆yy f y f f x y y 但从上节例5已经知道这函数在点)0,0(处不连续.三、偏导数的几何意义设曲面的方程为),(y x f z =,)),(,,(00000y x f y x M 是该曲面上一点,过点0M 作平面0y y =,截此曲面得一条曲线,其方程为⎩⎨⎧==00),(y y y x f z 则偏导数),(00y x f x 表示上述曲线在点0M 处的切线x T M 0对x 轴正向的斜率(图6-3-1). 同理,偏导数),(00y x f y 就是曲面被平面0x x =所截得的曲线在点0M 处的切线y T M 0对y 轴正向的斜率.四、偏导数的经济意义设某产品的需求量),,(y p Q Q = 其中p 为该产品的价格, y 为消费者收入. 记需求量Q 对于价格p 、消费者收入y 的偏改变量分别为),,(),(y p Q y p p Q Q p -∆+=∆和 ).,(),(y p Q y y p Q Q y -∆+=∆ 易见,pQ p ∆∆表示Q 对价格p 由p 变到p p ∆+的平均变化率. 而pQ p Qp p ∆∆=∂∂→∆0lim 表示当价格为p 、消费者收入为y 时, Q 对于p 的变化率. 称Qp p Q pp Q Q E p p p ⋅∂∂-=∆∆=→∆//lim为需求Q 对价格p 的偏弹性. 同理,yQ y ∆∆表示Q 对收入y 由y 变到y y ∆+的平均变化率. 而yQ y Qy y ∆∆=∂∂→∆0lim 表示当价格p 、消费者收入为y 时, Q 对于y 的变化率. 称 Qy y Q yy Q Q E y y y ⋅∂∂-=∆∆=→∆//lim为需求Q 对收入y 的偏弹性.五、科布-道格拉斯生产函数在商业与经济中经常考虑的一个生产模型是科布-道格拉斯生产函数100,),(1<<>=-a c ycx y x p aa且,其中p 是由x 个人力单位和y 个资本单位生产处的产品数量(资本是机器、场地、生产工具和其它用品的成本)。
微积分下册主要知识点汇总

vduuvudv (3.1)
vdxuuvdxvu (3.2)
(或微分)的逆运算. 一般地, 下列类型的被
(其中m, n都是正整数).
arctanarccosarcsin)(lncossincossin等mxxmxxmxxxxexmxemxemxxmxxnnnnmxnnxnxnn
:
已知曲面上的点所满足的几何条件,建立曲面的方程;
已知曲面方程,研究曲面的几何形状.
. 可以证明空间中任一平面都可以用三元一次
DCzByAx
(1.3)
. 其中A、B、C、D是不全为零常数. 方程(1.3)称为平面的一般方程.
2 平行于某定直线并沿定曲线C移动的直线L所形成的轨迹称为柱面. 这条定曲
定积分的概念
定积分的性质
(a) 当ba时, ;0)(b
dxxf (b) 当ba时, abbadxxfdxxf)()(.
1
)()()]()([b
babadxxgdxxfdxxgxf
2 ,)()(b
badxxfkdxxkf (k为常数).
3 b
cabadxxfdxxfdxxf)()()(.
1 设函数)(xf在闭区间],[ba上连续,函数)(tx满足条件:
1),)(,)(ba 且bta)(;
2))(t在],[(或],[)上具有连续导数,则有
ttfdxxfb
)()]([)(. (4.1)
(4.1)称为定积分的换元公式.
. 但是,在应用定积分的换元公式时应
1)用)(tx把变量x换成新变量t时, 积分限也要换成相应于新变量t的积分限,且
),(),(lim00000,
).,(,,
【知识】微积分知识点概要

【关键字】知识微积分 (知识点概要)第一章函数、极限与连续1.1函数定义与符号1.2极限概念与运算法则1.3求极限的方法1.4函数的连续性1.1函数的定义(P1)1函数的定义1.若变量x、y之间存在着确定的对应关系,即当x的值给定时,唯一y值随之也就确定,则称y是x的函数,记为y=f(x)。
2.确定函数有两个要素:函数的定义域和对应关系。
例如:y=lgx2 与y =2lgx 就不是相同的函数,因为它们的定义域不同。
2函数记号一旦在问题中设定函数y=f(x),记号“f”就是表示确定的对应规则,f(3)就是表示按此对应规则在x=3时所对应的函数值y等。
3初等函数(P6)称幂函数xk(k为常数),指数函数ax ,对数函数logax (a为常数,a﹥0,a≠1)三角函数及反三角函数为基本初等函数。
凡由基本初等函数经有限次加、减、乘、除及有限次复合且能用一个式子表达的函数,称为初等函数。
4函数的简单性质(1)有界性:(P5)对于函数f(x),若存在常数M、m对定义域内所有xf(x)≤M 称f(x)有上界f(x)≥m 称f(x)有下界,既有上界又有下界简称有界。
(2)奇偶性:(P3)若函数f(x)的定义域关于x=0的对称区间,又对于定义域内的任意x均有f(-x)=f(x) 则称f(x)为偶函数。
f(-x)=-f(x) 则称f(x)为奇函数。
(3)单调性:(P4)若函数f(x)在[a、b]上有定义对∀x∊[a、b]x1﹤x2 时f(x1)≤f(x2) f(x) 在[a、b]上↗f(x1)≥f(x2) f(x) 在[a、b]上↘(4)周期性:(P5)若存在常数a(a≠0),使对任意x且有f(x)= f(x+a)则称f(x)为周期函数,称常数a 为f(x)的周期。
1.2极限概念与运算法则1极限的直观定义(P11)当一个变量f(x)在x→a的变化过程中变化趋势是无限地接近于一个常数b,则称变量f(x)在x→a的过程中极限存在。
微积分下册知识点

微积分下册知识点第一章 空间解析几何与向量代数 (一) 向量及其线性运算1、 向量,向量相等,单位向量,零向量,向量平行、共线、共面;2、 线性运算:加减法、数乘;3、 空间直角坐标系:坐标轴、坐标面、卦限,向量的坐标分解式;4、 利用坐标做向量的运算:设),,(z y x a a a a =,),,(z y x b b b b = ,则),,(z z y y x x b a b a b a b a ±±±=±,),,(z y x a a a a λλλλ=;5、 向量的模、方向角、投影:1) 向量的模:222z y x r ++= ;2) 两点间的距离公式:212212212)()()(z z y y x x B A -+-+-=3) 方向角:非零向量与三个坐标轴的正向的夹角γβα,,4) 方向余弦:rzr y r x ===γβαcos ,cos ,cos 1cos cos cos 222=++γβα5) 投影:ϕcos Pr a a j u =,其中ϕ为向量a 与u 的夹角;(二) 数量积,向量积1、 数量积:θcos b a b a=⋅12a a a =⋅2⇔⊥b a 0=⋅b az z y y x x b a b a b a b a ++=⋅2、 向量积:b a c⨯=大小:θsin b a ,方向:c b a,,符合右手规则10 =⨯a