八年级数学轴对称整章测试
无锡市大桥中学八年级数学上册第三单元《轴对称》测试(含答案解析)

一、选择题1.点1(1,2020)P a -和2(2017,1)P b -关于x 轴对称,则()2021a b +的值为( ) A .1-B .1C .0D .2021-2.如图,已知ABC ∆中,,AB AC =点,D E 是射线AB 上的两个动点(点D 在点E 的右侧).且,CE DE =连结CD ,若ACE x ∠=,BCD y ∠=.则y 关于x 的函数关系式是( )A .()900180y x x =-<<︒B .()101802y x x =<<︒ C .()39001802y x x =-<<︒ D .()201803y x x =<<︒ 3.如图,在ABC ∆中,DE 垂直平分BC 交AB 于点,D 交BC 于点E .若10,8AB cm AC cm ==,则ACD ∆的周长是( )A .12cmB .18cmC .16cmD .14cm4.等腰三角形的两边a ,b 满足7260a b --=,则它的周长是( ) A .17B .13或17C .13D .195.若a ,b 为等腰ABC 的两边,且满足350a b --=,则ABC 的周长为( ) A .11B .13C .11或13D .9或156.如图,在△ABC 中,∠BAC =90°,AD 是高,BE 是中线,CF 是角平分线,CF 交AD 于点G ,交BE 于点H ,下面说法:①△ABE 的面积=△BCE 的面积;②∠AFG =∠AGF ;③∠FAG =2∠ACF ;④BH =CH .其中正确的是( )A .①②③④B .①②③C .②④D .①③7.如图,已知AD 为ABC 的高线,AD BC =,以AB 为底边作等腰Rt ABE △,且点E 在ABC 内部,连接ED ,EC ,延长CE 交AD 于F 点,下列结论:①EBD DAE ∠=∠;②ADE BCE ≌△△;③BD AF =;④BDE ACE S S =△△,其中正确的结论有( )A .1个B .2个C .3个D .4个 8.等腰三角形两边长为2和4,则其周长为( )A .8B .10C .8或10D .129.已知点A 的坐标为()1,3,点B 的坐标为()2,1,将线段AB 沿坐标轴翻折180°后,若点A 的对应点A '的坐标为()1,3-,则点B 的对应点B '的坐标为( ) A .()2,2B .(2,1)-C .()2,1-D .(2,1)--10.下列推理中,不能判断ABC 是等边三角形的是( )A .ABC ∠=∠=∠ B .,60AB AC B =∠=︒ C .60,60A B ∠=︒∠=︒D .AB AC =,且B C ∠=∠11.如图,AEC BED △△≌,点D 在AC 边上,AE 和BD 相交于点O ,若30AED ∠=︒,120∠=︒BEC ,则ADB ∠的度数为( )A .45°B .40°C .35°D .30°12.若a b c 、、是ABC 的边,且222()()()0,a b a c b c -+-+-=则ABC 是( ). A .锐角三角形B .直角三角形C .钝角三角形D .等边三角形二、填空题13.如图,已知∠AOB =30°,点P 在射线OA 上,OP =16,点E 、点F 在射线OB 上,PE=PF ,EF =6.若点D 是射线OB 上一动点,当∠PDE =45°时,DF 的长为___________.14.如图,在Rt ABC 中,BAC 90︒∠=,AB 2=,M 为边BC 上的点,连接AM .如果将ABM 沿直线AM 翻折后,点B 恰好落在边AC 的中点处,那么点M 到AC 的距离是________.15.如图,ABC 中,45ABC ∠=︒,CD AB ⊥于D ,BE 平分ABC ∠,且BE AC ⊥于E 交CD 于点F ,H 是BC 边的中点,连接DH 交BE 于点G ,考察下列结论:①AC BF =;②2BF CE =;③ADGE GHCE S S =四四边形边形;④DGF △为等腰三角形.其中正确的有___.16.如图,在ABC 中,点A 的坐标为()0,1,点B 的坐标为()0,4,点C 的坐标为()4,3,点D 在第二象限,且ABD △与ABC 全等,点D 的坐标是______.17.如图,已知O 为△ABC 三边垂直平分线的交点,且∠A=50°,则∠BOC 的度数为_____度.18.如图,在△ABC中,AB=AC,D为BC的中点,∠BAD=20°,且AE=AD,则∠CDE的度数是______.19.如图①,点D为一等腰直角三角形纸片的斜边AB的中点,E是BC边上的一点,将这张纸片沿DE翻折成如图②,使BE与AC边相交于点F,若图①中AB=2,则图②中△CEF的周长为______________.20.如图,网格纸上每个小正方形的边长为1,点A,点C均在格点上,点P为x轴上任△周长的最小值为________.意一点,则PAC三、解答题21.如图1,在直角△ABC中,∠C=90°,分别作∠CAB的平分线AP和AB的垂直平分线DP ,交点为P .(1)如图2,若点P 正好落在BC 边上. ①求∠B 的度数; ②求证:BC=3PC .(2)如图3,若点C 、P 、D 恰好在一条直线上,线段AD 、PD 、BC 之间的数量关系是否满足AD +PD=BC ?若满足,请给出证明;若不满足,请说明理由.22.如图,在△ABC 中,AB 边的中垂线PQ 与△ABC 的外角平分线交于点P ,过点P 作PD ⊥BC 于点D ,PE ⊥AC 于点E .(1)求证:BD =AE ;(2)若BC =6,AC =4.求CE 的长度. 23.如图,在平面直角坐标系中有ABC :(1)已知111A B C △和ABC 关于y 轴对称,在图中画出111A B C △; (2)将111A B C △沿x 轴向右平移4个单位,在图中画出平移后的222A B C △; (3)222A B C △和ABC 关于某条直线l 对称,在图中画出对称轴l .24.如图,在△ABC 中, AB =AC .过点A 作BC 的平行线交∠ABC 的角平分线于点D ,连接CD .(1)求证:△ACD 为等腰三角形. (2)若∠BAD =140°,求∠BDC 的度数.25.如图,,ABC AEF ∆∆均为等边三角形,连接BE ,连接并延长CF 交BE 于点D . (1)求证:CAF BAE ∆≅∆; (2)连接AD ,求证DA 平分CDE ∠.26.如图,ABC 的三个顶点的坐标分别是()3,3A ,()1,1B ,()4,1C -.(1)直接写出点A 、B 、C 关于x 轴对称的点1A 、1B 、1C 的坐标;1A (______,_______)、1B (______,_______)、1C (______,_______) (2)在图中作出ABC 关于y 轴对称的图形222A B C △. (3)求ABC 的面积.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】关于x 轴对称的点,横坐标相同,纵坐标互为相反数,可得a ,b 的值,进一步可得答案. 【详解】解:∵1(1,2020)P a -和2(2017,1)P b -关于x 轴对称,得a-1=2017,1-b=2020. 解得a=2018,b=-2019, ∴()()()202120212021=2018201911a b +-=-=-故选:A .【点睛】本题考查了关于x 轴、y 轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x 轴对称的点,横坐标相同,纵坐标互为相反数;关于y 轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.2.B解析:B 【分析】根据等腰三角形的性质得出∠ACB=∠ABC=x+∠BCE 和∠D=∠DCE=y+∠BCE ,由三角形的外角性质得出∠ABC=∠D+∠BCD ,即x+∠BCE= y+∠BCE+ y ,即x=2y ,得出y 关于x 的函数关系式. 【详解】解:∵AB AC =,ACE x ∠=, ∴ ∠ACB=∠ABC=x+∠BCE , ∵CE DE =,BCD y ∠= ∴∠D=∠DCE=y+∠BCE ,∵ ∠ABC 是△BCD 的一个外角, ∴∠ABC=∠D+∠BCD , 即 x+∠BCE= y+∠BCE+ y , 即x=2y ,∴()101802y x x =<<︒, 故选:B . 【点睛】本题主要考查了等腰三角形的性质,三角形的外角性质,三角形的外角等于它不相邻的两个内角和.熟练掌握并运用各性质是解题的关键.3.B【分析】由题意可知BD=CD ,因此ACD ∆的周长= AB+AC ,据此可解. 【详解】解:∵DE 垂直平分BC , ∴BD=CD ,∴ACD ∆的周长=AD+CD+AC = AD+BD+AC = AB+AC =10+8 =18(cm), 故选:B . 【点睛】本题主要考查线段垂直平分线的性质,关键在于求出BD=CD .4.A解析:A 【分析】根据绝对值和二次根式的性质求出a ,b ,再根据等腰三角形的性质判断即可; 【详解】∵70a -=, ∴70260a b -=⎧⎨-=⎩,解得73a b =⎧⎨=⎩,∵a ,b 是等腰三角形的两边,∴当7a =为腰时,三边分别为7,7,3,符合三角形三边关系, 此时三角形的周长77317++=;当3b =为腰时,三边为3,3,7,由于33+<7,故不符合三角形的三边关系; ∴三角形的周长为17. 故答案选A . 【点睛】本题主要考查了等腰三角形的性质、绝对值性质和二次根式的性质,准确计算是解题的关键.5.C解析:C 【分析】根据非负数的意义列出关于a 、b 的方程并求出a 、b 的值,再根据b 是腰长和底边长两种情况讨论求解.解:根据题意得a-3=0,b-5=0,解得a=3,b=5,(1)若3是腰长,则三角形的三边长为:3、3、5,能组成三角形,周长为:3+3+5=11;(2)若3是底边长,则三角形的三边长为:3、5、5,能组成三角形,周长为3+5+5=13.故选:C.【点睛】本题考查了等腰三角形的性质、非负数的性质及三角形三边关系;解题主要利用了非负数的性质,分情况讨论求解时要注意利用三角形的三边关系对三边能否组成三角形作出判断.6.B解析:B【分析】根据等底等高的三角形的面积相等即可判断①;根据三角形内角和定理求出∠ABC=∠CAD,根据三角形的外角性质即可推出②;根据三角形内角和定理求出∠FAG=∠ACD,根据角平分线定义即可判断③;根据等腰三角形的判定判断④即可.【详解】∵BE是中线,∴AE=CE,∴△ABE的面积=△BCE的面积(等底等高的三角形的面积相等),故①正确;∵CF是角平分线,∴∠ACF=∠BCF,∵AD为高,∴∠ADC=90°,∵∠BAC=90°,∴∠ABC+∠ACB=90°,∠ACB+∠CAD=90°,∴∠ABC=∠CAD,∵∠AFG=∠ABC+∠BCF,∠AGF=∠CAD+∠ACF,∴∠AFG=∠AGF,故②正确;∵AD为高,∴∠ADB=90°,∵∠BAC=90°,∴∠ABC+∠ACB=90°,∠ABC+∠BAD=90°,∴∠ACB=∠BAD,∵CF是∠ACB的平分线,∴∠ACB=2∠ACF,∴∠BAD =2∠ACF ,即∠FAG =2∠ACF ,故③正确;根据已知条件不能推出∠HBC =∠HCB ,即不能推出BH =CH ,故④错误; 故选:B . 【点睛】本题考查了三角形内角和定理,三角形的外角性质,三角形的角平分线、中线、高,等腰三角形的判定等知识点,能综合运用定理进行推理是解此题的关键,题目比较好,属于中考题型.7.D解析:D 【分析】由AD 为△ABC 的高线,可得∠CBE+∠ABE+∠BAD=90°,Rt △ABE 是等腰直角三角形, 可得90ABE BAD DAE ∠+∠+∠=︒,从而可判断①;由等腰Rt ABE △可得AE BE =,结合AD BC =,∠DAE=∠CBE ,可判断②;由△ADE ≌△BCE ,可得,ADE BCE ∠=∠ 再证明∠BDE=∠AFE ,结合EBD DAE ∠=∠,AE BE =, 证明△AEF ≌△BED ,可判断③;由△ADE ≌△BCE ,可得,DE CE = 由△AEF ≌△BED ,,EF DE = 证明,EF CE =从而可判断④. 