深基坑工程监测

合集下载

深基坑施工监测方案

深基坑施工监测方案

深基坑施工监测方案深基坑施工是一种重要的地下建筑工程形式,为了确保基坑施工过程中的安全和稳定性,需要进行细致的监测和控制,以及有效的应对措施。

本文将就深基坑施工监测方案进行探讨。

一、监测目标深基坑施工监测的目标是对基坑工程施工过程中各项参数和指标进行监测,主要包括:土壤位移、支撑结构变形、地下水位、沉降、裂缝变化等。

通过监测这些指标,可以及时发现施工过程中可能出现的问题,采取相应的措施进行调整和修正。

二、监测方法1. 土壤位移监测采用高精度测量仪器,如全站仪、陀螺仪等,对基坑周边的固定点进行位移监测。

监测时间周期为每日、每周和每月,并记录监测数据,进行分析和评估。

2. 支撑结构变形监测选择适当的变形测量仪器,如倾斜仪、水平测量仪等,对支撑结构进行变形监测。

监测频次为每天、每班、每小时,并及时记录监测数据。

3. 地下水位监测使用水位计或压力传感器等仪器,对基坑内外地下水位进行监测。

监测频次为每天、每周,并记录监测数据。

同时,要与附近建筑物及地下管线进行联动监测,确保施工过程中的水位变动对周边环境无影响。

4. 沉降监测采用经验法和仪器法相结合的方法,对基坑区域和周边区域进行沉降监测。

经验法包括基坑周边建筑物的观测和技术交底,仪器法则使用精密测量仪器进行监测,并将监测数据进行分析和评估。

5. 裂缝变化监测通过视觉观测和测量仪器相结合的方法,对基坑周边建筑物的裂缝变化进行监测。

监测频次为每日、每周,并记录监测数据,并及时采取措施进行处理。

三、监测数据处理在监测过程中,应将监测数据进行及时整理和处理,主要包括以下几个方面:1. 数据分析将监测数据进行统计分析和评估,以便了解施工过程中存在的问题和隐患,并及时采取相应的措施进行调整和整改。

2. 结果报告每次监测结束后,应编制监测结果报告,详细记录监测过程、数据和分析结果。

报告中应包括监测数据的图表展示和文字说明,以便后续工作的参考。

四、应急措施1. 监测告警在施工监测过程中,如发现土壤位移超出允许范围、支撑结构变形异常、地下水位剧烈波动等情况,应及时发出告警信号,采取紧急措施进行应对。

深基坑监测及应急措施

深基坑监测及应急措施

深基坑监测及应急措施一、监测的目的和原则施工监测是深基坑施工信息化的一项重要内容,现场施工中,要求通过适当的监测手段,随时掌握周边环境的变化以及基坑内部情况与设计模型之间的差异,以及支护土体的稳定状态和安全程度、基坑渗透水量的大小等等,及时反馈信息,现场工程师根据信息反馈情况及时修改施工方案,改善施工工艺。

此时现场工程师的施工经验和临场应变能力对预防事故的发生显得尤为重要,同时监测资料还可以作为检验和评价支护结构稳定性的依据。

二、监测内容房屋的沉降、倾斜,道路、地下管线的沉降、位移;支护结构的变形,土体的位移;渗透流量的大小,渗透量的大小,水位的高低等等都是监测的内容。

1、对周边房屋的沉降观测,初步确定为每一天进行一次,待土方开挖全部完成以后每2天观测一次。

待基坑回填完成以后不再观测。

观测范围是周围50米以内的建筑物。

2、对道路、地下管线的观测初步确定为每5天进行一次,待土方开挖全部完成以后每10天观测一次。

待基坑回填完成以后不再观测。

主要是沿河路的观测。

3、对支护结构的观测每天进行两次,并一直坚持到土方回填。

4、对土体渗透的观测每天进行四次,一直坚持到基础混凝土浇筑完成。

三、监测方法本工程基坑监测由建设单位委托专业监测机构进行监测,监测前编制专业监测方案,经监理单位审批后严格按方案内容执行检测。

四、应急措施1、当监测发出监测报警后,如变形(或内力)继续增加,且变形增加速率有加大的趋势,应采取相应应急措施。

(详见应急预案)2、根据监测单位的监测点埋设交底,了解监测点的埋设方法及注意点,以便监测单位有效开展监测工作。

3、对监测点派专人进行保护,对易人为损坏的监测点,可封闭保护。

4、挖土期间组织相应的决策机构及工作程序。

土方开挖施工期间,本工程各相关单位组成土方开挖应急领导小组,该小组为挖土期间的决策机构,成员由建设单位、基坑围护设计单位、主体结构设计单位、监理公司、基坑围护监测单位、施工总承包相关负责人组成。