a 2b a //⇔0 =⨯b azy x zy x b b b a a a kj i b a=⨯运算律:反交换律 b a a b⨯-=⨯(三) 曲面及其方程 1、 曲面方程的概念:0),,(:=z y x f S2、 旋转曲面:yoz 面上曲线0),(:=z y f C ,绕y 轴旋转一周:0),(22=+±z x y f 绕z 轴旋转一周:0),(22=+±z y x f3、 柱面:),(=y x F 表示母线平行于z轴,准线为⎪⎩⎪⎨⎧==0),(z y x F 的柱面 4、 二次曲面不考1) 椭圆锥面:22222z by a x =+ 2) 椭球面:1222222=++c z b y a x旋转椭球面:1222222=++cz a y a x3) 单叶双曲面:1222222=-+czb y a x4) 双叶双曲面:1222222=--cz b y a x5) 椭圆抛物面:z by a x =+22226) 双曲抛物面马鞍面:z b y a x =-22227) 椭圆柱面:12222=+b y a x 8) 双曲柱面:12222=-b y a x9) 抛物柱面:ay x =2(四) 空间曲线及其方程1、 一般方程:⎪⎩⎪⎨⎧==0),,(0),,(z y x G z y x F2、 参数方程:⎪⎪⎩⎪⎪⎨⎧===)()()(t z z t y y t x x ,如螺旋线:⎪⎪⎩⎪⎪⎨⎧===bt z t a y t a x sin cos3、 空间曲线在坐标面上的投影⎪⎩⎪⎨⎧==0),,(0),,(z y x G z y x F ,消去z ,得到曲线在面xoy 上的投影⎪⎩⎪⎨⎧==00),(z y x H(五) 平面及其方程 1、 点法式方程:0)()()(000=-+-+-z z C y y B x x A法向量:),,(C B A n =,过点),,(000z y x2、 一般式方程:0=+++D Cz By Ax截距式方程:1=++czb y a x 3、 两平面的夹角:),,(1111C B A n = ,),,(2222C B A n = ,222222212121212121cos CB AC B A C C B B A A ++⋅++++=θ⇔∏⊥∏21 0212121=++C C B B A A⇔∏∏21// 212121C C B B A A ==4、 点),,(0000z y x P 到平面0=+++D Cz By Ax 的距离:222000C B A DCz By Ax d +++++=(六) 空间直线及其方程1、 一般式方程:⎪⎩⎪⎨⎧=+++=+++0022221111D z C y B x A D z C y B x A2、 对称式点向式方程:p z z n y y m x x 000-=-=-方向向量:),,(p n m s =,过点),,(000z y x3、 参数式方程:⎪⎪⎩⎪⎪⎨⎧+=+=+=pt z z nty y mt x x 0004、 两直线的夹角:),,(1111p n m s = ,),,(2222p n m s =,222222212121212121cos pn m p n m p p n n m m ++⋅++++=ϕ⇔⊥21L L 0212121=++p p n n m m⇔21//L L212121p p n n m m ==5、 直线与平面的夹角:直线与它在平面上的投影的夹角,222222sin p n m C B A CpBn Am ++⋅++++=ϕ⇔∏//L 0=++Cp Bn Am⇔∏⊥L pCn B m A ==第二章 多元函数微分法及其应用 (一) 基本概念1、 距离,邻域,内点,外点,边界点,聚点,开集,闭集,连通集,区域,闭区域,有界集,无界集;2、 多元函数:),(y x f z =,图形:3、 极限:A y x f y x y x =→),(lim ),(),(00 4、 连续:),(),(lim 00),(),(00y x f y x f y x y x =→5、 偏导数:xy x f y x x f y x f x x ∆-∆+=→∆), (), (lim ),(0000000yy x f y y x f y x f y y ∆-∆+=→∆),(),(lim ),(0000000 6、 方向导数:βαcos cos y fx f l f ∂∂+∂∂=∂∂其中βα,为l的方向角; 7、 梯度:),(y x f z =,则j y x f i y x f y x gradf y x),(),(),(000000+=;8、 全微分:设),(y x f z =,则d d d z z z x y x y∂∂=+∂∂ (二) 性质1、 函数可微,偏导连续,偏导存在,函数连续等概念之间的关系:2、 闭区域上连续函数的性质有界性定理,最大最小值定理,介值定理3、 微分法 1) 定义:u x2) 复合函数求导:链式法则 z若(,),(,),(,)z f u v u u x y v v x y ===,则v yz z u z v x u x v x ∂∂∂∂∂=⋅+⋅∂∂∂∂∂,z z u z vy u y v y∂∂∂∂∂=⋅+⋅∂∂∂∂∂ 充分条件3) 隐函数求导:两边求偏导,然后解方程组 (三) 应用 1、 极值1) 无条件极值:求函数),(y x f z =的极值解方程组 ⎪⎩⎪⎨⎧==00yx f f 求出所有驻点,对于每一个驻点),(00y x ,令),(00y x f A xx =,),(00y x f B xy =,),(00y x f C yy =,① 若02>-B AC ,0>A ,函数有极小值, 若02>-B AC ,0<A ,函数有极大值;② 若02<-B AC ,函数没有极值; ③ 若02=-B AC ,不定;2) 条件极值:求函数),(y x f z =在条件0),(=y x ϕ下的极值 令:),(),(),(y x y x f y x L λϕ+= ———Lagrange 函数解方程组 ⎪⎪⎩⎪⎪⎨⎧===0),(0y x L L y x ϕ2、 几何应用1) 曲线的切线与法平面曲线⎪⎪⎩⎪⎪⎨⎧===Γ)()()(:t z z t y y t x x ,则Γ上一点),,(000z y x M 对应参数为0t 处的切线方程为:)()()(00000t z z z t y y y t x x x '-='-='- 法平面方程为:))(())(())((000000=-'+-'+-'z z t z y y t y x x t x2) 曲面的切平面与法线曲面0),,(:=∑z y x F ,则∑上一点),,(000z y x M 处的切平面方程为:))(,,())(,,())(,,(0=-+-+-z z z y x F y y z y x F x x z y x F zyx法线方程为:),,(),,(),,(000000000000z y x F z z z y x F y y z y x F