【详解】解:∵AD 为△ABC 的高线, ∴∠CBE+∠ABE+∠BAD=90°, ∵Rt △ABE 是等腰直角三角形, ∴90ABE BAD DAE ∠+∠+∠=︒,∴∠DAE=∠CBE ,即EBD DAE ∠=∠,故①正确; ∵Rt △ABE 是以AB 为底等腰直角三角形, ∴AE=BE ,在△ADE 和△BCE 中,AE BEDAE CBE AD BC =⎧⎪∠=∠⎨⎪=⎩, ∴△ADE ≌△BCE (SAS ); 故②正确; △ADE ≌△BCE ,,ADE BCE ∴∠=∠∵∠BDE=∠ADB+∠ADE ,∠AFE=∠ADC+∠ECD ,90ADB ADC ∠=∠=︒, ∴∠BDE=∠AFE , 在△AEF 和△BED 中,FAE DBE AFE BDE AE BE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AEF ≌△BED (AAS ),∴AF BD =; 故③正确;∵△ADE ≌△BCE ,∴,DE CE =△AEF ≌△BED ,,,AEF BED EF DE SS ∴== ,EF CE ∴=∴,AEF ACE SS = ∴ ,BDE ACE S S =故④正确;综上:正确的有①②③④.故选:D .【点睛】本题考查的是三角形的内角和定理,三角形的中线与高的性质,三角形全等的判定与性质,等腰直角三角形的性质,掌握以上知识是解题的关键.8.B解析:B【分析】由于题中没有指明哪边是底哪边是腰,则应该分两种情况进行分析.【详解】解:①当2为腰时,2+2=4,不能构成三角形,故此种情况不存在;②当4为腰时,符合题意,则周长是2+4+4=10.故选:B .【点睛】本题考查的是等腰三角形的性质和三边关系,解答此题时注意分类讨论,不要漏解. 9.C解析:C【分析】根据点A ,点A'坐标可得点A ,点A'关于y 轴对称,即可求点B'坐标.【详解】解:∵将线段AB 沿坐标轴翻折后,点A (1,3)的对应点A′的坐标为(-1,3), ∴线段AB 沿y 轴翻折,∴点B 关于y 轴对称点B'坐标为(-2,1)故选:C .【点睛】本题考查了翻折变换,坐标与图形变化,熟练掌握关于y 轴对称的两点纵坐标相等,横坐标互为相反数是关键.10.D解析:D根据等边三角形的定义、判定定理以及三角形内角和定理进行判断.【详解】A 、由“三个角都相等的三角形是等边三角形”可以判断△ABC 是等边三角形,故本选项不符合题意;B 、由“有一个角是60°的等腰三角形是等边三角形”可以判断△ABC 是等边三角形,故本选项不符合题意;C 、由“∠A =60°,∠B =60°”可以得到“∠A =∠B =∠C =60°”,则由“三个角都相等的三角形是等边三角形”可以判断△ABC 是等边三角形,故本选项不符合题意;D 、由“AB =AC ,且∠B =∠C”只能判定△ABC 是等腰三角形,故本选项符合题意. 故选:D .【点睛】本题主要考查了等边三角形的判定和三角形内角和定理,属于基础题.(1)由定义判定:三条边都相等的三角形是等边三角形.(2)判定定理1:三个角都相等的三角形是等边三角形.(3)判定定理2:有一个角是60°的等腰三角形是等边三角形.11.A解析:A【分析】由△AEC ≌△BED 可知:EC=ED ,∠C=∠BDE ,∠BED=∠AEC ,根据等腰三角形的性质即可知∠C 的度数,从而可求出∠ADB 的度数.【详解】解:∵△AEC ≌△BED ,∴EC=ED ,∠C=∠BDE ,∠BED=∠AEC ,∴∠BEO+∠AED=∠CED+∠AED ,∴∠BEO=∠CED,∵∠AED=30°,∠BEC=120°,∴∠BEO=∠CED=120302︒-︒=45°, 在△EDC 中,∵EC=ED ,∠CED=45°,∴∠C=∠EDC=67.5°,∴∠BDE=∠C=67.5°,∴∠ADB=180°-∠BDE-∠EDC=180°-67.5°-67.5°=45°,故选A .【点睛】本题考查全等三角形的性质,等腰三角形的性质,解题的关键是熟练运用全等三角形的性质. 12.D解析:D由偶次方的非负性质得出a-b=0,a-c=0,b-c=0,得出a=b=c ,即可得出结论.【详解】解:∵222()()()0,a b a c b c -+-+-=,∴a-b=0,a-c=0,b-c=0,∴a=b ,a=c ,b=c ,∴a=b=c ,∴这个三角形是等边三角形;故选:D .【点睛】本题考查了等边三角形的判定、偶次方的非负性质;熟练掌握等边三角形的判定方法,由偶次方的非负性质得出a=b=c 是解题的关键.二、填空题13.5或11【分析】过点P 作PH ⊥OB 于点H 根据PE=PF 可得EH=FH=EF=3根据∠AOB=30°OP=16可得PH=OP=8当点D 运动到点F 右侧或当点D 运动到点F 左侧时分别计算可得DF 的长【详解】解析:5或11【分析】过点P 作PH ⊥OB 于点H ,根据PE=PF ,可得EH=FH=12EF=3,根据∠AOB=30°,OP=16,可得PH=12OP=8,当点D 运动到点F 右侧或当点D 运动到点F 左侧时,分别计算可得DF 的长.【详解】如图,过点P 作PH ⊥OB 于点H ,∵PE=PF ,∴EH=FH=12EF=3, ∵∠AOB=30°,OP=16,∴PH=12OP=8,当点D运动到点F右侧时,∵∠PDE=45°,∴∠DPH=45°,∴PH=DH=8,∴DF=DH-FH=8-3=5;当点D运动到点F左侧时,D′F=D′H+FH=8+3=11.所以DF的长为5或11.故答案为:5或11.【点睛】本题考查了含30度角的直角三角形的性质、等腰三角形的性质,解决本题的关键是分两种情况画图解答.14.【分析】过点M作MP⊥ACMQ⊥AB首先证明MP=MQ求出AC的长度运用S△ABC=S△ABM+S△ACM求出MP即可解决问题【详解】如图设点B的对应点为N由题意得:∠BAM=∠CAMAB=AN=2解析:4 3【分析】过点M作MP⊥AC,MQ⊥AB,首先证明MP=MQ,求出AC的长度,运用S△ABC=S△ABM+S△ACM,求出MP即可解决问题.【详解】如图,设点B的对应点为N,由题意得:∠BAM=∠CAM,AB=AN=2;过点M作MP⊥AC,MQ⊥AB,则MP=MQ,设MP=MQ=x,∵AN=NC,∴AC=2AN=4;∵S△ABC=S△ABM+S△ACM,∴12AB•AC=12AB•MQ+12AC•MP,∴2×4=2x +4x ,解得:x =43, 故答案为43.【点睛】该题主要考查了翻折变换的性质、角平分线的性质、三角形的面积公式及其应用,解题的关键是作辅助线,灵活运用三角形的面积公式来解答.15.①②④【分析】只要证明△BDF ≌△CDA △BAC 是等腰三角形即可判断①②正确作GM ⊥BD 于M 只要证明GH <DG 即可判断③错误证明可判断④正确【详解】解:①又又∴是等腰直角三角形在和中故①正确;②平分 解析:①②④【分析】只要证明△BDF ≌△CDA ,△BAC 是等腰三角形,即可判断①②正确,作GM ⊥BD 于M ,只要证明GH <DG 即可判断③错误,证明DGF DFG ∠=∠可判断④正确.【详解】解:①CD AB ⊥,90CDA BDF ∠∴∠==︒,18090DBF DFB BDF ︒∠+∠=-∠=︒,又BE AC ⊥,90BEA ∴∠=︒,18090DBF DAC BEA ∠+∠=-∠=∴︒︒,DAC DFB ∠=∠∴,又45ABC ∠=︒,18045DCB ABC BDF ∴∠=︒-∠-∠=︒,∴BCD △是等腰直角三角形, BD CD ∴=,在ACD △和FBD 中,DAC DFB CDA BDF CD BD ∠=∠⎧⎪∠=∠⎨⎪=⎩,()ACD FBD AAS ∴≅,AC BF ∴=.故①正确;②BE 平分ABC ∠,BE AC ⊥,ABE CBE ∴∠=∠,90BEA BEC ∠=∠=︒,∴在ABE △和CBE △中,ABE CBE BE BEBEA BEC ∠=∠⎧⎪=⎨⎪∠=∠⎩, ()ASA ABE CBE ∴≅,AE CE ∴=,2AC AE CE CE ∴=+=,又AC BF =,2BF CE ∴=,故②正确;③如图所示,过G 作GM BD ⊥于点M ,H 为等腰直角BCD △斜边BC 的中点,DH BC ∴⊥,即90GHB ∠=︒,又BE 平分ABC ∠,GM BD ⊥,GM GH ∴=,又BD BH >,BDG BGH SS∴>, 又ABE CBE ≅ ABE CBE S S ∴=,ABE BDG ADGE S S S ∴=-四边形,CBE BGH GHCE S S S =-四边形,ADGE GHCE S S ∴<四边形四边形,故③错误;④18090HBG BGH GHB ∠+∠=︒-∠=︒,18090DBF DFG BDF ∠+∠=︒-∠=︒,HBG DBF ∠=∠,BGH DFG ∴∠=∠,又BGH DGF ∠=∠,DGF DFG ∴∠=∠,DGF ∴为等腰三角形.∴综上,答案为①②④.【点睛】此题是三角形综合题,考查了等腰三角形的性质,直角三角形的性质,全等三角形的性质和判定,三角形的面积等知识点的综合运用,第三个问题难度比较大,添加辅助线是解题关键.16.或【分析】分情况:当△ABC ≌△ABD 时△ABC ≌△BAD 时利用全等三角形的性质解答即可【详解】分两种情况:当△ABC ≌△ABD 时AB=ABAD=ACBD=BC ∵点AB 在y 轴上∴△ABC 与△ABD 关解析:()4,3-或()4,2-【分析】分情况:当△ABC ≌△ABD 时,△ABC ≌△BAD 时,利用全等三角形的性质解答即可.【详解】分两种情况:当△ABC ≌△ABD 时,AB=AB ,AD=AC ,BD=BC ,∵点A 、B 在y 轴上,∴△ABC 与△ABD 关于y 轴对称,∵C (4,3),∴D (-4,3);当△ABC ≌△BAD 时,AB=BA ,AD=BC ,BD=AC ,作DE ⊥AB ,CF ⊥AB ,∴DE=CF=4,∠AED=∠BFC=90︒,∴△ADE ≌△BCF ,∴AE=BF=4-3=1,∴OE=OA+AE=1+1=2,∴D (-4,2),故答案为:()4,3-或()4,2-.【点睛】此题考查全等三角形的判定及性质,确定直角坐标系中点的坐标,轴对称的性质,熟记全等三角形的性质是解题的关键.17.100【分析】连接AO 延长交BC 于D 根据线段垂直平分线的性质可得OB=OA=OC再根据等腰三角形的等边对等角和三角形的外角性质可得∠BOC=2∠A即可求解【详解】解:连接AO延长交BC于D∵O为△A解析:100【分析】连接AO延长交BC于D,根据线段垂直平分线的性质可得OB=OA=OC,再根据等腰三角形的等边对等角和三角形的外角性质可得∠BOC=2∠A,即可求解.【详解】解:连接AO延长交BC于D,∵O 为△ABC 三边垂直平分线的交点,∴OB=OA=OC,∴∠OBA=∠OAB,∠OCA=∠OAC,∵∠BOD=∠OBA+∠OAB=2∠OAB,∠COD=∠OCA+∠OAC=2∠OAC,∴∠BOC=∠BOD+∠COD=2∠OAB+2∠OAC=2∠BAC,∵∠BAC=50°,∴∠BOC=100°.故答案为:100.【点睛】本题考查线段垂直平分线的性质、等腰三角形的性质、三角形的外角性质,属于基础题型,熟练掌握它们的性质和运用是解答的关键.18.10°【分析】设∠B=∠C=x∠CDE=y分别表示出∠DAE构建方程解方程即可求解【详解】解:设∠B=∠C=x∠EDC=y∵AD=AE∴∠ADE=∠AED=x+y∵∠DAE=180°−2(x+y)=解析:10°【分析】设∠B=∠C=x,∠CDE=y,分别表示出∠DAE,构建方程解方程即可求解.【详解】解:设∠B=∠C=x,∠EDC=y,∵AD=AE,∴∠ADE=∠AED=x+y,∵∠DAE=180 °−2(x+y)=180 °−20 °−2x,∴2y=20 °,∴y=10 °,∴∠CDE=10 °.故答案为:10°【点睛】本题主要考查等腰三角形的判定与性质,还涉及三角形内角和等知识点,需要熟练掌握等腰三角形的判定与性质.19.【分析】如图作DM⊥AC于MDH⊥BC于HDN⊥EB于N连接DF首先证明△DFB≌△DFC推出CF=BF可得再利用勾股定理求解即可得到答案【详解】解:如图作DM⊥AC于MDH⊥BC于HDN⊥EB于N解析:2【分析】如图,作DM⊥AC于M,DH⊥BC于H,DN⊥EB于N,连接DF.首先证明△DFB≌△DFC,推出CF=BF,可得()CEFC EF CF EC EF FB EC=++=++=EB EC EB EC CB''+=+=,再利用勾股定理求解B C'即可得到答案.【详解】解:如图,作DM⊥AC于M,DH⊥BC于H,DN⊥EB于N,连接DF.∵,90CA CB ACB''=∠=︒,AD B D'=,∴CD DB AD DB'===,45DCB DCA'∠=∠=︒,45B B'∠=∠=︒.