施工方案深基坑施工的监测与控制方法

施工方案深基坑施工的监测与控制方法

施工方案深基坑施工的监测与控制方法深基坑施工是在建筑工程中常见的一项工作,而在深基坑施工过程中,监测与控制方法起着重要的作用。

本文将介绍一些常用的深基坑施工的监测与控制方法,以帮助施工方案实施。

一、介绍深基坑施工的概念和目的深基坑施工是指在建筑工程中所挖掘的深度超过周边地面的基坑。

深基坑施工的主要目的一般有两个方面,一是为了提供工程施工的条件,二是为了保障施工过程的安全。

二、监测与控制方法的重要性深基坑施工过程中需要进行监测与控制的原因主要有以下几点。

首先,深基坑施工过程中会受到地质条件的制约,如地下水位的变化、土壤的稳定性等,这些因素可能会对基坑的稳定性和施工进度产生影响,因此需要进行监测与控制。

其次,深基坑施工会产生较大的土体位移和变形,这些变形可能对周围环境和结构物造成不利影响,为了保障施工的安全性,需要进行监测与控制。

最后,深基坑施工中可能会涉及到附近的地下管线和地下设施,如地下电缆、排水管道等,为了避免对这些设施造成损害,需要进行监测与控制。

三、监测与控制方法的分类深基坑施工的监测与控制方法可以分为以下几类。

1. 地下水位监测与控制在深基坑施工过程中,地下水位的变化对基坑的稳定性和施工进度起到关键的影响。

因此,需要通过安装水位监测仪器,实时监测基坑中的地下水位,并采取相应的措施进行控制。

2. 土体位移监测与控制深基坑施工中土体的位移是一个十分关键的问题。

通过安装位移监测仪器,可以实时监测土体的位移情况,并根据监测结果调整施工方式,以避免土体位移过大。

3. 周边环境监测与控制深基坑施工往往会对周边环境和结构物产生影响,为了保护周边环境和结构物的安全,需要进行周边环境监测与控制。

具体方法可以包括安装振动监测仪器、噪声监测仪器等,以及采取隔离措施等。

4. 地下管线和设施监测与控制深基坑施工可能会影响到附近的地下管线和设施,为了保护这些管线和设施的完好性,需要进行监测与控制。

一种常见的方法是通过安装应变计、测量管线的位移和应力情况,并相应地采取控制措施。

深基坑工程安全监测技术及工程应用

深基坑工程安全监测技术及工程应用

深基坑工程安全监测技术及工程应用1. 引言1.1 概述深基坑工程安全监测技术及工程应用深基坑工程是城市建设中常见的工程项目之一,其建设需要进行严格的安全监测,以确保工程进展顺利并保障周边环境和人员的安全。

深基坑工程安全监测技术是指利用各种技术手段和设备对深基坑工程中的地质、土体、水文等情况进行实时监测和分析,以及预测可能出现的风险和隐患,从而及时采取措施防范事故发生。

深基坑工程安全监测技术的应用范围广泛,涉及工程的施工阶段、运营阶段以及结构的整个寿命周期。

通过各种监测手段,可以实时监测基坑工程的变形、地下水位变化、地表沉降等状况,保障工程的稳定性和安全性。

监测技术也可以为工程设计、施工、运营提供数据支持和决策依据,提高工程的质量和效率。

深基坑工程安全监测技术在现代城市建设中起着至关重要的作用,是保障工程安全、推动城市发展的重要手段之一。

下文将具体探讨深基坑工程安全监测技术的历史、现状、关键技术、应用案例以及未来发展趋势,希望能为读者提供全面的了解和启发。

2. 正文2.1 深基坑工程安全监测技术的发展历史深基坑工程安全监测技术的发展历史可以追溯到20世纪初,当时随着建筑结构越来越高、越来越深,特别是城市中心区域土地资源日益紧张,深基坑工程开始变得日益常见。