x x z y x -=-=-第三章 重积分(一) 二重积分一般换元法不考1、 定义:∑⎰⎰=→∆=nk k k k Df y x f 1),(lim d ),(σηξσλ2、 性质:6条3、 几何意义:曲顶柱体的体积;4、 计算:1) 直角坐标⎭⎬⎫⎩⎨⎧≤≤≤≤=b x a x y x y x D )()(),(21ϕϕ,21()()(,)d d d (,)d bx ax Df x y x y x f x y y φφ=⎰⎰⎰⎰⎭⎬⎫⎩⎨⎧≤≤≤≤=d y c y x y y x D )()(),(21φφ,21()()(,)d d d (,)d dy cy Df x y x y y f x y x ϕϕ=⎰⎰⎰⎰2) 极坐标⎭⎬⎫⎩⎨⎧≤≤≤≤=βθαθρρθρθρ)()(),(21D21()()(,)d d (cos ,sin )d Df x y x y d f βρθαρθθρθρθρρ=⎰⎰⎰⎰(二) 三重积分 1、 定义: ∑⎰⎰⎰=→Ω∆=nk k k k kv f v z y x f 1),,(limd ),,(ζηξλ2、 性质:3、 计算:1) 直角坐标⎰⎰⎰⎰⎰⎰=ΩDy x z y x z zz y x f y x v z y x f ),(),(21d ),,(d d d ),,(-------------“先一后二”⎰⎰⎰⎰⎰⎰=ΩZD bayx z y x f z v z y x f d d ),,(d d ),,(-------------“先二后一”2) 柱面坐标⎪⎪⎩⎪⎪⎨⎧===zz y x θρθρsin cos ,(,,)d (cos ,sin ,)d d d f x y z v f z z ρθρθρρθΩΩ=⎰⎰⎰⎰⎰⎰3) 球面坐标⎪⎪⎩⎪⎪⎨⎧===ϕθϕθϕcos sin sin cos sin r z r y r x 2(,,)d (sin cos ,sin sin ,cos )sin d d d f x y z v f r r r rr φθφθφφφθΩΩ=⎰⎰⎰⎰⎰⎰(三) 应用 曲面D y x y x f zS ∈=),(,),(:的面积:y x yz x z A Dd d )()(122⎰⎰∂∂+∂∂+=第五章 曲线积分与曲面积分 (一) 对弧长的曲线积分 1、 定义:1(,)d lim (,)ni i i Li f x y s f s λξη→==⋅∆∑⎰2、 性质: 1[(,)(,)]d (,)d (,)d .LLLf x y x y s f x y sg x y s αβαβ+=+⎰⎰⎰ 212(,)d (,)d (,)d .LL L f x y s f x y s f x y s =+⎰⎰⎰).(21L L L +=3在L上,若),(),(y x g y x f ≤,则(,)d (,)d .LLf x y sg x y s ≤⎰⎰4l s L=⎰d l 为曲线弧 L 的长度3、 计算:设),(y x f 在曲线弧L 上有定义且连续,L 的参数方程为)(),(),(βαψϕ≤≤⎪⎩⎪⎨⎧==t t y t x ,其中)(),(t t ψϕ在],[βα上具有一阶连续导数,且0)()(22≠'+'t t ψϕ,则(,)d [(),( ,()Lf x y s f t t t βαφψαβ=<⎰⎰(二) 对坐标的曲线积分1、 定义:设 L 为xoy 面内从 A 到B 的一条有向光滑弧,函数),(y x P ,),(y x Q 在 L 上有界,定义∑⎰=→∆=nk k k k Lx P x y x P 1),(lim d ),(ηξλ,∑⎰=→∆=nk k k kLy Q y y x Q 1),(lim d ),(ηξλ.向量形式:⎰⎰+=⋅LLy y x Q x y x P r F d ),(d ),(d2、 性质:用-L 表示L 的反向弧 , 则⎰⎰⋅-=⋅-LL r y x F r y x F d ),(d ),( 3、 计算: 设),(,),(y x Q y x P 在有向光滑弧L 上有定义且连续,L 的参数方程为):(),(),(βαψϕ→⎪⎩⎪⎨⎧==t t y t x ,其中)(),(t t ψϕ在],[βα上具有一阶连续导数,且0)()(22≠'+'t t ψϕ,则(,)d (,)d {[(),()]()[(),()LP x y x Q x y y P t t t Q t t βαφψφφψ'+=+⎰⎰4、 两类曲线积分之间的关系:设平面有向曲线弧为⎪⎩⎪⎨⎧==)()( t y t x L ψϕ:,L 上点),(y x 处的切向量的方向角为:βα,,)()()(cos 22t t t ψϕϕα'+''=,)()()(cos 22t t t ψϕψβ'+''=, 则d d (cos cos )d LLP x Q y P Q s αβ+=+⎰⎰.(三) 格林公式1、格林公式:设区域 D 是由分段光滑正向曲线 L 围成,函数),(,),(y x Q y x P 在D 上具有连续一阶偏导数, 则有⎰⎰⎰+=⎪⎪⎭⎫⎝⎛∂∂-∂∂LD y Q x P y x y P x Q d d d d2、G 为一个单连通区域,函数),(,),(y x Q y x P 在G 上具有连续一阶偏导数,则y Px Q ∂∂=∂∂ ⇔曲线积分 d d LP x Q y +⎰在G 内与路径无关 ⇔曲线积分d d 0LP x Q y +=⎰⇔ y y x Q x y x P d ),(d ),(+在G 内为某一个函数),(y x u 的全微分 (四) 对面积的曲面积分1、 定义:设∑为光滑曲面,函数),,(z y x f 是定义在∑上的一个有界函数,定义 i i i i ni S f S z y x f ∆=∑⎰⎰=→∑),,(lim d ),,(10ζηξλ 2、 计算:———“一投二换三代入”),(:y x z z =∑,xy D y x ∈),(,则x z y x z y x z y x f S z y x f y x D yx ,(),(1)],(,,[d ),,(22++=⎰⎰⎰⎰∑(五) 对坐标的曲面积分1、 预备知识:曲面的侧,曲面在平面上的投影,流量2、 定义:设∑为有向光滑曲面,函数),,(),,,(),,,(z y x R z y x Q z y x P 是定义在∑上的有界函数,定义1(,,)d d lim (,,)()ni i i i xy i R x y z x y R S λξηζ∑→==∆∑⎰⎰同理,1(,,)d d lim (,,)()ni i i i yz i P x y z y z P S λξηζ∑→==∆∑⎰⎰1(,,)d d lim (,,)()ni i i i zx i Q x y z z x R S λξηζ∑→==∆∑⎰⎰3、 性质: 121∑+∑=∑,则12d d d d d d d d d d d d d d d d d d P y z Q z x R x yP y z Q z x R x y P y z Q z x R x y ∑∑∑++=+++++⎰⎰⎰⎰⎰⎰2-∑表示与∑取相反侧的有向曲面 , 则d d d d R x y R x y -∑∑=-⎰⎰⎰⎰4、 计算:——“一投二代三定号”),(:y x z z =∑,xy D y x ∈),(,),(y x z z =在xy D 上具有一阶连续偏导数,),,(z y x R 在∑上连续,则(,,)d d [,,(,)]d d x yD R x y z x y R x y z x y x y ∑=±⎰⎰⎰⎰,∑为上侧取“ + ”, ∑为下侧取“ - ”. 