∴DH DM=,,B DE BDE'≌,DH DN∴=,DH DM DN∴==∴DFM DFN∠=∠,∵∠BFM=∠EFC,∴∠DFB=∠DFC,在△DFB和△DFC中,B DCFDFB DFCDF DF∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△DFB≌△DFC,∴CF=BF,∵()CEF C EF CF EC EF FB EC =++=++=EB EC EB EC CB ''+=+=, ∵2AB '=,∴224B C AC '+=,,B C AC '= 2.B C '∴= (负根舍去)2.CEF C ∴= 故答案为: 2.【点睛】本题考查翻折变换,等腰直角三角形的性质,全等三角形的判定和性质,角平分线的判定,勾股定理的应用,直角三角形斜边上的中线等于斜边的一半,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,构造全等三角形解决问题.20.【分析】根据勾股定理可得AC 的长度作点C 关于x 轴的对称点C′连接AC′与x 轴交于点P 利用勾股定理求出AP+PC 的最小值从而得出答案【详解】AC=如图作点C 关于x 轴的对称点C′连接AC′与x 轴交于点P解析:21022+【分析】根据勾股定理可得AC 的长度,作点C 关于x 轴的对称点C′,连接AC′,与x 轴交于点P ,利用勾股定理求出AP+PC 的最小值,从而得出答案.【详解】AC=222222+=,如图,作点C 关于x 轴的对称点C′,连接AC′,与x 轴交于点P ,则AP+PC=AP+PC′=AC′,此时AP+PC 2226210+=所以△PAC 周长的最小值为21022故答案为:21022.【点睛】本题主要考查了轴对称-最短路线问题,解题的关键是掌握轴对称变换的性质.三、解答题21.(1)①∠B的度数是30°;②见解析;(2)满足,理由见解析【分析】(1)①由垂直平分线与角平分线的性质证明:∠PAD=∠PAC=∠B,再利用直角三角形的内角和定理即可得到答案;②先利用角平分线的性质证明PC=PD,再用∠B=30°证明BP=2PD,进而即可得到结论;(2)过点P作PE⊥AC于点E,由垂直平分线的性质可知AC=BC,∠ACD=∠BCD=45°,进而证明PE=CE,由角平分线的性质可知PE=PD,即可证明Rt△AEP≌Rt△ADP(HL),可得AE=AD,再利用线段的和差性质即可证明AD+PD=BC.【详解】(1)①∵DP是AB的垂直平分线,∴PA=PB,∴∠PAD=∠B,又∵AP平分∠CAB,∴∠PAD=∠PAC,∴∠PAD=∠PAC=∠B,设∠B=x°,则∠CAB=∠PAD+∠PAC=2x°,∵在Rt ABC中,∠C=90°,∴∠B+∠BAC=90°,即3x=90,x=30,∴∠B的度数是30°.②∵AP平分∠CAB,∠C=90°,DP⊥AB,∴PC=PD,∵在Rt△BDP中,∠B=30°,∴BP=2PD,∴BC=BP+PC=3PC.(2)如图,过点P作PE⊥AC于点E,∵CD是AB的垂直平分线,∴AC=BC,∴∠ACD=∠BCD=1∠ACB=45°.2∵PE⊥AC,∴∠CPE=90°−∠PCE=90°−45°=45°=∠PCE ,∴PE=CE ,又∵AP 平分∠CAB ,PD ⊥AB ,PE ⊥AC ,∴PE=PD ,∴在Rt △AEP 和Rt △ADP 中,,,AP AP PE PD =⎧⎨=⎩∴Rt △AEP ≌Rt △ADP (HL ),∴AE=AD ,∴AC=AE+EC=AD+PE=AD+PD ,又∵AC=BC ,∴AD+PD=BC .【点睛】本题考查了角平分线的性质、垂直平分线的性质、三角形的内角和定理、锐角三角函数、等腰直角三角形的性质、直角三角形全等的判定与性质、含30°的直角三角形的性质、线段的和差性质,解答本题的关键是掌握并熟练运用以上知识.22.(1)见解析;(2)CE =1【分析】(1)连接PA 、PB ,根据角平分线的性质得到PD=PE ,根据线段垂直平分线的性质得到PA=PB ,证明Rt △AEP ≌Rt △BDP ,根据全等三角形的性质得到AE=BD ;(2)结合图形计算得到答案.【详解】(1)连接PA 、PB ,∵CP 是∠BCE 的平分线,PD ⊥BC ,PE ⊥AC ,∴PD =PE ,在Rt △CDP 和Rt △CEP 中,PD PE PC PC =⎧⎨=⎩, ∴Rt △CDP ≌Rt △CEP (HL )∴CD =CE ,∵PQ 是线段AB 的垂直平分线,∴PA =PB ,在Rt △AEP 和Rt △BDP 中,PE PD PA PB =⎧⎨=⎩, ∴Rt △AEP ≌Rt △BDP (HL ),∴AE =BD ;(2)AC +CE +CD =BD +CD =BC =6, ∴1(64)12CE CD ==⨯-=. 【点睛】本题考查了线段垂直平分线的性质、角平分线的性质、全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理是解题的关键.23.(1)见解析;(2)见解析;(3)见解析.【分析】(1)利用关于y 轴对称点的性质得出对应点位置进而得出答案;(2)直接利用平移的性质得出对应点位置进而得出答案;(3)直接利用轴对称的性质得出对称轴的位置进而得出答案.【详解】解:(1)如图所示:(2)如图所示;(3)如图所示.【点睛】此题主要考查了轴对称变换以及平移变换,正确得出对应点位置是解题关键. 24.(1)证明见解析;(2)50BDC ∠=︒.【分析】(1)根据平行线的性质和角平分线的定义可得∠ADB=∠ABD ,从而可得AB=AD ,再依据等量代换即可得出结论;(2)根据等腰三角形等边对等角可求得∠ADB=20°,再依据角平分线的性质、平行线的性质和等腰三角形等边对等角求得70ADC ∠=︒,最后利用角的和差即可求得结论.【详解】解:(1)证明:∵AD ∥BC ,∴∠ADB=∠DBC ,∵BD 为∠ABC 的平分线,∴∠ABD=∠DBC ,∴∠ADB=∠ABD ,∴AB=AD ,∵AB =AC ,∴AC=AD ,即△ACD 为等腰三角形;(2)∵AB=AD ,∠BAD =140°,∴∠ADB=∠ABD=1802BAD ︒-∠=20°, ∴∠ABC=∠ABD+∠DBC=2∠ABD=40°,∵AB =AC ,∴∠ACB=∠ABC=40°,∵AD ∥BC ,∴∠DAC=∠ACB=40°,∵AC=AD , ∴180702DAC ADC ACD ︒-∠∠=∠==︒, ∴50AD DC AD C B B ∠-∠=∠=︒. 【点睛】本题考查等腰三角形的性质和判定,平行线的性质,角平分线的有关证明.(1)中需正确识别角平分线与平行线所构成的等腰三角形;(2)中能根据等边对等角依次计算角度是解题关键.25.(1)见解析;(2)详见解析.【分析】(1)利用SAS 证明即可;(2)逆用角的平分线性质定理证明.【详解】(1)∵△ABC,△AEF 是等边三角形,∴AC=AB,AF=AE,∠CAB=∠EAF,∴∠CAB-∠FAB =∠EAF-∠FAB,∴∠CAF=∠BAE,∴△CAF ≌△BAE;(2)过点A 分别作AH ⊥CD 于点H,AG ⊥BE,交BE 的延长线于点G,由(1)知,△CAF ≌△BAE ,∴CF=BE ,CAF BAE SS =, ∴1122CE AH BE AG ⨯⨯=⨯⨯, ∴AH=AG ,∴DA 平分∠CDE.【点睛】本题考查了三角形的全等,等边三角形的性质,角平分线性质定理的逆定理,准确选择全等判定方法,活用角的平分线的逆定理是解题的关键.26.(1)3,−3,1,−1,4,1;(2)见详解;(3)5【分析】(1)由关于x 轴对称的点的横坐标相等,纵坐标互为相反数,即可得到答案; (2)分别作出三个顶点关于y 轴的对称点,再首尾顺次连接即可得;(3)利用割补法求解可得.【详解】(1)∵点A (3,3),B (1,1),C (4,−1).∴点A 关于x 轴的对称点A 1(3,−3),B 关于x 轴的对称点B 1(1,−1),C 关于x 轴的对称点C 1(4,1),故答案为:3,−3,1,−1,4,1;(2)如图所示,即为所求;(3)△ABC 的面积为:3×4−12×2×2−12×2×3−12×1×4=5. 【点睛】 本题主要考查作图−轴对称变换和点的坐标,解题的关键是掌握轴对称变换的定义和性质,并据此得出变换后的对应点,也考查了割补法求三角形的面积.。
北京外国语大学附属外国语学校八年级数学上册第三单元《轴对称》测试(含答案解析)

一、选择题1.如图,AD 是ABC ∆的中线,E 是AD 上一点,BE 交AC 于F ,若,9,6BE AC BF CF ===,则AF 的长度为( )A .1B .1.5C .2D .2.52.已知锐角AOB ∠,如图(1)在射线OA 上取一点C ,以点O 为圆心,OC 长为半径作弧MN ,交射线OB 于点D ,连接CD ;(2)分别以点,C D 为圆心,CD 长为半径作弧,两弧交于点P ,连接,CP DP ; (3)作射线OP 交CD 于点Q .根据以上作图过程及所作图形,有如下结论:①//CP OB ;②2CP QC =;③AOP BOP ∠=∠;④CD OP ⊥.其中正确的有( )A .①②③④B .②③④C .③④D .③ 3.若a ,b 是等腰ABC 的两边长,且满足()2370a b -+-=,此三角形的周长是( )A .13B .13或17C .17D .204.下列命题中,假命题是( )A .两条直角边对应相等的两个直角三角形全等B .等腰三角形顶角平分线把它分成两个全等的三角形C .相等的两个角是对顶角D .有一个角是60的等腰三角形是等边三角形5.如图,在ABC 中,AB AC =,D 为BC 的中点,AD AE =,若40BAD ∠=︒,则CDE ∠的度数为( )A .10︒B .20︒C .30D .40︒6.如图,已知点D 为ABC 内一点,CD 平分ACB ∠,BD CD ⊥,A ABD ∠=∠,若6AC =,4BC =,则BD 的长为( )A .2B .1.5C .1D .2.57.如图,在ABC 中,90C =∠,30B ∠=,以A 为圆心,任意长为半径画弧分别交AB 、AC 于点M 和N ,再分别以M 、N 为圆心,大于MN 的长为半径画弧,两弧交于点P ,连结AP 并延长交BC 于点D ,则:DAC ABC S S 等于( )A .1:2B .2:3C .1:3D .1:38.如图,∠MON =30°,点A 1、A 2、A 3…在射线ON 上,点B 1、B 2、B 3…在射线OM 上,△A 1B 1A 2、△A 2B 2A 3、△A 3B 3A 4…均为等边三角形,从左起第1个等边三角形的边长记为a 1,第2个等边三角形的边长记为a 2,以此类推.若OA 1=1,则a 2019=( )A .22017B .22018C .22019D .220209.已知一个等腰三角形ABC 的两边长为5,7,另一个等腰三角形ABC 的两边为23x -,35x -,若两个三角形全等,则x 的值为( )A .5B .4C .4或5D .10310.如图,在ABC ∆中,5AC =,线段AB 的垂直平分线交AC 于点,D BCD ∆的周长是9,则BC 的长为( )A .3B .4C .5D .611.如图所示,在△ABC 中,内角∠BAC 与外角∠CBE 的平分线相交于点P ,BE =BC ,PB 与CE 交于点H ,PG ∥AD 交BC 于F ,交AB 于G ,连接CP .下列结论:①∠ACB =2∠APB ;②BP 垂直平分CE ;③PG =AG ;④CP 平分∠DCB ;其中,其中说法正确的有( )A .1个B .2个C .3个D .4个12.如图,在等腰ABC 中,118ABC ︒∠=,AB 垂直平分线DE 交AB 于点D ,交AC 于点E ,BC 的垂直平分线PQ 交BC 于点P ,交AC 于点Q ,连接BE ,BQ ,则EBQ ∠=( )A .65︒B .60︒C .56︒D .50︒二、填空题13.如图,已知∠AOB =30°,点P 在射线OA 上,OP =16,点E 、点F 在射线OB 上,PE=PF ,EF =6.若点D 是射线OB 上一动点,当∠PDE =45°时,DF 的长为___________.14.如图,已知60AOB ︒∠=,点P 在边OA 上, 10OP =,点,M N 在边OB 上, PM PN =,若3,MN =则OM 的长是__________.15.给出如下三个图案,它们具有的公共特点是:________.(写出1个即可)16.如图,在△ACB 中,∠ACB =∠90°,AB 的垂直平分线DE 交AB 于E ,交AC 于D ,∠DBC =30°,DC =4cm ,则D 到AB 的距离为________cm .17.如图,在等边△ABC 中,AC =9,点O 在AC 上,且AO =3,点P 是AB 上一动点,连接OP ,以O 为圆心,OP 长为半径画弧交BC 于点D ,连接PD ,如果PO =PD ,那么AP 的长是________.18.