由于深基坑工程施工过程中存在着复杂多变的地质环境,以及施工对周围环境和结构的影响,安全隐患也随之增加。

随着科学技术的发展,深基坑工程安全监测技术逐步得到了完善和发展。

在以往,深基坑工程的安全监测主要依靠人工观察和传统的监测手段,监测效果较为有限,监测数据的准确性和实时性也难以保障。

随着计算机技术和传感器技术的广泛应用,深基坑工程安全监测技术迎来了新的发展机遇。

现代深基坑工程安全监测技术不仅集成了GIS、GPS、遥感等先进技术,还采用了各种先进传感器和数据采集设备,能够对深基坑工程施工过程中的变位、沉降、地下水位变化等参数进行实时监测和分析。

利用大数据和人工智能技术,可以对监测数据进行智能分析和预警,提前发现潜在风险,确保深基坑工程的安全施工和运行。

深基坑监测方案

深基坑监测方案
六、监测周期及频率
1.基坑周边土体监测:
施工前进行初始监测,施工过程中根据工程进度和监测数据变化情况,调整监测频率。一般情况下,监测频率为每周1-2次。
2.支护结构监测:
施工过程中,监测频率与土体监测同步进行。关键施工阶段,如土方开挖、支撑施工、降水等,应加强监测。
3.周边环境监测:
施工前进行初始监测,施工过程中根据周边环境变化情况,调整监测频率。一般情况下,监测频率为每周1次。
二、监测目标
1.监测基坑周边土体的稳定性,包括水平位移、垂直位移及裂缝发展情况。
2.监测支护结构的健康状况,包括位移、倾斜及内力变化。
3.监测周边建(构)筑物及设施的安全状况,确保不受基坑施工影响。
三、监测原则
1.系统性:确保监测内容全面,覆盖基坑施工全周期。
2.预警性:建立预警机制,对异常情况及时预警,指导施工调整。
3.动态性:根据施工进度和监测数据,动态调整监测策略。
4.科学性:采用可靠的监测技术,确保监测数据的准确性。
四、监测内容
1.土体监测:
-水平位移:采用全站仪等设备进行监测。
-垂直位移:使用电子水准仪等设备进行监测。
-地表裂缝:通过巡视和裂缝观测仪进行监测。
2.支护结构监测:
-桩(墙)位移:使用测斜仪等设备监测。
深基坑监测方案
第1篇
深基坑监测方案
一、项目背景
随着城市化进程的加快,地下空间开发逐渐成为缓解城市土地资源紧张的重要手段。深基坑工程作为地下空间开发的关键环节,其安全性直接关系到工程质量和周边环境的安全。为确保深基坑施工过程中的稳定性和安全性,制定一套合法合规的深基坑监测方案至关重要。
二、监测目的
1.掌握深基坑施工过程中土体、支护结构及周围环境的变化规律,确保工程安全。