5、 两类曲面积分之间的关系:()R Q P y x R x z Q z y P dcos cos cos d d d d d d ⎰⎰⎰⎰∑∑++=++γβα其中γβα,,为有向曲面∑在点),,(z y x 处的法向量的方向角;(六) 高斯公式1、 高斯公式:设空间闭区域Ω由分片光滑的闭曲面∑所围成, ∑的方向取外侧, 函数,,P Q R 在Ω上有连续的一阶偏导数,则有⎰⎰⎰⎰⎰∑Ω++=⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂yx R x z Q z y P z y x z R y Q x P d d d d d d d d d或()⎰⎰⎰⎰⎰∑Ω++=⎪⎪⎭⎫⎝⎛∂∂+∂∂+∂∂S R Q P z y x z R y Q x P d cos cos cos d d d γβα(七) 斯托克斯公式1、 斯托克斯公式:设光滑曲面 ∑ 的边界 Γ是分段光滑曲线, ∑ 的侧与 Γ 的正向符合右手法则,),,(),,,(),,,(z y x R z y x Q z y x P 在包含∑ 在内的一个空间域内具有连续一阶偏导数,则有⎰⎰⎰Γ∑++=⎪⎪⎭⎫ ⎝⎛∂∂-∂∂+⎪⎪⎭⎫ ⎝⎛∂∂-∂∂+⎪⎪⎭⎫ ⎝⎛∂∂-∂∂z R y Q x P y x y P x Q x z x R z P z y z Q y R d d d d d d d d d为便于记忆, 斯托克斯公式还可写作:⎰⎰⎰Γ∑++=∂∂∂∂∂∂z R y Q x P RQ P zy x y x x z z y d d d d d d d d d 第六章 常微分方程1、微分方程的基本概念含未知函数的导数或微分的方程称为微分方程; 未知函数是一元函数的微分方程,称为常微分方程;未知函数是多元函数的微分方程,称为偏微分方程;微分方程中未知函数的导数的最高阶数,称为微分方程的阶.能使微分方程成为恒等式的函数,称为微分方程的解. 如果微分方程的解中含任意常数,且独立的即不可合并而使个数减少的任意常数的个数与微分方程的阶数相同,这样的解为微分方程的通解. 不包含任意常数的解为微分方程特解.2、典型的一阶微分方程可分离变量的微分方程: 对于第1种形式,运用积分方法即可求得变量可分离方程的通解:)()(d )(d )(y g x h dxdyx x f y y g ==或2、 齐次微分方程:代入微分方程即可;3、 一阶线性微分方程型如称为一阶线性微分方程; 其对应的齐次线性微分方程的解为利用常数变异法可得到非齐次的线性微分方程的通解4、 伯努利方程: 于是U 的通解为:5、 全微分方程:7、可降阶的高阶常微分方程 12型的微分方程),(6.4.2 )1()(-=n n y x f y 3型的微分方程),(6.4.3 y y f y '='' 8、线性微分方程解的结构 1函数组的线性无关和线性相关 2线性微分方程的性质和解的结构叠加原理:二个齐次的特解的线性组合仍是其特解;二个线性无关齐次的特解的线性组合是其通解 3刘维尔公式4二阶非齐线性微分方程解的结构特解的求解过程主要是通过常数变异法,求解联立方程的解:⎰⎰=xx f y y g d )(d )( )( )( yxx x y y ψϕ='='或者 ,)( 可将其化为可分离方程中,令在齐次方程xy u x y y =='ϕ , xu y x y u ==,则令,u dx du x dx dy +=.)()1(的方程形如c by ax f y ++=',y b a u '+=').(u f bau =-'原方程可化为)()(x q y x p y =+' d )(。
微积分下册主要知识点汇总

一、第一换元积分法(凑微分法)C x F C u F du u g dx x x g +=+=='⎰⎰)]([)()()()]([ϕϕϕ.二、常用凑微分公式三、第二换元法C x F C t F dt t t f dx x f +=+='=⎰⎰)]([)()()]([)(ψϕϕ,注: 以上几例所使用的均为三角代换, 三角代换的目的是化掉根式, 其一般规律如下:当被积函数中含有a) ,22x a - 可令 ;sin t a x = b) ,22a x + 可令 ;tan t a x = c),22a x - 可令 .sec t a x =当有理分式函数中分母的阶较高时, 常采用倒代换tx 1=.四、积分表续 4.3分部积分法xu x u x u x u x u x u a u e u x u x u b ax u x d x f dx x x f x d x f dx xx f x d x f xdx x f x d x f xdx x f x d x f xdx x f x d x f xdx x f da a f a dx a a f de e f dx e e f x d x f dx xx f x d x f dx x x f a b ax d b axf a dx b ax f xx xx x x xx x x arcsin arctan cot tan cos sin ln )(arcsin )(arcsin 11)(arcsin .11)(arctan )(arctan 11)(arctan .10cot )(cot csc )(cot .9tan )(tan sec )(tan .8cos )(cos sin )(cos .7sin )(sin cos )(sin .6)(ln 1)(.5)()(..4)(ln )(ln 1)(ln .3)0()()(1)(.2)0()()(1)(.1法分积元换一第换元公式积分类型22221==========+=-=-=+-==-=⋅=⋅=⋅=⋅=⋅≠=≠++=+⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰-μμμμμμμ分部积分公式: ⎰⎰-=vdu uv udv (3.1)⎰⎰'-='vdx u uv dx v u (3.2)分部积分法实质上就是求两函数乘积的导数(或微分)的逆运算. 