如图,点D 是ABC ∠内一点,点E 在射线BA 上,且15DBE BDE ∠=∠=︒,//DE BC ,过点D 作DF BC ⊥,垂足为点F ,若BE a =,则DF =___________(用含a 的式子表示).19.右图是44⨯的正方形网格,每个小正方形的顶点称为格点,且边长为1,点,A B 均在格点上,在网格中建立平面直角坐标系.如果点C 也在此44⨯的正方形网格的格点上,且ABC ∆是等腰三角形,请写出一个满足条件的点C 的坐标_______;满足条件的点C 一共有_______个.20.如图,在△ABC 中,AB =AC ,∠BAC=36°,AD 、CE 是△ABC 的两条角平分线,BD=5,P 是AD 上的一个动点,则线段BP +EP 最小值的是____________.三、解答题21.如图,点E 在ABC 的边AB 上,90ABC EAD ∠=∠=︒,30BAC ADE ∠=∠=︒,DE 的延长线交AC 于点G ,交BC 延长线于点F .AB=AD ,BH ⊥DF ,垂足为H .(1)求HAE ∠的度数;(2)求证:DHFB FH =+. 22.如图,已知∠A =∠D =90°,E 、F 在线段BC 上,DE 与AF 交于点O ,且AB =CD ,BE=CF .求证:(1)Rt △ABF ≌Rt △DCE ;(2)OE =OF .23.如图,90BAD CAE ∠=∠=︒,AB AD =,AE AC =,AF CB ⊥,垂足为F .(1)求证:ABC ADE △≌△;(2)求FAE ∠的度数.24.如图:已知ABC 中AB AC =:(1)尺规作图:过A 点作//AE BC (不写作法,保留作图痕迹);(2)求证:AE 是ABC 的一个外角角平分线.25.在如图所示的方格纸中,(1)作出ABC 关于MN 对称的111A B C △;(2)222A B C △是由111A B C △经过怎样的平移得到的?并求出111A B C △在平移过程中所扫过的面积.26.如图,在ABC 中,45B ︒∠=,60C ︒∠=,点E 为线段AB 的中点,点F 在边AC 上,连结EF ,沿EF 将AEF 折叠得到PEF .(1)如图1,当点P 落在BC 上时,求AEP ∠的度数.(2)如图2,当PF AC ⊥时,求BEP ∠的度数.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】延长AD 到G 使得DG AD =,连接BG ,证明()△△ACD GBD SAS ≅,根据全等三角形的性质可得到CAD G ∠=∠,AC=BD ,等量代换得到BE=BG ,再由等腰三角形的性质得到G BEG ∠=∠,推出EF=AF ,即可解决问题;【详解】如图,延长AD 到G 使得DG AD =,连接BG ,∵AD 是△ABC 的中线,∴CD=BD ,在△ACD 与△GBD 中,CD BD ADC BDG AD DG =⎧⎪∠=∠⎨⎪=⎩,∴()△△ACD GBDSAS ≅, ∴CAD G ∠=∠,AC=BD ,∵BE=AC ,∴BE=BG ,∴G BEG ∠=∠,∵BEG AEF ∠=∠,∴AEF EAF ∠=∠,∴EF=AF ,∴AF CF BF AF +=-,即69AF AF +=-, ∴32AF =; 故选:B .【点睛】 本题主要考查了全等三角形的判定与性质,结合等腰三角形的性质求解是解题的关键. 2.B解析:B【分析】由作图易判断射线OP 为AOB ∠的角平分线,又为CD 的垂直平分线,CDP 为等边三角形,由它们的性质逐项判断即可.【详解】由作图(1)(2)可知OC=OD ,CP=DP ,∴射线OP 为AOB ∠的角平分线,又为CD 的垂直平分线.∴即=AOP BOP ∠∠,CD OP ⊥,故③④正确;由作图(2)可知CP=CD=DP ,即CDP 为等边三角形,又∵CD OP ⊥,∴CP=2CQ ,故②正确;若//CP OB ,则=CPO BOP ∠∠,又∵=AOP BOP ∠∠,∴=CPO AOP ∠∠,∴OC=PC ,故只有当OC=PC 时,//CP OB ,故①错误.综上,正确的有②③④.故选:B .【点睛】本题考查角平分线的判定和性质,线段垂直平分线的判定和性质,等边三角形的判定和性质.理解作图步骤隐藏的已知信息是解答本题的关键.3.C解析:C【分析】根据绝对值非负性的性质以及平方的非负性可知a 和b 的值,然后根据等腰三角形的性质分情况计算即可;【详解】∵ ()2370a b -+-=, ∴ a=3,b=7,若腰为3时,3+3<7,三角形不成立;若腰为7时,则周长为7+7+3=17,故选:C .【点睛】本题考查了非负性的性质以及等腰三角形的性质,熟练掌握知识点是解题的关键;. 4.C解析:C【分析】利用全等三角形的判定和等腰三角形的性质判断A 、B ,根据对顶角的定义判断C ,根据等边三角形的判定判断D .【详解】解:A .两条直角边对应相等的两个直角三角形,符合两三角形的判定定理“SAS”;故本选项是真命题;B .已知等腰三角形的两腰相等,且顶角的平分线即为底边上的高,则可根据为HL 可以得出两个三角形全等,故本选项是真命题;C 、相等的角不一定是对顶角,故错误,是假命题;D 、有一个角为60°的等腰三角形是等边三角形,正确,是真命题;故选C .【点睛】本题考查了命题和定理,解题的关键是明确题意,可以判断题目中的命题的真假,对于假命题能举出反例或者说明理由.5.B解析:B【分析】根据AB AC =,D 为BC 的中点,∠CAD=40BAD ∠=︒,∠C=50︒,由AD AE =,得到∠AED =70︒,再根据∠AED=∠C+∠CDE 求得答案.【详解】∵AB AC =,D 为BC 的中点,∴∠CAD=40BAD ∠=︒,∠BAC=802BAD ∠=︒,∴∠B=∠C=50︒,∵AD AE =,∴∠AED=∠ADE=70︒,∵∠AED=∠C+∠CDE ,∴CDE ∠=20︒,故选:B .【点睛】此题考查等腰三角形的性质:等边对等角求角的度数以及三线合一,三角形的内角和定理,三角形外角的性质,熟记并熟练运用等腰三角形的性质是解题的关键.6.C解析:C【分析】延长BD 与AC 交于点E ,由题意可推出BE=AE ,依据等角的余角相等,即可得等腰三角形BCE ,可推出BC=CE ,AE=BE=2BD ,根据AC=6,BC=4,即可推出BD 的长度.【详解】解:延长BD 与AC 交于点E ,∵∠A=∠ABD ,∴BE=AE ,∵BD ⊥CD ,∴BE ⊥CD ,∵CD 平分∠ACB ,∴∠BCD=∠ECD ,∴∠EBC=∠BEC ,∴△BEC 为等腰三角形,∴BC=CE ,∵BE ⊥CD ,∴2BD=BE ,∵AC=6,BC=4,∴CE=4,∴AE=AC-EC=6-4=2,∴BE=2,∴BD=1.故选:C .【点睛】本题主要考查等腰三角形的判定与性质,比较简单,关键在于正确地作出辅助线,构建等腰三角形,通过等量代换,即可推出结论.7.D解析:D【分析】先根据直角三角形的性质得出∠2=30°,CD=12AD,再由三角形的面积公式即可得出结论.【详解】解:由作图过程可知:AP平分∠BAC,∵∠C=90°,∠B=30°,∴∠BAC=60°,∴∠1=∠2=∠B=30°,∴CD=12AD,AD=BD,∴BC=BD+CD=AD+12AD=32AD,S△DAC=12AC•CD=14AC•AD,∴S△ABC=12AC•BC=12AC•32AD=34AC•AD,∴S△DAC:S△ABC=1:3,故选D.【点睛】本题考查的是作图—基本作图,熟知角平分线的作法和性质,30°的直角三角形的性质是解答此题的关键.8.B解析:B【分析】根据等边三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3,以及a2=2a1,得出a3=4a1=4,a4=8a1=8,a5=16a1=16,进而得出答案.【详解】解:∵△A1B1A2是等边三角形,∴A1B1=A2B1,∠3=∠4=∠12=60°,∴∠2=120°,∵∠MON=30°,∴∠1=180°−120°−30°=30°,又∵∠3=60°,∴∠5=180°−60°−30°=90°,∵∠MON=∠1=30°,∴OA 1=A 1B 1=1,∴A 2B 1=1,∵△A 2B 2A 3、△A 3B 3A 4是等边三角形,∴∠11=∠10=60°,∠13=60°,∵∠4=∠12=60°,∴A 1B 1∥A 2B 2∥A 3B 3,B 1A 2∥B 2A 3,∴∠1=∠6=∠7=30°,∠5=∠8=90°,∴a 2=2a 1=2,a 3=4a 1=22,a 4=8a 1=32,a 5=16a 1=42,,以此类推:a 2019=22018.故选:B .【点睛】此题主要考查了等边三角形的性质以及含30度角的直角三角形的性质,根据已知得出a 3=4a 1=4,a 4=8a 1=8,a 5=16…进而发现规律是解题关键.9.B解析:B【分析】根据等腰ABC 的两边长为5,7,得到ABC 的三边长为5,7,7;或5,5,7;之后根据全等分2x-3=5,2x-3=7,3x-5=5,3x-5=7四种情况分类讨论,舍去不合题意的即可求解.【详解】解:∵等腰ABC 的两边长为5,7,∴ABC 的三边长为5,7,7;或5,5,7;由题意得另一个等腰三角形的两边为23x -,35x -,且与等腰ABC 全等(1)当2x-3=5时,解得x=4,则3x-5=7,符合题意;(2)当2x-3=7时,解得x=5,则3x-5=10,不合题意;(3)当3x-5=5时,解得103x ,则2x-3=113,不合题意;(4)当3x-5=7时,解得x=4,则2x-3=5,符合题意;综上所述:x的值为4.故答案为:B【点睛】本题考查了等腰三角形的定义,全等三角形的性质,根据题意分类讨论是解题关键.10.B解析:B【分析】首先根据DE是线段AB的垂直平分线,可得AD=BD,然后根据△BCD的周长是9cm,以及AD+DC=AC,求出BC的长即可.【详解】解:∵DE是线段AB的垂直平分线,∴AD=BD,∵△BCD的周长是9cm,∴BD+DC+BC=9(cm),∴AD+DC+BC=9(cm),∵AD+DC=AC,∴AC+BC=9(cm),又∵AC=5cm,∴BC=9−5=4(cm).故选:B.【点睛】此题主要考查了线段垂直平分线的性质和应用,要熟练掌握,解答此题的关键是要明确:①垂直平分线垂直且平分其所在线段.②垂直平分线上任意一点,到线段两端点的距离相等.11.D解析:D【分析】①根据角平分线的定义与三角形外角的性质可证此结论;②利用等腰三角形“三线合一”可证明此结论;③根据角平分线定义与平行线性质可得∠APG=∠BAP,再利用等腰三角形的判定可证此结论;④如下图,由角平分线的性质定理可得PM=PN,PM=PO,则PN =PO,即可证明结论.【详解】解:∵AP平分∠BAC,PB平分∠CBE,∴∠CAB =2∠PAB ,∠CBE =2∠PBE ,∵∠CBE =∠CAB +∠ACB ,∠PBE =∠PAB +∠APB ,即∠CBE =∠CAB +2∠APB ,∴∠ACB =2∠APB .故①正确;∵BE =BC ,BP 平分∠CBE ,∴BP 垂直平分CE (三线合一).故②正确;∵AP 平分∠BAC ,∴∠CAP =∠BAP ,∵PG ∥AD ,∴∠APG =∠CAP ,∴∠APG =∠BAP ,∴PG =AG .故③正确;如图,过点P 作PM ⊥AE 于点M ,PN ⊥AD 于点N ,PO ⊥BC 于点O ,∵AP 平分∠BAC ,PB 平分∠CBE ,∴PM=PN ,PM=PO ,∴PN =PO ,∴CP 平分∠DCB .故④正确.故选:D .【点睛】本题考查了角平分线的判定与性质、平行线的性质、等腰三角形的性质与判定,熟练掌握相关知识并能灵活运用所学知识进行论证是解题的关键.12.C解析:C【分析】根据等腰ABC ,118ABC ︒∠=,得到AB=CB ,∠A=∠C=1(180)312ABC ︒︒-∠=,由DE 垂直平分AB ,求得∠ABE=31A ∠=︒,同理:31QBC C ∠=∠=︒,根据∠EBQ=∠ABC-∠ABE-∠QBC 计算得出答案.【详解】在等腰ABC 中,118ABC ︒∠=,∴AB=CB ,∠A=∠C=1(180)312ABC ︒︒-∠=, ∵DE 垂直平分AB ,∴AE=BE ,∴∠ABE=31A ∠=︒,同理:31QBC C ∠=∠=︒,∴∠EBQ=∠ABC-∠ABE-∠QBC=56︒,故选:C .【点睛】此题考查等腰三角形的性质,线段垂直平分线的性质,三角形的内角和定理,熟记线段垂直平分线的性质是解题的关键. 