深基坑施工监测方案

深基坑施工监测方案

深基坑施工监测方案一、项目概述深基坑工程是指土木工程中深度超过3米的基坑挖掘工程,其施工困难度大、风险高,需要进行持续而严密的监测工作。

本监测方案针对深基坑施工监测的全过程进行设计,旨在确保施工的安全性和顺利进行。

二、监测目标1.地质监测:对基坑周边的地质环境进行监测,包括土层的稳定性、地下水位以及地下水流动等情况,提前发现地质灾害隐患。

2.结构监测:对基坑周边的建筑物、道路、管线等结构进行监测,及时了解其受力情况,避免因基坑施工引起的损坏。

3.地下水监测:对基坑内的地下水位、水压等进行监测,确保基坑的排水畅通,从而保证施工的安全性和质量。

三、监测方法1.地质监测:采用地质勘探和地下水位监测等方法,对基坑周边的土层稳定性和地下水位进行实时监测,并定期进行分析和评估。

2.结构监测:采用挠度监测、应变测量以及烘箱干燥法等方法,对基坑周边的建筑物、道路、管线等进行结构监测,并记录监测数据,以便及时发现异常情况。

3.地下水监测:设置地下水位探头、水压计等监测设备,对基坑内部的地下水位和水压进行实时监测,并根据监测数据进行相应的处理和分析。

四、监测频率2.结构监测:在基坑开挖前、挖掘过程中和开挖完成后进行结构监测,根据需要可进行实时监测或定期监测,以确保结构的安全。

3.地下水监测:在基坑开挖前、挖掘过程中和挖掘完成后进行地下水位和水压监测,及时采取排水措施,确保基坑的排水正常。

五、监测报告1.地质监测报告:根据地质监测数据和分析结果,编制地质监测报告,评估基坑周边的地质环境稳定性和地下水位的变化情况,并提出相应的建议和措施。

2.结构监测报告:根据结构监测数据和分析结果,编制结构监测报告,评估基坑周边建筑物、道路、管线等的受力情况,并提出相应的建议和措施。

3.地下水监测报告:根据地下水监测数据和分析结果,编制地下水监测报告,评估基坑内部的地下水位和水压情况,并提出相应的建议和措施。

六、监测责任1.施工方:负责监测设备的安装、维护和数据的收集及整理工作,按照监测方案的要求进行监测,并保证监测设备的正常运行。

深基坑监测方案

深基坑监测方案

深基坑监测方案深基坑监测是建设工程中非常关键的一项工作,目的是确保基坑施工的安全和稳定。

下面给出了一个深基坑监测方案的示例,以供参考。

一、监测目标:1. 监测基坑变形和沉降情况,包括水平位移、垂直变形和沉降速度等参数。

2. 监测基坑周边的地面沉降情况,包括径向沉降和破坏区域的扩展情况。

3. 监测基坑周围的建筑物和地下管线的变形情况,确保安全运营。

二、监测方法:1. 使用水平位移监测仪器对基坑周边的地面进行实时监测,记录并分析监测数据,发现任何异常变化。

2. 使用测斜仪对基坑内部的土体进行定期监测,分析土体的变形和沉降情况。

3. 使用沉降观测点和标高测量方法来监测基坑和周边地面的沉降情况。

4. 使用全站仪对基坑周边的建筑物进行定期监测,记录建筑物的变形情况。

5. 使用地下雷达和超声波探测仪对基坑周边地下管线进行定期监测,确保管线的完整性。

三、监测频率:1. 地面监测:每日监测一次,记录并分析数据。

2. 测斜监测:每周监测一次,记录并分析数据。

3. 沉降监测:每周监测一次,记录并分析数据。

4. 建筑物监测:每月监测一次,记录并分析数据。

5. 管线监测:每季度监测一次,记录并分析数据。

四、监测报告:1. 每次监测后,需要生成监测报告,记录监测数据和分析结果。

2. 每周整理一次监测报告,总结监测情况,并提出相应的建议和措施。

五、紧急预警和应急响应:1. 如果监测发现有任何异常情况,需要立即发出预警,并采取相应的紧急措施。

2. 监测人员需要有相应的培训和技能,能够在紧急情况下做出正确的应急响应。

六、监测人员:1. 由专业的监测公司派遣监测人员进行监测工作。