一般地, 下列类型的被积函数常考虑应用分部积分法(其中m , n 都是正整数)..arctan arccos arcsin )(ln cos sin cos sin 等mx x mxx mxx x x e x mx e mx e mx x mx x n n n n mx n nx nx n n5.1定积分的概念 5.2定积分的性质两点补充规定:(a) 当b a =时, ;0)(=⎰badx x f (b) 当b a >时,⎰⎰-=abbadx x f dx x f )()(.性质1 .)()()]()([⎰⎰⎰±=±bababadx x g dx x f dx x g x f性质2 ,)()(⎰⎰=baba dx x f k dx x kf (k 为常数).性质3⎰⎰⎰+=bccab a dx x f dx x f dx x f )()()(.性质4 .1a b dx dx baba-==⋅⎰⎰性质5 若在区间],[b a 上有),()(x g x f ≤ 则,)()(⎰⎰≤babadx x g dx x f ).(b a <推论1 若在区间],[b a 上,0)(≥x f 则 ,0)(≥⎰badx x f ).(b a <推论2).(|)(|)(b a dxx f dx x f baba<≤⎰⎰性质6 (估值定理)设M 及m 分别是函数)(x f 在区间],[b a 上的最大值及最小值,则).()()(a b M dx x f a b m ba-≤≤-⎰性质7 (定积分中值定理) 如果函数)(x f 在闭区间],[b a 上连续,则在],[b a 上至少存在一个点ξ, 使).(),)(()(b a a b f dx x f ba≤≤-=⎰ξξ5.3微积分的基本公式 一、引例二、积分上限的函数及其导数:⎰=Φxadt t f x )()(定理2 若函数)(x f 在区间],[b a 上连续,则函数⎰=Φxadt t f x )()(就是)(x f 在],[b a 上的一个原函数.三、牛顿—莱布尼兹公式定理3 若函数)(x F 是连续函数)(x f 在区间],[b a 上的一个原函数,则)()()(a F b F dx x f ba-=⎰. (3.6)公式(3.4)称为牛顿—莱布尼茨公式.5.4定积分的换元法积分法和分部积分法 一、定积分换元积分法定理1 设函数)(x f 在闭区间],[b a 上连续,函数)(t x ϕ=满足条件: (1),)(,)(b a ==βϕαϕ 且b t a ≤≤)(ϕ; (2))(t ϕ在],[βα(或],[αβ)上具有连续导数,则有⎰⎰'=βαϕϕdt t t f dx x f ba)()]([)(. (4.1)公式(4.1)称为定积分的换元公式.定积分的换元公式与不定积分的换元公式很类似. 但是,在应用定积分的换元公式时应注意以下两点:(1)用)(t x ϕ=把变量x 换成新变量t 时, 积分限也要换成相应于新变量t 的积分限,且上限对应于上限,下限对应于下限;(2) 求出)()]([t t f ϕϕ'的一个原函数)(t Φ后,不必象计算不定积分那样再把)(t Φ变换成原变量x 的函数,而只要把新变量t 的上、下限分别代入)(t Φ然后相减就行了. 二、定积分的分部积分法⎰baudv ⎰-=ba b a vdu uv ][ 或⎰'badx v u ⎰'-=ba b a dx u v uv ][5.5广义积分一、无穷限的广义积分)()(|)()(a F F x F dx x f a a-+∞==∞++∞⎰)()(|)()(-∞-==∞-∞-⎰F b F x F dx x f b b)()(|)()(-∞-+∞==∞+∞-+∞∞-⎰F F x F dx x f二、无界函数的广义积分⎰⎰++→=ba ba dx x f dx x f εε)(lim )(0.)(lim)(0⎰⎰-+→=εεb aba dx x f dx x f5.6定积分的几何应用一、微元法定积分的所有应用问题,一般总可按“分割、求和、取极限”三个步骤把所求的量表示为定积分的形式.可以抽象出在应用学科中广泛采用的将所求量U (总量)表示为定积分的方法——微元法,这个方法的主要步骤如下:(1) 由分割写出微元 根据具体问题,选取一个积分变量,例如x 为积分变量,并确定它的变化区间],[b a ,任取],[b a 的一个区间微元],[dx x x +,求出相应于这个区间微元上部分量U ∆的近似值,即求出所求总量U 的微元 dx x f dU )(=;(2) 由微元写出积分 根据dx x f dU )(=写出表示总量U 的定积分⎰⎰==bab adx x f dU U )(微元法在几何学、物理学、经济学、社会学等应用领域中具有广泛的应用,本节和下一节主要介绍微元法在几何学与经济学中的应用.应用微元法解决实际问题时,应注意如下两点:(1) 所求总量U 关于区间],[b a 应具有可加性,即如果把区间],[b a 分成许多部分区间, 则U 相应地分成许多部分量, 而U 等于所有部分量U ∆之和. 这一要求是由定积分概念本身所决定的;(2) 使用微元法的关键是正确给出部分量U ∆的近似表达式dx x f )(,即使得U dU dx x f ∆≈=)(. 在通常情况下,要检验dx x f U )(-∆是否为dx 的高阶无穷小并非易事,因此,在实际应用要注意dx x f dU )(=的合理性. 二、平面图形的面积(1)直角坐标系下平面图形的面积 (2)极坐标系下平面图形的面积曲边扇形的面积微元 θθd r dA 2)]([21=所求曲边扇形的面积 .)]([212θθϕβαd A ⎰=三、旋转体:由一个平面图形绕这平面内一条直线旋转一周而成的立体称为旋转体. 这条直线称为旋转轴.旋转体的体积微元 ,)]([2dx x f dV π= 所求旋转体的体积 .)]([2⎰=badx x f V π四、平行截面面积为已知的立体的体积:如果一个立体不是旋转体,但却知道该立体上垂直于一定轴的各个截面面积,那么,这个立体的体积也可用定积分来计算.体积微元 ,)(dx x A dV = 所求立体的体积 .)(⎰=badx x A V5.7积分在经济分析的应用6.1空间解析几何简介一、空间直角坐标系在平面解析几何中,我们建立了平面直角坐标系,并通过平面直角坐标系,把平面上的点与有序数组(即点的坐标),(y x )对应起来. 同样,为了把空间的任一点与有序数组对应起来,我们来建立空间直角坐标系.过空间一定点O , 作三条相互垂直的数轴, 依次记为x 轴(横轴)、y 轴(纵轴)、z 轴(竖轴),统称为坐标轴. 它们构成一个空间直角坐标系Oxyz (图6-1-1). 空间直角坐标系有右手系和左手系两种. 我们通常采用右手系.二、空间两点间的距离.)()()(||21221221221z z y y x x M M -+-+-=三曲面及其方程定义1在空间直角坐标系中,如果曲面S 上任一点坐标都满足方程0),,(=z y x F ,而不在曲面S 上的任何点的坐标都不满足该方程,则方程0),,(=z y x F 称为曲面S 的方程, 而曲面S 就称为方程0),,(=z y x F 的图形空间曲面研究的两个基本问题是:(1) 已知曲面上的点所满足的几何条件,建立曲面的方程; (2) 已知曲面方程,研究曲面的几何形状. 