二、填空题13.5或11【分析】过点P 作PH ⊥OB 于点H 根据PE=PF 可得EH=FH=EF=3根据∠AOB=30°OP=16可得PH=OP=8当点D 运动到点F 右侧或当点D 运动到点F 左侧时分别计算可得DF 的长【详解】解析:5或11【分析】过点P 作PH ⊥OB 于点H ,根据PE=PF ,可得EH=FH=12EF=3,根据∠AOB=30°,OP=16,可得PH=12OP=8,当点D 运动到点F 右侧或当点D 运动到点F 左侧时,分别计算可得DF 的长.【详解】如图,过点P 作PH ⊥OB 于点H ,∵PE=PF ,∴EH=FH=12EF=3, ∵∠AOB=30°,OP=16,∴PH=12OP=8,当点D运动到点F右侧时,∵∠PDE=45°,∴∠DPH=45°,∴PH=DH=8,∴DF=DH-FH=8-3=5;当点D运动到点F左侧时,D′F=D′H+FH=8+3=11.所以DF的长为5或11.故答案为:5或11.【点睛】本题考查了含30度角的直角三角形的性质、等腰三角形的性质,解决本题的关键是分两种情况画图解答.14.5【分析】作PH⊥MN于H如图根据等腰三角形的性质得MH=NH=MN=15在Rt△POH中由∠POH=60°得到∠OPH=30°则根据在直角三角形中30°角所对的直角边等于斜边的一半可得OH=OP=解析:5【分析】作PH⊥MN于H,如图,根据等腰三角形的性质得MH=NH=12MN=1.5,在Rt△POH中由∠POH=60°得到∠OPH=30°,则根据在直角三角形中,30°角所对的直角边等于斜边的一半可得OH=12OP=5,然后计算OH-MH即可.【详解】作PH⊥MN于H,如图,∵PM=PN,∴MH=NH=12MN=1.5,在Rt△POH中,∵∠POH=60°,∴∠OPH=30°,∴OH=12OP=12×10=5,∴OM=OH-MH=5-1.5=3.5.故答案为:3.5.【点睛】本题考查了含30度角的直角三角形的性质:在直角三角形中,30°角所对的直角边等于斜边的一半.也考查了等腰三角形的性质.15.都是轴对称图形【分析】利用已知图形的特征分别得出其公共特征【详解】解:答案不唯一例如:都是轴对称图形故答案为:都是轴对称图形【点睛】本题考查了轴对称图形解题的关键是正确把握轴对称图形的特征解析:都是轴对称图形【分析】利用已知图形的特征分别得出其公共特征.【详解】解:答案不唯一,例如:都是轴对称图形,故答案为:都是轴对称图形.【点睛】本题考查了轴对称图形,解题的关键是正确把握轴对称图形的特征.16.4【分析】先根据线段的垂直平分线的性质得到DB=DA则有∠A=∠ABD而∠C=∠DBC=利用三角形的内角和可得∠A+∠ABD=得到∠ABD=在Rt△BED中根据含角的直角三角形三边的关系即可得到DE解析:4【分析】先根据线段的垂直平分线的性质得到DB=DA,则有∠A=∠ABD,而∠C=90︒,∠DBC= 30︒,利用三角形的内角和可得∠A+∠ABD=903060︒-︒=︒,得到∠ABD= 30︒,在Rt△BED中,根据含30︒角的直角三角形三边的关系即可得到DE的长度.【详解】解:∵DE垂直平分AB,∴DB=DA,∴∠A=∠ABD,∵∠C=90︒,∠DBC=30︒,DC=4cm,∴BD=8cm,∠A+∠ABD=903060︒-︒=︒,∴∠ABD=30︒,在Rt△BED中,∠EBD=30︒,BD=8cm,∴DE=142BD =cm , 即D 到AB 的距离为4cm ,故答案为:4.【点睛】本题考察线段垂直平分线的性质、等腰三角形的性质以及含30︒角的直角三角形的性质,解题关键是掌握相关性质.17.6【分析】连接OD 由题意可知OP =DP =OD 即△PDO 为等边三角形所以∠OPA =∠PDB =∠DPA=60°推出△OPA ≌△PDB 根据全等三角形的对应边相等知OA =BP =3则AP =AB −BP =6【详解解析:6【分析】连接OD .由题意可知OP =DP =OD ,即△PDO 为等边三角形,所以∠OPA =∠PDB =∠DPA=60°,推出△OPA ≌△PDB ,根据全等三角形的对应边相等知OA =BP =3,则AP =AB−BP =6.【详解】解:如图,连接OD ,∵PO =PD ,∴OP =DP =OD ,∴△PDO 为等边三角形,即∠DPO =60°,∵等边△ABC ,∴∠A =∠B =60°,AC =AB =9,∴∠OPA =180°−60°−∠DPA=120°−∠DPA∠PDB =180°−∠DPA−60°=120°−∠DPA∴∠OPA=∠PDB ,∴ 在△OPA 和△PDB 中,A B OPA PDB PO PD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△OPA ≌△PDB (AAS ),∵AO =3,∴AO =PB =3,∴AP =6.故答案是:6.【点睛】本题主要考查全等三角形的判定和性质、等边三角形的性质,关键在于求证△OPA ≌△PDB .18.【分析】作DH ⊥AB 根据直角三角形的性质求出DH 根据平行线的性质角平分线的性质解答【详解】解:作DH ⊥AB 于H ∵∴∠DEH=∠DBE+∠BDE=30°∴DH=∵DE ∥BC ∴∠DBF=∠BDE ∴∠DB 解析:12a 【分析】作DH ⊥AB ,根据直角三角形的性质求出DH ,根据平行线的性质,角平分线的性质解答.【详解】解:作DH ⊥AB 于H ,∵15DBE BDE ∠=∠=︒∴∠DEH=∠DBE+∠BDE=30°,DE BE a ==∴DH=11=22DE a , ∵DE ∥BC ,∴∠DBF=∠BDE , ∴∠DBF=∠DBH ,又DF ⊥BC ,DH ⊥AB ,∴DF=DH=12a , 故答案为:12a . 【点睛】本题考查的是角平分线的性质,直角三角形的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.19.(答案不唯一符合题意即可)8【分析】分别以AB 为圆心AB 为半径作圆弧寻找在圆弧上的格点即可【详解】①如图以A 为圆心AB 为半径作圆弧符合题意的格点有5个;②如图以B 为圆心AB 为半径作圆弧符合题意的格点 解析:()2,2--(答案不唯一,符合题意即可) 8【分析】分别以A ,B 为圆心,AB 为半径作圆弧,寻找在圆弧上的格点即可.【详解】①如图,以A 为圆心,AB 为半径作圆弧,符合题意的格点有5个;②如图,以B 为圆心,AB 为半径作圆弧,符合题意的格点有3个;③如图,在AB 的垂直平分线上时,无符合题意的格点;综上,符合题意的格点共有8个,故答案为:()2,2--(答案不唯一,符合题意即可);8.【点睛】本题考查在网格中作等腰三角形,根据已知边可作为底边或者腰进行分类讨论,熟练掌握尺规作图方法是解题关键.20.10【分析】连结CP 利用等腰三角形顶角平分线所在直线为对称轴得BP=CPBD=CD=5当点CPE 在一直线是BP +EP 最小值最小值为BP +EP=EC 由∠BAC=36°AB=AC 求出∠ABC=∠ACB=解析:10【分析】连结CP ,利用等腰三角形顶角平分线所在直线为对称轴得 BP=CP ,BD=CD=5,当点C 、P 、E 在一直线是BP +EP 最小值,最小值为BP +EP= EC ,由∠BAC=36°,AB=AC ,求出∠ABC=∠ACB=72°,又CE 是△ABC 的角平分线有∠BCE=36°,求出∠BEC=72º,得CE=BC =10即可.【详解】连结CP ,点P 在AD 上运动,∵AB=AC ,AD 平分∠BAC ,∴AD 所在直线为对称轴,∴BP=CP ,BD=CD=5,当点C 、P 、E 在一直线是BP +EP 最小值,∴BP +EP=PC+EP=EC ,∵∠BAC=36°,AB=AC ,∴∠ABC=∠ACB=()1180-36=722︒︒︒, ∵CE 是△ABC 的角平分线, ∴∠BCE=1ACB=362∠︒, ∴∠BEC=180º-∠EBC-∠BCE =180º-72º-36º=72º,∴∠BEC=∠EBC ,∴CE=BC=BD+CD=10.故答案为:10.【点睛】本题考查等腰三角形的判定和性质,角平分线性质,轴对称性质,掌握等腰三角形的判定和性质,角平分线性质,线段和最短问题经常利用轴对称性质作出对称线段,三点在一线时最短作出图形是解题关键.三、解答题21.(1)=15∠HAE ;(2)见解析【分析】(1)连接BG ,先根据等腰三角形的判定得出AG=AD ,再根据SSS 得出△AGH ≌△ABH ,从而得出=∠∠HAE HAG ,继而得出HAE ∠的度数;(2)在DH 上取HM=HF ,连接BM ,根据垂直平分线的性质得出BF=BM ,再根据等腰三角形的判定得出DM=BM ,从而得出结论【详解】解:(1)连接BG∵90EAD ∠=︒,30BAC ∠=︒,∴∠DAG=120°,∵30ADE ∠=︒,∴30∠=∠=︒ADE AGD ,∴AG=AD ,∵AB=AD ,∴AG=AB ,∵30BAC ∠=︒,∴75∠=∠=︒AGB ABG ,∵BH ⊥DF ,90EAD ∠=︒,∴=90∠∠=︒BHE EAD ,∵=∠∠BEH AED ,∴30∠=∠=︒ADE EBH ,∴45∠=∠-∠=︒HBG ABG EBH ,∵90FHB ∠=︒,∴∠=∠HBG HGB ,∴GH=BH ,∵AG=AB ,AH=AH ,∴△AGH ≌△ABH ,∴=∠∠HAE HAG ,∵30BAC ∠=︒,∴=15∠HAE ;(2)在DH 上取HM=HF ,连接BM ;∵90ABC EAD ∠=∠=︒,∴AD//BF ,∴30∠=∠=︒F ADE ,∵BH ⊥DF ,HM=HF ,∴BF=BM∴30∠=∠=︒F BMF∵AB=AD ,90EAD ∠=︒∴45ADB ∠=︒,∵30ADE ∠=︒∴15∠=︒MDB ,∵30∠=︒=∠+∠BMF MBD MDB ,∴==15∠∠MBD MDB ,∴BM=DM=BF ,∵DH=DM+HM ,∴DH=FH+BF【点睛】本题考查了等腰三角形的性质和判定、全等三角形的性质和判定、垂直平分线的性质,解题的关键是学会添加常用辅助线面构造全等三角形解决问题,属于中考常考题型. 22.(1)见解析;(2)见解析【分析】(1)由于△ABF 与△DCE 是直角三角形,根据直角三角形全等的判定的方法即可证明; (2)先根据三角形全等的性质得出∠AFB =∠DEC ,再根据等腰三角形的性质得出结论.【详解】证明:(1)∵BE =CF ,∴BE +EF =CF +EF ,即BF =CE ,∵∠A =∠D =90°,∴△ABF 与△DCE 都为直角三角形,在Rt △ABF 和Rt △DCE 中∵BF CE AB CD =⎧⎨=⎩, ∴Rt △ABF ≌Rt △DCE (HL );(2)∵Rt △ABF ≌Rt △DCE (已证),∴∠AFB =∠DEC ,∴OE =OF .【点睛】本题主要考查全等三角形的判定和性质以及等腰三角形的判定定理,掌握HL 判断两个直角三角形全等,是解题的关键.23.(1)见解析;(2)135FAE ∠=︒.【分析】(1)根据题意和题目中的条件可以找出△ABC ≌△ADE 的条件;(2)根据(1)中的结论和等腰直角三角形的定义可以得到∠FAE 的度数.【详解】证明:(1)∵∠BAD=∠CAE=90°,∴∠BAC+∠CAD=90°,∠CAD+∠DAE=90°,∴∠BAC=∠DAE ,在△BAC 和△DAE 中,AB AD BAC DAE AC AE =⎧⎪∠=∠⎨⎪=⎩,∴△BAC ≌△DAE (SAS );(2)∵∠CAE=90°,AC=AE ,∴∠E=45°,由(1)知△BAC ≌△DAE ,∴∠BCA=∠E=45°,∵AF ⊥BC ,∴∠CFA=90°,∴∠CAF=45°,∴∠FAE=∠FAC+∠CAE=45°+90°=135°.【点睛】本题考查全等三角形的判定与性质及等腰三角形的性质,解答本题的关键是明确题意,找出全等所需要的条件.24.(1)见解析;(2)见解析.【分析】(1)作∠CAE=∠C 即可;(2)延长BA ,根据两直线平行,同位角相等,有∠EAF=∠B ,由(1)可知∠CAE=∠C ,再根据AB=AC ,可得∠B=∠C ,等量替换之后即可得证.【详解】(1)射线AE 为所求;(2)证明:如图所示,延长BA ,∵//AE BC ,∴∠EAF=∠B ,∠CAE=∠C ,∵AB=AC ,∴∠B=∠C ,∴∠EAF=∠CAE ,∴AE 是ABC 的一个外角角平分线.【点睛】本题考查了平行线的性质和判定,等腰三角形的性质和角平分线的判定等知识,掌握相关知识是解题的关键.25.(1)图见解析;(2)先向右平移6个单位,再向下平移2个单位,面积是16【分析】(1)作点A 、B 、C 关于MN 的对称点1A 、1B 、1C ,即可得到111A B C △;(2)先向右平移6个单位,再向下平移2个单位可以得到222A B C △,画出平移的图象,求出扫过的面积.【详解】解:(1)如图所示,(2)如图所示,111A B C △先向右平移6个单位,再向下平移2个单位,得到222A B C △,111A B C △在平移过程中所扫过的面积是图中阴影部分,16242124162S =⨯+⨯⨯=+=. 【点睛】本题考查轴对称和平移,解题的关键是掌握轴对称图形的画法和图形平移的方法. 26.(1)90°;(2)60°【分析】(1)证明BE=EP ,可得∠EPB=∠B=45°解决问题.(2)根据折叠的性质求出∠AFE=45°,根据三角形内角和求出∠BAC ,从而得到∠AEF 和∠PEF ,再根据平角的定义求出∠BEP .【详解】解:(1)如图1中,∵折叠,∴△AEF ≌△PEF ,∴AE=EP ,∵点E 是AB 中点,即AE=EB ,∴BE=EP ,∴∠EPB=∠B=45°,∴∠PEB=90°,∴∠AEP=180°-90°=90°.(2)∵PF ⊥AC ,∴∠PFA=90°,∵沿EF 将△AEF 折叠得到△PEF .∴△AEF ≌△PEF ,∴∠AFE=∠PFE=45°,∵∠B=45°,∠C=60°,∴∠BAC=180°-45°-60°=75°,∴∠AEF=∠PEF=180°-75°-45°=60°,∴∠BEP=180°-60°-60°=60°.【点睛】本题考查了折叠的性质,三角形内角和,全等三角形的性质,解题的关键是根据折叠的性质得到相等的线段和角.。