2. 监测人员应具备相关的专业背景和技能,能够熟练操作监测仪器设备,并能准确分析监测数据。

七、监测费用:1. 监测费用由施工单位承担,包括监测仪器设备的购买和维护,以及监测人员的人力成本。

2. 监测费用应计入工程造价。

以上是一个深基坑监测方案的示例,具体实施方案需要根据具体的工程要求进行调整和补充。

建筑深基坑工程监测要求

建筑深基坑工程监测要求

建筑深基坑工程监测要求一、监测范围和监测点布设:深基坑工程监测应涵盖整个基坑施工区域,包括基坑的边界、支护结构、地下室和邻近地表等。

监测点布设应有代表性,覆盖主要土层、建筑物周边等重点区域。

监测的主要指标包括变形、沉降、裂缝等。

二、监测方案设计:监测方案应根据工程的特点和实际需求进行设计,包括监测时间、监测方法、监测频率、监测指标等。

监测时间应从基坑开挖开始,至基坑支护、地下室施工、施工结束等各个阶段。

监测方法可以采用物理监测技术、遥感监测技术、数值模拟等。

监测频率应根据施工过程中的变化情况确定,一般情况下,监测频率可以每天、每周或每月进行一次。

监测指标应包括工程变形变化、土体沉降、水平位移、裂缝变化等。

三、监测仪器设备选择:监测仪器设备应根据监测指标和监测方法的要求进行选择。

常用的监测仪器设备包括全站仪、测斜仪、支撑内力测试仪、GIS导线测量系统等。

监测设备应具备高精度、高稳定性,能够长时间连续工作,并能够进行数据采集和处理。

四、监测数据处理与分析:监测数据应及时进行采集、传输、处理和分析。

监测数据应进行质量检测,包括数据的准确性、完整性、一致性等。

监测数据应与设计要求和标准进行对比,及时发现和解决问题。

监测数据应进行分析,包括数据趋势分析、变形趋势预测、模型校正等。

五、监测报告编写:监测工作结束后,应编写监测报告。

报告中应包括监测工作的目的、范围、方法、结果等内容。

报告应清晰明确,结论准确可靠,并提出相应的建议和措施。

综上所述,建筑深基坑工程监测要求包括监测范围和监测点布设、监测方案设计、监测仪器设备选择、监测数据处理与分析以及监测报告编写。

通过合理的监测要求,可以确保深基坑工程的安全和稳定。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

境、自然条件的变化。当监测值相对稳定时,可适当降低监测频率。对于应测项目,在
无数据异常和事故征兆的情况下,开挖后仪器监测频率的确定可参照表5-1。
监测频率
表5-1明挖法基坑工程监测频率表
基坑设计深度( m) 施工工况 ≤5 ≤5 基坑 开挖 深度 (m) 5~10 10~15 15~20 >20
注:
8.周边地面出现突然较大沉降或严重开裂;
9. 邻近的建(构)筑物出现突然较大沉降、不均匀沉降或严重开裂; 10.基坑底部、坡体或支护结构出现管涌、渗漏或流砂等现象; 11.基坑工程发生事故后重新组织施工;
12.出现其他影响基坑及周边环境安全的异常情况
五、当有危险事故征兆时,应实时跟踪监测。
一、基本规定
2017年8月8日
一、基本规定 一、基本规定 二、监测范围及监测项目 三、监测点布置 四、监测方法及精度要求 五、监测频率 六、监测预警 七、监测信息反馈
一、基本规定
一、基本规定
基本规定
1、开挖深度超过5m、或开挖深度未超过5m但现场地质情况和周围环境较复杂的基坑 工程均应实施基坑工程监测。 本条为强制性条文。本条是对建筑基坑工程监测实施范围的界定。 2、监测单位编写监测方案前,应了相关单位对监测工作的要求,并进行现场踏勘,搜 集、分析和利用已有资料,在基坑工程施工前制定合理的监测方案。监测方案应包括工 程概况、监测依据、监测目的、监测项目、测点布置、监测方法及精度、监测人员及主 要仪器设备、监测频率、监测报警值、异常情况下的监测措施、监测数据的记录制度和
设一测点,与桩顶水平位移监测宜处于同一断面。当用测斜仪观测深层水平位移时,设置