平面平面是空间中最简单而且最重要的曲面. 可以证明空间中任一平面都可以用三元一次方程0=+++D Cz By Ax (1.3)来表示,反之亦然. 其中A 、B 、C 、D 是不全为零常数. 方程(1.3)称为平面的一般方程.柱面定义2 平行于某定直线并沿定曲线C 移动的直线L 所形成的轨迹称为柱面. 这条定曲线C 称为柱面的准线, 动直线L 称为柱面的母线.二次曲面在空间直角坐标系中,我们采用一系列平行于坐标面的平面去截割曲面,从而得到平面与曲面一系列的交线(即截痕),通过综合分析这些截痕的形状和性质来认识曲面形状的全貌. 这种研究曲面的方法称为平面截割法,简称为截痕法.椭球面 1222222=++c z b y a x )0,0,0(>>>c b a (1.4)椭圆抛物面 q y p x z 2222+=(同号与q p ) 双曲抛物面 z qy p x =+-2222 ( p 与q 同号)单叶双曲面 1222222=-+c z b y a x )0,0,0(>>>c b a双叶双曲面 1222222-=+-cz b y a x )0,0,0(>>>c b a二次锥面 0222222=-+cz b y a x )0,0,0(>>>c b a6.2多元函数的基本概念一、平面区域的概念:内点、外点、边界点、开集、连通集、区域、闭区域 二、二元函数的概念定义1 设D 是平面上的一个非空点集,如果对于D 内的任一点),(y x ,按照某种法则f ,都有唯一确定的实数z 与之对应,则称f 是D 上的二元函数,它在),(y x 处的函数值记为),(y x f ,即),(y x f z =,其中x ,y 称为自变量, z 称为因变量. 点集D 称为该函数的定义域,数集}),(),,(|{D y x y x f z z ∈=称为该函数的值域.类似地,可定义三元及三元以上函数. 当2≥n 时, n 元函数统称为多元函数. 二元函数的几何意义三、二元函数的极限定义2 设函数),(y x f z =在点),(000y x P 的某一去心邻域内有定义,如果当点),(y x P 无限趋于点),(000y x P 时,函数),(y x f 无限趋于一个常数A ,则称A 为函数),(y x f z =当),(y x ),(00y x →时的极限. 记为A y x f y y x x =→→),(lim 00.或 A y x f →),( (),(),(00y x y x →) 也记作A P f P P =→)(lim 0或 A P f →)( )(0P P →二元函数的极限与一元函数的极限具有相同的性质和运算法则,在此不再详述. 为了区别于一元函数的极限,我们称二元函数的极限为二重极限.四、二元函数的连续性定义3 设二元函数),(y x f z =在点),(00y x 的某一邻域内有定义,如果),(),(lim 0000y x f y x f y y x x =→→,则称),(y x f z =在点),(00y x 处连续. 如果函数),(y x f z =在点),(00y x 处不连续,则称函数),(y x f z =在),(00y x 处间断.与一元函数类似,二元连续函数经过四则运算和复合运算后仍为二元连续函数. 由x 和y 的基本初等函数经过有限次的四则运算和复合所构成的可用一个式子表示的二元函数称为二元初等函数. 一切二元初等函数在其定义区域内是连续的. 这里定义区域是指包含在定义域内的区域或闭区域. 利用这个结论,当要求某个二元初等函数在其定义区域内一点的极限时,只要算出函数在该点的函数值即可.特别地,在有界闭区域D 上连续的二元函数也有类似于一元连续函数在闭区间上所满足的定理. 下面我们不加证明地列出这些定理.定理1(最大值和最小值定理) 在有界闭区域D 上的二元连续函数, 在D 上至少取得它的最大值和最小值各一次.定理2(有界性定理)在有界闭区域D 上的二元连续函数在D 上一定有界. 定理3(介值定理)在有界闭区域D 上的二元连续函数, 若在D 上取得两个不同的函数值, 则它在D 上取得介于这两值之间的任何值至少一次. 6.3偏导数一、偏导数的定义及其计算法定义1 设函数),(y x f z =在点),(00y x 的某一邻域内有定义, 当y 固定在0y 而x 在0x 处有增量x ∆时, 相应地函数有增量),,(),(0000y x f y x x f -∆+如果xy x f y x x f x ∆-∆+→∆),(),(lim00000存在, 则称此极限为函数),(y x f z =在点),(00y x 处对x 的偏导数, 记为).,(,,00000000y x f z xf xz x y y x x xy y x x y y x x 或======∂∂∂∂例如,有),(00y x f x xy x f y x x f x ∆-∆+=→∆),(),(lim00000.类似地,函数),(y x f z =在点),(00y x 处对y 的偏导数为yy x f y y x f y ∆-∆+→∆),(),(lim00000,记为).,(,,00000000y x f z yfy z y y y x x yy y x x y y x x 或======∂∂∂∂上述定义表明,在求多元函数对某个自变量的偏导数时, 只需把其余自变量看作常数,然后直接利用一元函数的求导公式及复合函数求导法则来计算之. 二、关于多元函数的偏导数,补充以下几点说明:(1)对一元函数而言,导数dxdy可看作函数的微分dy 与自变量的微分dx 的商. 但偏导数的记号xu∂∂是一个整体. (2)与一元函数类似,对于分段函数在分段点的偏导数要利用偏导数的定义来求.(3)在一元函数微分学中,我们知道,如果函数在某点存在导数,则它在该点必定连续. 但对多元函数而言,即使函数的各个偏导数存在,也不能保证函数在该点连续.例如,二元函数⎪⎩⎪⎨⎧=≠+=)0,0(),(,0)0,0(),(,),(22y x y x yx xyy x f 在点)0,0(的偏导数为,00lim )0,0()0,0(lim)0,0(00=∆=∆-∆+=→∆→∆xx f x f f x x x .00lim )0,0()0,0(lim)0,0(00=∆=∆-∆+=→∆→∆y yf y f f x y y 但从上节例5已经知道这函数在点)0,0(处不连续.三、偏导数的几何意义设曲面的方程为),(y x f z =,)),(,,(00000y x f y x M 是该曲面上一点,过点0M 作平面0y y =,截此曲面得一条曲线,其方程为⎩⎨⎧==00),(y y y x f z 则偏导数),(00y x f x 表示上述曲线在点0M 处的切线x T M 0对x 轴正向的斜率(图6-3-1). 同理,偏导数),(00y x f y 就是曲面被平面0x x =所截得的曲线在点0M 处的切线y T M 0对y 轴正向的斜率.