八年级数学上册第十三章《轴对称》经典测试卷(2)

一、选择题1.如图,AD 是ABC ∆的中线,E 是AD 上一点,BE 交AC 于F ,若,9,6BE AC BF CF ===,则AF 的长度为( )A .1B .1.5C .2D .2.5B解析:B【分析】 延长AD 到G 使得DG AD =,连接BG ,证明()△△ACD GBD SAS ≅,根据全等三角形的性质可得到CAD G ∠=∠,AC=BD ,等量代换得到BE=BG ,再由等腰三角形的性质得到G BEG ∠=∠,推出EF=AF ,即可解决问题;【详解】如图,延长AD 到G 使得DG AD =,连接BG ,∵AD 是△ABC 的中线,∴CD=BD ,在△ACD 与△GBD 中,CD BD ADC BDG AD DG =⎧⎪∠=∠⎨⎪=⎩,∴()△△ACD GBDSAS ≅, ∴CAD G ∠=∠,AC=BD ,∵BE=AC ,∴BE=BG ,∴G BEG ∠=∠, ∵BEG AEF ∠=∠,∴AEF EAF ∠=∠,∴EF=AF ,∴AF CF BF AF +=-,即69AF AF +=-, ∴32AF =; 故选:B .【点睛】 本题主要考查了全等三角形的判定与性质,结合等腰三角形的性质求解是解题的关键. 2.以下尺规作图中,点D 为线段BC 边上一点,一定能得到线段AD BD =的是( ) A . B .C .D . D解析:D【分析】点D 到点A 、点B 的距离相等可知点D 在线段AB 的垂直平分线上,据此可得答案.【详解】解:∵点D 到点A 、点B 的距离AD=BD ,∴点D 在线段AB 的垂直平分线上,故选择:D .【点睛】本题主要考查作图−复杂作图,解题的关键是掌握线段中垂线的性质与尺规作图.3.点1(1,2020)P a -和2(2017,1)P b -关于x 轴对称,则()2021a b +的值为( ) A .1-B .1C .0D .2021- A解析:A【分析】关于x 轴对称的点,横坐标相同,纵坐标互为相反数,可得a ,b 的值,进一步可得答案.【详解】解:∵1(1,2020)P a -和2(2017,1)P b -关于x 轴对称,得a-1=2017,1-b=2020.解得a=2018,b=-2019,∴()()()202120212021=2018201911a b +-=-=- 故选:A .【点睛】本题考查了关于x 轴、y 轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x 轴对称的点,横坐标相同,纵坐标互为相反数;关于y 轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.4.如图,在ABC 中,90C ∠=︒,30B ∠=︒,以点A 为圆心,任意长为半径画弧分别交AB ,AC 于点M 和N ,再分别以点M ,N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,连接AP 并延长交BC 于点D .则下列说法中正确的个数是( ) ①AD 是BAC ∠的平分线;②60ADC ∠=︒;③点D 在AB 的中垂线上;④:2:5DAC ABC S S =△△A .1B .2C .3D .4C解析:C【分析】 根据题意作图可知:AD 是BAC ∠的平分线,由此判断①正确;先求得∠BAC=60︒,由AD 是BAC ∠的平分线,求得∠CAD=∠BAD=30B ∠=︒,即可得到60ADC ∠=︒,判断②正确;过点D 作DE ⊥AB 于E ,根据∠BAD=30B ∠=︒,证得△ABD 是等腰三角形,得到AE=BE ,即可判断③正确;证明Rt △ACD ≌Rt △AED ,得到S △ACD =S △AED ,根据等底同高得到S △AED =S △BED ,即可得到:1:3DAC ABC S S =,判断④错误.【详解】解:由题意得:AD 是BAC ∠的平分线,故①正确;∵90C ∠=︒,30B ∠=︒,∴∠BAC=60︒,∵AD 是BAC ∠的平分线,∴∠CAD=∠BAD=30B ∠=︒,∴60ADC ∠=︒,故②正确;过点D 作DE ⊥AB 于E ,∵∠BAD=30B ∠=︒,∴AD=BD ,∴△ABD 是等腰三角形,∴AE=BE ,∴点D 在AB 的中垂线上,故③正确;∵AD 是BAC ∠的平分线,DC ⊥AC ,DE ⊥AB ,∴CD=DE ,∠C=∠AED=90︒,又∵AD=AD ,∴Rt △ACD ≌Rt △AED ,∴S △ACD =S △AED ,∵AE=BE ,DE ⊥AB ,∴S △AED =S △BED ,∴:1:3DAC ABC S S =,故④错误;故选:C ..【点睛】此题考查角平分线的作图方法及性质应用,全等三角形的判定及性质,线段垂直平分线的判定,等腰三角形的判定及性质,三角形内角和定理,熟练掌握各部分知识并综合应用是解题的关键.5.如图,长方形纸片ABCD (长方形的对边平行且相等,每个角都为直角),将纸片沿EF 折叠,使点C 与点A 重合,下列结论:①AF AE =,②ABE AGF ≌,③AF CE =,④60AEF ∠=︒,其中正确的( )A .①②B .②③C .①②③D .①②③④C解析:C【分析】 根据翻折的性质可得∠AEF =∠CEF ,根据两直线平行,内错角相等可得∠AFE =∠CEF ,然后求出∠AEF =∠AFE ,根据等角对等边可得AE =AF ;根据HL 即可得到△ABE ≌AGF .根据等量代换即可得到AF =CE ;根据△AEF 是等腰三角形,不一定是等边三角形,即可得到∠AEF 不一定为60°.【详解】解:由翻折的性质得,∠AEF =∠CEF ,∵矩形ABCD 的对边AD ∥BC ,∴∠AFE =∠CEF ,∴∠AEF =∠AFE ,∴AE =AF ,故①正确,在Rt △ABE 和Rt △AGF 中,AE AF AB AG =⎧⎨=⎩, ∴Rt △ABE ≌Rt △AGF (HL ),故②正确,∵CE =AE ,AE =AF ,∴CE =AF ,故③正确;∵AE =AF ,∴△AEF 是等腰三角形,不一定是等边三角形,∴∠AEF 不一定为60°,故④错误;故选C .【点睛】本题考查了翻折变换的性质,等腰三角形的判定与性质,解题时注意:折叠是一种对称变换,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.6.如图,已知点D 为ABC 内一点,CD 平分ACB ∠,BD CD ⊥,A ABD ∠=∠,若6AC =,4BC =,则BD 的长为( )A .2B .1.5C .1D .2.5C解析:C【分析】延长BD 与AC 交于点E ,由题意可推出BE=AE ,依据等角的余角相等,即可得等腰三角形BCE ,可推出BC=CE ,AE=BE=2BD ,根据AC=6,BC=4,即可推出BD 的长度.【详解】解:延长BD 与AC 交于点E ,∵∠A=∠ABD ,∴BE=AE ,∵BD ⊥CD ,∴BE ⊥CD ,∵CD 平分∠ACB ,∴∠BCD=∠ECD ,∴∠EBC=∠BEC ,∴△BEC 为等腰三角形,∴BC=CE ,∵BE ⊥CD ,∴2BD=BE ,∵AC=6,BC=4,∴CE=4,∴AE=AC-EC=6-4=2,∴BE=2,∴BD=1.故选:C .【点睛】本题主要考查等腰三角形的判定与性质,比较简单,关键在于正确地作出辅助线,构建等腰三角形,通过等量代换,即可推出结论.7.如图,在ABC 中,87,A ABC ∠=︒∠的平分线BD 交AC 于点,D E 是BC 中点,且DE BC ⊥,那么C ∠的度数为( )A .16︒B .28︒C .31︒D .62︒C解析:C【分析】 根据角平分线的定义得到ABD CBD ∠=∠,根据线段垂直平分线的性质得到DB=DC ,进而得到DBC C ∠=∠,根据三角形内角和定理列式计算即可.【详解】∵BD 平分ABC ∠,∴ABD CBD ∠=∠,∵DE BC ⊥,E 是BC 中点,∴DB=DC ,∴DBC C ∠=∠,∴ABD CBD C ∠=∠=∠,∴18087ABD CBD C ∠+∠+∠=︒-︒,解得:31C ∠=︒,故选:C .【点睛】本题考查的是线段的垂直平分线的性质、三角形内角和定理,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.8.北京有许多高校,下面四所高校校徽主体图案是轴对称图形的有( )A .1个B .2个C .3个D .4个B解析:B【分析】 根据轴对称图形的概念对各图案逐一进行判断即可得答案.【详解】第一个图案是轴对称图形,第二个图案不是轴对称图形,第三个图案是轴对称图形,第四个图案不是轴对称图形,综上所述:是轴对称图形的图案有2个,故选:B .【点睛】本题考查轴对称图形,判断轴对称图形的关键是寻找对称轴,图形沿对称轴折叠,对称轴两边的图形能够完全重合;熟练掌握轴对称图形的定义是解题关键.9.如图,在ABC ∆中,5AC =,线段AB 的垂直平分线交AC 于点,D BCD ∆的周长是9,则BC 的长为( )A .3B .4C .5D .6B解析:B【分析】 首先根据DE 是线段AB 的垂直平分线,可得AD =BD ,然后根据△BCD 的周长是9cm ,以及AD +DC =AC ,求出BC 的长即可.【详解】解:∵DE 是线段AB 的垂直平分线,∴AD=BD,∵△BCD的周长是9cm,∴BD+DC+BC=9(cm),∴AD+DC+BC=9(cm),∵AD+DC=AC,∴AC+BC=9(cm),又∵AC=5cm,∴BC=9−5=4(cm).故选:B.【点睛】此题主要考查了线段垂直平分线的性质和应用,要熟练掌握,解答此题的关键是要明确:①垂直平分线垂直且平分其所在线段.②垂直平分线上任意一点,到线段两端点的距离相等.=,则有()10.如图,AC AD=,BC BDA.AB与CD互相垂直平分B.CD垂直平分ABC.CD平分ACB∠D.AB垂直平分CD D解析:D【分析】根据线段垂直平分线的判定定理解答.【详解】=,∵AC AD=,BC BD∴AB垂直平分CD,故D正确,A、B错误,OC不平分∠ACB,故C错误,故选:D.【点睛】此题考查线段垂直平分线的判定:到线段两个端点距离相等的点在这条线段的垂直平分线上.二、填空题-关于y轴的对称点,再将该对称点先向下11.平面直角坐标系xOy中,先作出点P (2,3)平移1个单位,再向左平移2个单位得到点P1,称为完成一次图形变换,再将点P1进行同样的图形变换得到点P2,以此类推,则点P2020的坐标为___________.【分析】按程序先作y轴对称求出点坐标横坐标-2纵坐标-1完成一次图形变换求出P变换后的坐标找出几次变换后规律奇次变换点的横坐标x=0偶次变换点的横坐标x=-2纵坐标变一次下移一个单位【详解】解:完成--解析:(2,2017)【分析】按程序先作y轴对称,求出点坐标,横坐标-2,纵坐标-1,完成一次图形变换求出P变换后的坐标,找出几次变换后规律奇次变换点的横坐标x=0,偶次变换点的横坐标x=-2,纵坐标变一次下移一个单位.