在围护墙内的测斜管深度不宜小于围护墙的入土深度;设置在土体内的测斜管应保证有足 够的入土深度,保证管端嵌入到稳定的土体中。
监测点布置
二、基坑及支护结构
支撑内力监测点的布置应符合下列要求: ① 监测点宜设置在支撑内力较大或在整个支撑系统中起关键作用的杆件上; ② 每道支撑的内力监测点不应少于3个,各道支撑的监测点位置宜在竖向保持一致; ③ 钢支撑的监测截面根据测试仪器宜布置在支撑长度的1/3部位或支撑的端头。钢筋混凝土 支撑的监测截面宜布置在支撑长度的1/3部位; ④ 每个监测点截面内传感器的设置数量及布置应满足不同传感器测试要求。
监测法
八、监测精度
表 4-1 监测仪器配备及精度
一、基本规定
五、监测频率
监测频率
一.基坑工程监测频率应以能系统反映监测对象所测项目的重要变化过程,而又不遗漏其变 化时刻为原则。 二.基坑工程监测工作应贯穿于基坑工程和地下工程施工全过程。监测工作一般应从基坑工 程施工前开始,直至地下工程完成为止。对有特殊要求的周边环境的监测应根据需要延 续至变形趋于稳定后才能结束。 三.监测项目的监测频率应考虑基坑工程等级、基坑及地下工程的不同施工阶段以及周边环
(2). 施工工况 开挖后暴露的土质情况与岩土勘察报告有无差异; 基坑开挖分段长度及分层厚度是否与设计要求一致,有无超长、超深开挖; 场地地表水、地下水排放状况是否正常,基坑降水、回灌设施是否运转正常; 基坑周围地面堆载情况,有无超堆荷载。 (3).基坑周边环境
地下管道有无破损、泄露情况;
处理方法、工序管理及信息反馈制度等。
3、监测单位应严格实施监测方案。当基坑工程设计或施工有重大变更时,监测单位应 与建设方及相关单位研究并及时调整监测方案。 4、监测单位应严格实施监测方案,及时分析、处理监测数据,并将监测结果和评价及 时向委托方及相关单位作信息反馈。当监测数据达到监测报警值时必须立即通报委托方 及相关单位。
监测方法
五、支撑轴力
1、轴力计采用符合要求的轴力计,采用频率读数仪进行读数,监测精度达到0.5%F·S。
监测方法
六、混凝土支撑应力
1、 钢筋计在地铁中主要用于测量钢筋内力,混凝土支撑需要测主筋内力可用其测量,采用
频率读数仪进行读数,监测精度达到0.5%F·S。
安装使用及注意事项: ⑴降温处理⑵焊接方法⑶排线保护
六、监测预警
监测预警
一、基坑工程监测报警值应符合基坑工程设计的限值、地下主体结构设计要求以及监测对象 的控制要求。基坑工程监测报警值由基坑工程设计方确定。
二、基坑工程监测报警值应以监测项目的累计变化量和变化速率值两个值控制。
监测预警
① 水位监测点应沿基坑周边、被保护对象(如建筑物、地下管线等)周边或在两者之间布置,
监测点布置
三、周边环境
从基坑边缘以外1~3倍开挖深度范围内需要保护的建(构)筑物、地下管线等均应作为监 控对象。必要时,尚应扩大监控范围。 位于重要保护对象(如地铁、上游引水、合流污水等)安全保护区范围内的监测点的布置, 尚应满足相关部门的技术要求。 1、地下管线监测点的布置应符合下列要求: ① 应根据管线年份、类型、材料、尺寸及现状等情况,确定监测点设置;
监测点布置
三、周边环境
2、基坑周边地表竖向沉降监测点的布置范围宜为基坑深度的1~3倍,监测剖面宜设在坑边中 部或其他有代表性的部位,并与坑边垂直,监测剖面数量视具体情况确定。每个监测剖面上 的监测点数量不宜少于5个。 3、道路沉降监测点的间距不宜大于30m,且每条道路的监测点不应少于3个。必要时,沿道 路方向可布设多排测点。
监测方法
二、道路及地表沉降监测
道路及地表沉降观测采用几何水准测量方法,使用Trimble DINI03电子水准仪进行观测,并 使用及时上传软件直接将现场观测完之后的数据上传至轨道公司风险监控系统。 地下管线沉降、桩顶竖向位移监测方法与道路及地表沉降相同。
监测方法
三、桩顶水平位移
1、围护结构桩(墙)顶水平位移控制点观测采用导线测量方法,监测点采用极坐标法观测, 使用全站仪进行观测。