四、偏导数的经济意义设某产品的需求量),,(y p Q Q = 其中p 为该产品的价格, y 为消费者收入. 记需求量Q 对于价格p 、消费者收入y 的偏改变量分别为),,(),(y p Q y p p Q Q p -∆+=∆和 ).,(),(y p Q y y p Q Q y -∆+=∆易见,pQ p ∆∆表示Q 对价格p 由p 变到p p ∆+的平均变化率. 而pQ p Qp p ∆∆=∂∂→∆0lim 表示当价格为p 、消费者收入为y 时, Q 对于p 的变化率. 称Qp p Q pp Q Q E p p p ⋅∂∂-=∆∆=→∆//lim为需求Q 对价格p 的偏弹性. 同理,yQ y ∆∆表示Q 对收入y 由y 变到y y ∆+的平均变化率. 而yQ y Q y y ∆∆=∂∂→∆0lim 表示当价格p 、消费者收入为y 时, Q 对于y 的变化率. 称 Qy y Q yy Q Q E y y y ⋅∂∂-=∆∆=→∆//lim为需求Q 对收入y 的偏弹性.五、科布-道格拉斯生产函数在商业与经济中经常考虑的一个生产模型是科布-道格拉斯生产函数100,),(1<<>=-a c ycx y x p aa且,其中p 是由x 个人力单位和y 个资本单位生产处的产品数量(资本是机器、场地、生产工具和其它用品的成本)。
微积分下册复习要点(共5篇)

微积分下册复习要点(共5篇)第一篇:微积分下册复习要点微积分下册复习要点第七章多元函数微分学1.了解分段函数在分界点连续的判别;2.掌握偏导数的计算(特别是抽象函数的二阶偏导数)必考3.掌握隐函数求导(曲面的切平面和法线),及方程组求导(曲线的切线和法平面方程)必考。
4.方向导数的计算,特别是梯度,散度,旋度的计算公式;必考。
5.可微的定义,分段函数的连续性及可微性,偏导数及偏导数的连续性。
6.多元函数的极值和最值:无条件极值和条件极值(拉格朗日乘数法),实际问题的最值。
必考。
第八章重积分1.二重积分交换积分次序;必考。
2.利用合适的坐标系计算(特别是极坐标)3.三重积分中三种坐标系的合理使用(直角坐标系,柱坐标系,球坐标系)在使用时特别注意“先二后一法”的运用。
必考。
4.重积分的应用中曲面面积、重心、转动惯量、引力的公式,曲面面积为重点。
第九章曲线曲面积分1.第一、二类曲线积分的计算公式(特别是参数方程);2.第一、二类曲面积分的计算公式(常考第一类曲面积分,第二类曲面积分一般用高斯公式)3.三个公式的正确使用(格林公式、高斯公式、斯托克斯公式)必考。
可以参考期中考试卷中最后三个题。
4.格林公式中有“奇点”的使用条件及积分与路径无关的条件(可能和全微分方程结合)必考。
第10章级数1.数项级数的敛散性的判别:定义,收敛的必要条件,比较判别法及极限形式,比值判别法,根值判别法,莱布尼兹判别法,条件收敛和绝对收敛的概念。
2.幂级数的收敛域及和函数的计算。
(利用逐项求导和逐项积分)必考。
3.将函数展成幂级数。
(一般利用间接法)必考。
4.将函数展成傅里叶级数,系数的计算公式;狄利克雷收敛定理;几个词的理解(周期延拓、奇延拓、偶延拓、变量替换)第11章常微分方程1.各种一阶微分方程的计算:可分离变量、齐次方程、可化为齐次方程的方程、一阶线性微分方程、伯努利方程、全微分方程。
2.可降阶的微分方程三种形式,特别注意不显含x 这种情形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
微积分(下册)主要知识点汇总一、第一换元积分法(凑微分法):对于形如$\int g[\phi(x)]\phi'(x)dx$的积分,可以令$u=\phi(x)$,则$du=\phi'(x)dx$,将原式转化为$\int g(u)du$的形式,然后进行积分,最后再将$u$用$\phi(x)$表示回去,即可得到结果$\int g[\phi(x)]\phi'(x)dx=F[\phi(x)]+C$。
二、常用凑微分公式:1.积分类型换元公式:int x^\mu(x^\mu-1)f(x)dx=\int x^\mu d(x^{\mu-1})$$当$\mu\neq 1$时成立。
int x^3f(\ln x)dx=\int x^3d(\ln x)=\int x^3\frac{1}{x}dx$$int e^xf(e^x)dx=\int e^xd(e^x)=e^xf(e^x)$$int_a^b f(x)dx=\int_{\ln a}^{\ln b}f(e^t)e^tdt$$当$a,b>0$时成立。
int \frac{f(\sin x)\cos x}{\sqrt{1-\sin^2 x}}dx=\int f(\sin x)d(\cos x)$$int \frac{f(\cos x)\sin x}{\sqrt{1-\cos^2 x}}dx=-\int f(\cos x)d(\sin x)$$int \frac{f(\tan x)}{\cos^2 x}dx=\int f(\tan x)d(\tan x)$$int \frac{f(\cot x)}{\sin^2 x}dx=-\int f(\cot x)d(\cot x)$$int f(\arctan x)\frac{1}{1+x^2}dx=\int f(t)dt$$int f(\arcsin x)\frac{1}{\sqrt{1-x^2}}dx=-\int f(t)dt$$三、第二换元法:对于形如$\int f(x)dx=\intf[\psi(t)]\psi'(t)dt=F(t)+C=F[\phi(x)]+C$的积分,可以令$\psi(t)=x$,则$\psi'(t)dt=dx$,将原式转化为$\intf[\psi(t)]\psi'(t)dt$的形式,然后进行积分,最后再将$t$用$\phi(x)$表示回去,即可得到结果。
四、积分表续:4.3 分部积分法:分部积分公式:int u dv=uv-\int v du$$iint u v' dx=uv-\iint u'v dx$$分部积分法实质上就是求两函数乘积的导数(或微分)的逆运算。
一般地,下列类型的被积函数常考虑应用分部积分法(其中$m,n$都是正整数):x^n\sin mx,\ e^nx\sin mx,\ x^n e^{-mx},\ x^n\arcsin mx$$x^n\cos mx,\ e^nx\cos mx,\ x^n\ln x,\ x^n\arccos mx,\x^n\arctan mx\text{ 等}$$5.1 定积分的概念:定积分是对函数在一个区间上的面积进行的精确计算。
具体地,设$f(x)$在区间$[a,b]$上有定义,则$f(x)$在$[a,b]$上的定积分为:int_a^b f(x)dx=\lim_{\Delta x\to 0}\sum_{i=1}^nf(x_i^*)\Delta x_i$$其中$\Delta x_i=x_i-x_{i-1}$,$\Delta x=\max\{\Deltax_i\}$,$x_i^*\in[x_{i-1},x_i]$。