【详解】-关于y轴的对称点(2,3),横坐标2-2=0,纵坐标3-解:完成1次图形变换,点P (2,3)1=2,P1(0,2),完成2次图形变换,点P1(0,2)关于y轴的对称点(0,2),横坐标0-2=-2,纵坐标2-1=1,P2(-2,1),完成3次图形变换,点P2(-2,1)关于y轴的对称点(2,1),横坐标3-3=0,纵坐标1-1=0,P3(0,0),完成4次图形变换,点P3(0,0)关于y轴的对称点(0,0),横坐标0-2=-2,纵坐标0-1=-1,P4(-2,-1),……,完成2020次图形变换,点P2019(0,3-2019)关于y轴的对称点(0,-2016),横坐标0-2=-2,纵坐标-2016-1=-2017,P2020(-2,-2017).故答案为:(-2,-2017).【点睛】本题考查图形规律探索问题,掌握图形程序变换的轴对称性质和平移特征,关键是找到变换规律奇次变换点的横坐标x=0,偶次变换点的横坐标x=-2,纵坐标变一次下移一个单位.12.若等腰三角形的顶角为30°,腰长为10,则此等腰三角形的面积为_________.25【分析】依据含30°角的直角三角形的性质即可得到该等腰三角形腰上的高再根据三角形面积计算公式进行计算即可【详解】解:如图所示AB=AC=10∠A=30°过B作BD⊥AC于D∵∠A=30°AB=1解析:25【分析】依据含30°角的直角三角形的性质,即可得到该等腰三角形腰上的高,再根据三角形面积计算公式进行计算即可.【详解】解:如图所示,AB=AC=10,∠A=30°,过B作BD⊥AC于D,∵∠A=30°,AB=10,∴BD=1AB=5,2∴S △ABC =12AC ×BD =12×10×5=25, 故答案为:25.【点睛】本题主要考查了等腰三角形的性质以及含30°角的直角三角形的性质,作出腰上的高并根据30°角求出高是解题关键.13.如图,点C 在DE 上,,,45B E AB AE CAD BAE ∠=∠=∠=∠=︒,则ACB =∠_____________.【分析】由条件可证得△ABC ≌△AED 则可求得∠ACB=∠ADEAD=AC 再利用等腰三角形的性质可求得答案【详解】解:∵∠CAD=∠BAE ∴∠CAD+∠CAE=∠BAE+∠CAE 即∠BAC=∠DAE解析:67.5【分析】由条件可证得△ABC ≌△AED ,则可求得∠ACB=∠ADE ,AD=AC ,再利用等腰三角形的性质可求得答案.【详解】解:∵∠CAD=∠BAE ,∴∠CAD+∠CAE=∠BAE+∠CAE ,即∠BAC=∠DAE ,在△ABC 和△AED 中,B E AB AEBAC EAD ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ABC ≌△AED (ASA ),∴AD=AC ,∠ACB=∠ADE ,∴∠ACD=∠ADC ,∵∠CAD=45°,∴∠ADC=67.5°,∴∠ACB=67.5°,故答案为:67.5.【点睛】本题主要考查全等三角形的判定和性质及等腰三角形的性质,掌握全等三角形的判定方法(即SSS 、SAS 、ASA 、AAS 和HL )和全等三角形的性质(全等三角形的对应边相等、对应角相等)是解题的关键.14.若点A (1+m ,1﹣n )与点B (﹣3,2)关于y 轴对称,则(m +n )2020的值是_____.1【分析】直接利用关于y 轴对称点的性质得出横坐标互为相反数纵坐标相等进而得出答案【详解】解:∵点A (1+m1-n )与点B (-32)关于y 轴对称∴1+m=31-n=2∴m=2n=-1∴(m +n )202解析:1【分析】直接利用关于y 轴对称点的性质得出横坐标互为相反数,纵坐标相等,进而得出答案.【详解】解:∵点A (1+m ,1-n )与点B (-3,2)关于y 轴对称,∴1+m=3,1-n=2,∴m=2,n=-1,∴(m +n )2020=(2-1)2020=1;故答案为:1.【点睛】此题主要考查了关于y 轴对称点的性质,正确掌握点的坐标特点是解题关键. 15.如图,ABC 中,45ABC ∠=︒,CD AB ⊥于D ,BE 平分ABC ∠,且BE AC ⊥于E 交CD 于点F ,H 是BC 边的中点,连接DH 交BE 于点G ,考察下列结论:①AC BF =;②2BF CE =;③ADGE GHCE S S =四四边形边形;④DGF △为等腰三角形.其中正确的有___.①②④【分析】只要证明△BDF ≌△CDA △BAC 是等腰三角形即可判断①②正确作GM ⊥BD 于M 只要证明GH <DG 即可判断③错误证明可判断④正确【详解】解:①又又∴是等腰直角三角形在和中故①正确;②平分解析:①②④【分析】只要证明△BDF ≌△CDA ,△BAC 是等腰三角形,即可判断①②正确,作GM ⊥BD 于M ,只要证明GH <DG 即可判断③错误,证明DGF DFG ∠=∠可判断④正确.【详解】解:①CD AB ⊥,90CDA BDF ∠∴∠==︒,18090DBF DFB BDF ︒∠+∠=-∠=︒,又BE AC ⊥,90BEA ∴∠=︒,18090DBF DAC BEA ∠+∠=-∠=∴︒︒,DAC DFB ∠=∠∴,又45ABC ∠=︒,18045DCB ABC BDF ∴∠=︒-∠-∠=︒,∴BCD △是等腰直角三角形,BD CD ∴=,在ACD △和FBD 中,DAC DFB CDA BDF CD BD ∠=∠⎧⎪∠=∠⎨⎪=⎩,()ACD FBD AAS ∴≅,AC BF ∴=.故①正确;②BE 平分ABC ∠,BE AC ⊥,ABE CBE ∴∠=∠,90BEA BEC ∠=∠=︒,∴在ABE △和CBE △中,ABE CBE BE BEBEA BEC ∠=∠⎧⎪=⎨⎪∠=∠⎩, ()ASA ABE CBE ∴≅,AE CE ∴=,2AC AE CE CE ∴=+=,又AC BF =,2BF CE ∴=,故②正确;③如图所示,过G 作GM BD ⊥于点M ,H 为等腰直角BCD △斜边BC 的中点,DH BC ∴⊥,即90GHB ∠=︒,又BE 平分ABC ∠,GM BD ⊥,GM GH ∴=,又BD BH >,BDG BGH SS∴>, 又ABE CBE ≅ ABE CBE S S ∴=,ABE BDG ADGE S S S ∴=-四边形,CBE BGH GHCE S S S =-四边形,ADGE GHCE S S ∴<四边形四边形,故③错误;④18090HBG BGH GHB ∠+∠=︒-∠=︒,18090DBF DFG BDF ∠+∠=︒-∠=︒,HBG DBF ∠=∠,BGH DFG ∴∠=∠,又BGH DGF ∠=∠,DGF DFG ∴∠=∠,DGF ∴为等腰三角形.∴综上,答案为①②④.【点睛】此题是三角形综合题,考查了等腰三角形的性质,直角三角形的性质,全等三角形的性质和判定,三角形的面积等知识点的综合运用,第三个问题难度比较大,添加辅助线是解题关键.16.等腰三角形的周长为24,其中一边为6,则另两边的长分别为__________.【分析】题中没有指明长为的边长是腰还是底则分两种情况进行分析还应验证是否满足三角形的三边关系【详解】当腰长是时底边长不能构成三角形;当底长是时三角形的腰能构成三角形其他两边长为故答案为:【点睛】本题解析:9,9【分析】题中没有指明长为6的边长是腰还是底,则分两种情况进行分析,还应验证是否满足三角形的三边关系.【详解】当腰长是6时,底边长246612=--=,6、6、12不能构成三角形;当底长是6时,三角形的腰()24629=-÷=,6、9、9能构成三角形,其他两边长为9、9.故答案为:9,9.【点睛】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目—定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.17.如图,在ABC 中,AB AC =,36ABC ∠=︒,DE 是线段AC 的垂直平分线,连接AE ,若BE a =,EC b =,则用含有a ,b 的代数式表示ABC 的周长是______.【分析】根据等腰三角形的性质∠BAC =108°由线段垂直平分线的性质可得AE=CE ∠EAD=∠ECD=36°进而根据角的和差可得∠BAE =∠BEA 进而可得BA =BE =AC 然后问题可求解【详解】∵AB解析:3a b +【分析】根据等腰三角形的性质∠BAC =108°,由线段垂直平分线的性质可得AE=CE ,∠EAD=∠ECD=36°,进而根据角的和差可得∠BAE =∠BEA ,进而可得BA =BE =AC 然后问题可求解.【详解】∵AB=AC ,∠ABC=36°,∴∠C=∠ABC=36°,∠BAC =108°,∵DE 是AC 的垂直平分线,∴AE=CE,∴∠EAD=∠ECD=36°,∴∠AEC=108°=∠BAC,∴∠BAE=∠BAC-∠CAE=108°-36°=72°∵∠BEA=180°-∠AEC=180°-108°=72°即∠BAE=∠BEA∴BA=BE∵BE a=,EC b=,∴BA=BE=AC=a∴△ABC的周长=AB+BE+EC+AC=3a+b故答案为:3a+b.【点睛】本题主要考查垂直平分线的性质定理及等腰三角形的性质与判定,熟练掌握垂直平分线的性质定理及等腰三角形的性质与判定是解题的关键.18.如图,已知∠AOB=60°,点P在边OA上,OP=24,点M,N在边OB上,PM=PN,若NM=6,则OM=______________.9【分析】过P作PD⊥OB交OB于点D在直角三角形POD中求出OD的长再由PM=PN利用三线合一得到D为MN中点根据MN 求出MD的长由OD-MD即可求出OM的长【详解】解:过P作PD⊥OB交OB 于点解析:9【分析】过P作PD⊥OB,交OB于点D,在直角三角形POD中,求出OD的长,再由PM=PN,利用三线合一得到D为MN中点,根据MN求出MD的长,由OD-MD即可求出OM的长.【详解】解:过P作PD⊥OB,交OB于点D,∵∠AOB=60°,∴∠OPD=30°,∴OD=1OP=12.2∵PM=PN,PD⊥MN,∴MD=ND=1MN=3,2∴OM=OD﹣MD=12﹣3=9.故答案为:9.【点睛】本题考查的是含30度直角三角形的性质,等腰三角形的性质等知识,根据题意添加适当辅助线是解本题的关键.19.如图,一棵大树在一次强台风中于距地面5米处倒下,则这棵树在折断前的高度为________米.15【分析】如图在Rt△ABC中∠ABC=30°由此即可得到AB=2AC而根据题意找到CA=5米由此即可求出AB也就可以求出大树在折断前的高度【详解】如图在Rt△ABC中∵∠ABC=30°∴AB=2 解析:15【分析】如图,在Rt△ABC中,∠ABC=30°,由此即可得到AB=2AC,而根据题意找到CA=5米,由此即可求出AB,也就可以求出大树在折断前的高度.【详解】如图,在Rt△ABC中,∵∠ABC=30°,∴AB=2AC,∵CA=5米,∴AB=10米,∴AB+AC=15米.所以这棵大树在折断前的高度为15米.故答案为:15.【点睛】本题主要利用定理−−在直角三角形中30°的角所对的直角边等于斜边的一半,解题关键是善于观察题目的信息,利用信息解决问题.20.如图,在△ABC中,AB=AC,D为BC的中点,∠BAD=20°,且AE=AD,则∠CDE的度数是______.10°【分析】设∠B=∠C=x∠CDE=y分别表示出∠DAE构建方程解方程即可求解【详解】解:设∠B=∠C=x∠EDC=y∵AD=AE∴∠ADE =∠AED=x+y∵∠DAE=180°−2(x+y)=解析:10°【分析】设∠B=∠C=x,∠CDE=y,分别表示出∠DAE,构建方程解方程即可求解.【详解】解:设∠B=∠C=x,∠EDC=y,∵AD=AE,∴∠ADE=∠AED=x+y,∵∠DAE=180 °−2(x+y)=180 °−20 °−2x,∴2y=20 °,∴y =10 °,∴∠CDE =10 °.故答案为:10°【点睛】本题主要考查等腰三角形的判定与性质,还涉及三角形内角和等知识点,需要熟练掌握等腰三角形的判定与性质.三、解答题21.如图,△ABC 的三个顶点在边长为1的正方形网格中,已知A (−4,5),B (﹣3,1),C (−2,3).(1)画出△ABC 及关于y 轴对称的△A 1B 1C 1,其中点B 1的坐标是________;(2)若点M 是x 轴上的动点,在图中画出使△B 1CM 周长最小时的点M .解析:(1)图形见解析;B 1(3,2);(2)见解析【分析】(1)分别找到A 、B 、C 点关于y 轴的对称点,然后连接即可;(2)找C 关于x 轴的对称点C′,连接1B C '交x 轴于一点M ,根据两点之间线段最短,可知此时的M 即为使1B CM △周长最小时的点M .