一、基本规定
三、监测布置
监测点布置
一、一般规定
① 基坑工程监测点的布置应最大程度地反映监测对象的实际状态及其变化趋势,并应满足监 控要求。 ③ 监测标志应稳固、明显、结构合理,监测点的位置应避开障碍物,便于观测。 ④ 在监测对象内力和变形变化大的代表性部位及周边重点监护部位,监测点应适当加密。
② 基坑工程监测点的布置应不妨碍监测对象的正常工作,并尽量减少对施工作业的不利影响。
监测方法
七、地下水位
1、地下水位监测宜采通过孔内设置水位管,水位观测采用水位仪测量。降水开始前,所有降
水井、水位观测井统一时间联测静水位,统一编号。
2、检验降水效果的水位观测井宜布置在降水区内,采用轻型井点管降水时可布置在总管的两 侧,采用深井降水时应布置在两孔深井之间,水位孔深度宜在最低设计水位下2~3m。 3、潜水水位管应在基坑施工前埋设,滤管长度应满足测量要求;承压水位监测时被测含水层 与其他含水层之间应采取有效的隔水措施。
周边建(构)筑物有无裂缝出现; 周边道路(地面)有无裂缝、沉陷; 邻近基坑及建(构)筑物的施工情况。
监测范围及监测项目
基坑现场巡视
(4).监测设施 基准点、测点完好状况;
有无影响观测工作的障碍物;
监测元件的完好及保护情况。 (5).根据设计要求或当地经验确定的其他巡视检查内容。
监测范围及监测项目
基坑现场巡视
1、基坑工程巡视检查应包括以下主要内容:
(1). 支护结构 支护结构成型质量; 冠梁、支撑、围檩有无裂缝出现;
支撑、立柱有无较大变形;
止水帷幕有无开裂、渗漏; 墙后土体有无沉陷、裂缝及滑移; 基坑有无涌土、流砂、管涌。
监测范围及监测项目
基坑现场巡视
② 监测点宜布置在管线的节点、转角点和变形曲率较大的部位,监测点平面间距宜为
15~25m,并宜延伸至基坑以外20m; ③ 上水、煤气、暖气等压力管线宜设置直接监测点。直接监测点应设置在管线上,也可以利 用阀门开关、抽气孔以及检查井等管线设备作为监测点; ④ 在无法埋设直接监测点的部位,可利用埋设套管法设置监测点,也可采用模拟式测点将监 测点设置在靠近管线埋深部位的土体中。
监测点布置
二、基坑及支护结构
基坑边坡顶部的水平位移和竖向位移监测点应沿基坑周边布置,基坑周边中部、阳角处应 布置监测点。监测点间距不宜大于20m,每边监测点数目不应少于3个。监测点宜设置在 基坑边坡坡顶上。 围护墙顶部的水平位移和竖向位移监测点应沿围护墙的周边布置,围护墙周边中部、阳角 处应布置监测点。监测点间距不宜大于20m,每边监测点数目不应少于3个。监测点宜设 置在冠梁上。 围护桩体的水平位移对一、二级基坑,在基坑短边的中点,基坑阳角处,基坑长边每40m
一、基本规定
二、监测范围及监测项目
监测范围及监测项目
监测范围
1号、2号盾构始发井兼施工竖井基坑安全等级均为一级,基坑开挖深度大,根据《城市轨道 交通工程监测技术规范》判定基坑风险等级为一级,监测等级为一级,确定施工监测范围为 2H(H:基坑开挖深度)范围内的建(构)筑物均需进行监测。
监测范围及监测项目
一、基本规定
四、监测方法及精度要求
监测方法
一、基坑及周边环境描述
1、采用目测和拍照的方式观察每次开挖时地表有无裂缝,冠梁周边和锁口圈梁有无开裂,支 护体系有无明显变形,边墙及地下有无水渗出。如出现上述情况,要增加监测频率,并立即 作出应急响应,召开现场分析会,分析出现状况的原因,讨论出解决方案后及时对现场进行 处理。
监测点布置
二、基坑及支护结构
支撑基坑外地下水位监测点的布置应符合下列要求: 监测点间距宜为20~50m。相邻建(构)筑物、重要的地下管线或管线密集处应布置水位 监测点;如有止水帷幕,宜布置在止水帷幕的外侧约2m处。 ② 水位监测管的埋置深度(管底标高)应在控制地下水位之下3~5m。对于需要降低承压水 水位的基坑工程,水位监测管埋置深度应满足设计要求; ③ 回灌井点观测井应设置在回灌井点与被保护对象之间。
相关文档
最新文档