5.2 定积分的性质:1.线性性质:$\int_a^b [f(x)+g(x)]dx=\int_a^bf(x)dx+\int_a^b g(x)dx$,$\int_a^b kf(x)dx=k\int_a^b f(x)dx$,其中$k$为常数。
2.区间可加性质:$\int_a^b f(x)dx+\int_b^c f(x)dx=\int_a^c f(x)dx$。
3.积分中值定理:若$f(x)$在$[a,b]$上连续,则存在$c\in(a,b)$,使得$\int_a^b f(x)dx=f(c)(b-a)$。
4.积分保号性:若$f(x)$在$[a,b]$上非负,则$\int_a^bf(x)dx\geq 0$。
5.积分中值不等式:若$f(x)$和$g(x)$在$[a,b]$上连续,且$f(x)\geq g(x)$,则$\int_a^b f(x)dx\geq \int_a^b g(x)dx$。
a) 当$a<b$时,$\int_a^b f(x)dx=\int_a^c f(x)dx+\int_c^bf(x)dx$,其中$c$为$a$和$b$之间的任意常数。
b) 当$a>b$时,$\int_a^b f(x)dx=-\int_b^a f(x)dx$。
c) $\int_a^b [f(x)\pm g(x)]dx=\int_a^b f(x)dx\pm\int_a^bg(x)dx$。
d) $\int_a^b kf(x)dx=k\int_a^b f(x)dx$,其中$k$为常数。
e) $\int_a^b f(x)dx=\int_a^c f(x)dx+\int_c^b f(x)dx$,其中$c$为区间$[a,b]$上的任意常数。
f) 性质:$\int_a^b dx=x\big|_a^b=b-a$。
g) 推论1:若在区间$[a,b]$上$f(x)\leq g(x)$,则$\int_a^b f(x)dx\leq\int_a^b g(x)dx$。
h) 推论2:若在区间$[a,b]$上$f(x)\geq 0$,则$\int_a^bf(x)dx\geq 0$。
i) $\int_a^b f(x)dx\leq\int_a^b |f(x)|dx$,其中$a<b$。
j) 估值定理:设$M$和$m$分别是函数$f(x)$在区间$[a,b]$上的最大值和最小值,则$m(b-a)\leq\int_a^b f(x)dx\leq M(b-a)$。
k) 定积分中值定理:如果函数$f(x)$在闭区间$[a,b]$上连续,则在$[a,b]$上至少存在一个点$\xi$,使得$\int_a^bf(x)dx=f(\xi)(b-a)$。
二、积分上限的函数及其导数:$\Phi(x)=\int_a^x f(t)dt$。
定理2:若函数$f(x)$在区间$[a,b]$上连续,则函数$\Phi(x)=\int_a^x f(t)dt$在$[a,b]$上可导,且$\Phi'(x)=f(x)$。
三、XXX—莱布尼茨公式:若函数$F(x)$是连续函数$f(x)$在区间$[a,b]$上的一个原函数,则$\int_a^b f(x)dx=F(b)-F(a)$。
四、定积分的换元公式:设函数$f(x)$在闭区间$[a,b]$上连续,函数$x=\phi(t)$满足条件:(1)$\phi(\alpha)=a$,$\phi(\beta)=b$,且$a\leq\phi(t)\leq b$;(2)$\phi(t)$在$[\alpha,\beta]$(或$[\beta,\alpha]$)上具有连续导数,则有$\int_a^b f(x)dx=\int_\alpha^\beta f[\phi(t)]\phi'(t)dt$。
在应用定积分的换元公式时,要注意用$x=\phi(t)$把变量$x$换成新变量$t$时,积分限也要换成相应于新变量$t$的积分限,且上限对应于上限,下限对应于下限。
二、定积分的分部积分法分部积分法是求解定积分的一种常用方法。
其基本公式为:int_{a}^{b}u(x)v'(x)dx=[u(x)v(x)]_{a}^{b}-\int_{a}^{b}u'(x)v(x)dx$或者int_{a}^{b}u(x)v'(x)dx=-\int_{a}^{b}v(x)du(x)+[u(x)v(x)]_{a}^{b}$其中,$u(x)$和$v(x)$是可导函数。
三、广义积分广义积分是指积分区间为无穷大或积分函数在某些点上无定义的积分。
对于无穷限的广义积分,有以下公式:int_{a}^{+\infty}f(x)dx=F(x)|_{a}^{+\infty}=lim_{t\rightarr ow +\infty}F(t)-F(a)$int_{-\infty}^{b}f(x)dx=F(x)|_{-\infty}^{b}=lim_{t\rightarrow -\infty}F(b)-F(t)$对于无界函数的广义积分,可以使用极限的方法进行求解。
四、定积分的几何应用定积分在几何学、物理学、经济学、社会学等应用领域中具有广泛的应用。
其中,微元法是一个常用的方法,其主要步骤为:1)由分割写出微元,选取一个积分变量,并确定其变化区间。
2)由微元写出积分,表示总量。
在应用微元法解决实际问题时,需要注意所求总量关于区间应具有可加性,并且需要正确给出部分量的近似表达式,使得其可以近似等于微元。
在平面图形的面积计算中,可以使用直角坐标系下或极坐标系下的公式进行计算。
在极坐标系下,面积公式为$\frac{1}{2}\int_{\alpha}^{\beta}r^2(\theta)d\theta$。
1.求解曲边扇形的面积公式为A = ∫[φ(θ)]dθ。
2.曲边扇形的面积微元为dA =。
3.旋转体是由一个平面图形绕平面内的一条直线旋转一周而成的立体,这条直线称为旋转轴。
4.旋转体的体积微元为dV = π[f(x)]dx,所求旋转体的体积为V =。
5.如果一个立体不是旋转体,但是知道该立体上垂直于一定轴的各个截面面积,那么这个立体的体积也可以用定积分来计算,体积微元为dV = A(x)dx,所求立体的体积为V =∫A(x)dx。
6.积分在经济分析中有着广泛的应用。
7.空间直角坐标系由x轴、y轴、z轴构成,它们相互垂直,统称为坐标轴。
8.空间两点间的距离公式为|M1M2| = √[(x2-x1)^2 + (y2-y1)^2 + (z2-z1)^2]。
9.曲面是空间直角坐标系中的图形,方程F(x,y,z) = 0称为曲面的方程。
10.平面可以用三元一次方程Ax + By + Cz + D = 0来表示。
11.柱面是由某定直线和沿定曲线移动的直线形成的轨迹,定曲线称为柱面的准线,动直线称为柱面的母线。
12.二次曲面是由二次方程F(x,y,z) = 0所表示的曲面。
在空间直角坐标系中,我们可以使用平面截割法来研究曲面的形状。
这种方法通过一系列平行于坐标面的平面截割曲面,得到平面与曲面的交线(即截痕),并综合分析这些截痕的形状和性质来认识曲面形状的全貌。