【详解】解:(1)111A B C △如图所示;根据图形可知B 1(3,2),故答案为:(3,2);(2)如图所示:找C 关于x 轴的对称点C′,则C′(-2,-3),CM C M '=,连接1B C '交x 轴于一点M ,根据两点之间线段最短,可知此时的M 即为使1B CM △周长最小时的点M .【点睛】本题考查作图-轴对称、最短路径问题,解题的关键是熟练掌握基础知识.22.如图,在平面直角坐标系中,每个小方格的边长为1,ABC 的三个顶点分别为()()4,3,3,()3,1,1A B C -.请在坐标系中标出,,A B C 三点,画出ABC ∆,并画出ABC ∆关于y 轴对称的图形111A B C ∆,写出点111,,A B C 的坐标.解析:图见解析;点111,,A B C 的坐标分别为()()–4,3,3,3--,()1,1-【分析】先在平面直角坐标系中画出,,A B C 三点,顺次连接即可;再按照轴对称的性质,画出它们的对称点即可.【详解】解:如图所示,111,ABC A B C ∆∆,即为所求;点111,,A B C 的坐标分别为()()–4,3,3,3--,()1,1-【点睛】本题考查了在平面直角坐标系中描点和画轴对称图形,关于y 轴对称点的坐标变化规律,解题关键是正确描点和画对称点.23.已知:如图,MON ∠为锐角,点A 在射线OM 上.求作:射线AC ,使得//AC ON .小静的作图思路如下:①以点A 为圆心,AO 为半径作弧,交射线ON 于点B ,连接AB ;②作MAB ∠的角平分线AC .射线AC 即为所求的射线.(1)使用直尺和圆规,按照小静的作图思路补全图形(保留作图痕迹);(2)完成下面的证明.证明:OA AB =,O ABO ∴∠=∠(__________).MAB ∠是AOB 的一个外角,MAB ∴∠=∠_________+∠__________.12ABO MAB ∴∠=∠. AC 平分MAB ∠,12BAC MAB ∴∠=∠. ABO BAC ∴∠=∠.//AC ON ∴(__________).解析:(1)见解析;(2)等边对等角;O ;ABO ;内错角相等,两直线平行【分析】(1)按照步骤作图即可;(2)由作法知,OA=AB ,AC 是∠MAB 的平分线,然后根据等腰三角形的性质,三角形外角的性质,以及角平分线的定义说明即可.【详解】 解:(1)作图如下:(2)证明:OA AB =,O ABO ∴∠=∠(等边对等角).MAB ∠是AOB 的一个外角,MAB O ABO ∴∠=∠+∠12ABO MAB ∴∠=∠. AC 平分MAB ∠,12BAC MAB ∴∠=∠. ABO BAC ∴∠=∠.//AC ON ∴(内错角相等,两直线平行).故答案为:等边对等角;O ;ABO ;内错角相等,两直线平行.【点睛】本题考查了作一条线段等于已知线段,作角的角平分线,以及等腰三角形的性质,三角形外角的性质,以及角平分线的定义等知识,熟练掌握各知识点是解答本题的关键. 24.如图,等边三角形ABC 中,AD BC ⊥,垂足为D ,点E 在线段AD 上,45EBC ∠=︒,求ACE ∠的度数.解析:15°【分析】根据等边三角形的性质可得∠ACB 的度数,并证得 AD 是BC 的垂直平分线,利用线段垂直平分线性质定理可得BE=CE ,再由等腰三角形的性质可求得∠ECB 的度数,即可求得结论.【详解】解:∵△ABC 是等边三角形,AD BC ⊥ ,∴60ACB ∠=︒,BD CD =,∴AD 是BC 的重直平分线,点E 在线段AD 上∴BE CE =.∵45EBC ∠=︒,∴45ECB EBC ∠=∠=︒,∴6045=15ACE ACB ECB ∠=∠-∠=︒-︒︒.【点睛】此题考查了等边三角形的性质、线段垂直平分线的性质等知识,掌握相关的性质定理并能灵活应用所学知识是解题的关键.25.如图,点A ,C ,D ,B 四点共线,且AC BD =,A B ∠=∠,ADE BCF ∠=∠.(1)求证:ADE BCF ≌;(2)若9DE =,CG 4=,求线段EG 的长.解析:(1)证明见解析;(2)5EG =.【分析】(1)根据AC=BD 可得AD=BC ,然后利用已知条件根据ASA 即可证明全等;(2)根据(1)中的全等可得∠ADE=∠BCF ,再结合等角对等边可得4DG CG ==,最后利用线段的和差即可求得EG 的长度.【详解】解:(1)证明:∵AC=BD ,∴AC+CD=BD+CD ,∴AD=BC ,在△ADE 和△BCF 中,A B AD BCADE BCF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ADE ≌△BCF (ASA );(2)∵△ADE ≌△BCF ,∴∠ADE=∠BCF ,∴4DG CG ==,∵9DE =,∴5EG DE DG =-=.【点睛】本题考查全等三角形的性质和判定,等腰三角形等角对等边.熟练掌握全等三角形的几种判定定理,并能结合题中所给条件灵活运用是解题关键.26.如图,在ABC ∆中,点D 是边BC 上一点,点E 在边AC 上,且,,BD CE BAD CDE =∠=∠ADE C ∠=∠.(1)如图1,求证:ADE ∆是等腰三角形,(2)如图2,若DE 平分ADC ∠,在不添加辅助线的情况下,请直接写出图中所有与CDE ∠相等的角(CDE ∠除外).解析:(1)详见解析;(2)与CDE ∠相等的角有:∠B ,∠BAD ,∠ADE ,∠C【分析】(1)证明△ABD ≌△DCE ,推出AD=DE ,即可得到结论;(2)根据DE 平分∠ADC ,推出∠ADE=∠CDE=12∠ADC ,利用BAD CDE ∠=∠,∠ADC=∠B+∠BAD ,得到∠B=∠BAD=∠ADE=∠CDE ,再由ADE C ∠=∠,得到∠C=CDE ∠.【详解】(1)∵∠ADC=∠B+∠BAD ,∠BAD=∠CDE ,∴∠B=∠ADE ,∵∠ADE=∠C ,∴∠B=∠C ,在△ABD 和△DCE 中,BAD CDE B CBD CE ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ABD ≌△DCE ,∴AD=DE ,∴ADE ∆是等腰三角形;(2)∵DE 平分∠ADC ,∴∠ADE=∠CDE=12∠ADC , ∵BAD CDE ∠=∠,∠ADC=∠B+∠BAD ,∴∠B=∠BAD=∠ADE=∠CDE ,∵ADE C ∠=∠,∴∠C=CDE ∠,∴与CDE ∠相等的角有:∠B ,∠BAD ,∠ADE ,∠C .【点睛】此题考查全等三角形的判定及性质,等腰三角形的判定定理,角平分线的性质,三角形外角性质,熟记三角形全等的判定定理是解题的关键.27.在ABC 中,AB AC =,点D 是直线BC 上一点(不与B 、C 重合),以AD 为一边在AD 的右侧作ADE ,使AD AE =,DAE BAC ∠=∠,连接CE .(1)如图,当点D 在线段BC 上,如果90BAC ∠=︒,则BCE ∠=______度.(2)设BAC α∠=,BCE β∠=.①如图,当点D 在线段BC 上移动时,α、β之间有怎样的数量关系?请直接写出你的结论.②如图,当点D 在线段BC 的反向延长线上移动时,α、β之间有怎样的数量关系?请说明理由.解析:(1)90;(2)①180αβ+=︒,理由见解析;②αβ=,理由见解析【分析】(1)由等腰直角三角形的性质可得∠ABC=∠ACB=45°,由“SAS”可证△BAD ≌△CAE ,可得∠ABC=∠ACE=45°,可求∠BCE 的度数;(2)①由“SAS”可证△ABD ≌△ACE 得出∠ABD=∠ACE ,再用三角形的内角和即可得出结论;②由“SAS”可证△ADB ≌△AEC 得出∠ABD=∠ACE ,再用三角形外角的性质即可得出结论.【详解】(1)∵AB=AC ,∠BAC=90°,∴∠ABC=∠ACB=45°,∵∠DAE=∠BAC ,∴∠BAD=∠CAE ,在△BAD 和△CAE 中AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩,∴△BAD ≌△CAE (SAS )∴∠ABC=∠ACE=45°,∴∠BCE=∠ACB+∠ACE=90°,故答案为:90;(2)①180αβ+=︒.理由:∵∠BAC=∠DAE ,∴∠BAC-∠DAC=∠DAE-∠DAC .即∠BAD=∠CAE .在△ABD 与△ACE 中,AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩,∴△ABD ≌△ACE (SAS ),∴∠B=∠ACE .∴∠B+∠ACB=∠ACE+∠ACB .∵∠ACE+∠ACB=β,∴∠B+∠ACB=β,∵α+∠B+∠ACB=180°,∴α+β=180°;② 当点D 在射线BC 的反向延长线上时,αβ=.理由如下:∵DAE BAC ∠=∠,∴DAB EAC ∠=∠,在△ABD 与△ACE 中,AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩,∴△≌△ADB AEC(SAS), ∴ABD ACE ∠=∠,∵ABD BAC ACB ∠=∠+∠,ACE BCE ACB ∠=∠+∠,∴BAC ABD ACB ∠=∠-∠,BCE ACE ACB ∠=∠-∠,∴BAC BCE ∠=∠,即αβ=.【点睛】此题考查了全等三角形的判定和性质,等腰直角三角形的性质,三角形的内角和定理,以及三角形外交的性质,证明△ABD ≌△ACE 是解本题的关键.28.如图,在△ABC 中,AD 垂直平分BC ,E 是AB 边上一点,连接ED ,F 是ED 延长线上一点,连接CF ,若BC 平分∠ACF ,求证:BE =CF .解析:证明见解析.【分析】根据线段垂直平分线的性质得到AB=AC ,证明△BDE ≌△CDF ,根据全等三角形的性质得到BE=CF .【详解】证明:∵AD 垂直平分BC ,∴AB =AC ,BD =DC ,∴∠ABC =∠ACB ,∵BC 平分∠ACF ,∴∠FCB =∠ACB ,∴∠ABC =∠FCB ,在△BDE 和△CDF 中,EDB FDC BD CDEBD FCD ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△BDE ≌△CDF (ASA ),∴BE =CF .【点睛】本题考查全等三角形的判定与性质及线段垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.。
人教版八年级数学上册 第13章 对称轴及最值问题专项练习

对称轴及最值问题专项练习【例题1】轴对称和轴对称图形的性质下面四个京剧脸谱的剪纸中,是轴对称图形的是()A B C D【练1-1】下列说法正确的是()A.任何一个图形都有对称轴B.两个全等三角形一定关于某直线对称C.若△ABC与△A′B′C′成轴对称,则△ABC≌△A′B′C′D.点A,点B在直线1两旁,且AB与直线1交于点O,若AO=BO,则点A与点B•关于直线l对称【练1-2】如图,点P在∠AOB的内部,点M、N分别是点P关于直线OA、OB•的对称点,线段MN交OA、OB于点E、F,若△PEF的周长是20cm,则线段MN的长为 .EABPMNF【练1-3】把一张长方形的纸片按如图所示的方式折叠,EM,FM为折痕,折叠后的C点落在MB'或MB'的延长线上,那么∠EMF的度数是 .【练1-4】如图,ΔABC中,点A的坐标为(0,1),点C的坐标为(4,3),点B的坐标为(3,1),如果要使ΔABD与ΔABC全等,求点D的坐标.【例题2】对称点点P(-3,5)关于y 轴对称的点的坐标为,点P(3,-2)关于直线x=2对称点的坐标是 . 【练2-1】已知P1点关于x轴的对称点P2(3-2a,2a-5)是第三象限内的整点(横、纵坐标都为整数的点,称为整点),则P1点的坐标是 .【练2-2】已知A(-1,-2)和B(1,3),将点A向平移个单位长度后得到的点与点B关于y轴对称.【练2-3】已知M(2a+b,3)和N(5,b﹣6a)关于y轴对称,则3a﹣b的值为 .【2-4】已知点A坐标为(3-2a,3a-9)在第三象限,且a为整数.根据要求完成下列各题:(1)a= ;A点坐标为;(2)A点关于x轴对称的点坐标为;A 点关于y轴对称的点坐标为;A点关于原点对称的点坐标为;(3)A点关于直线 x=2 对称的点坐标为;A点关于直线 x=-2 对称的点坐标为;(4)连接OA,将OA绕点O旋转90°,则旋转后A点对应坐标为 .【练2-5】在平面直角坐标系中,①点P(−2,1)与点Q(2,−1)关于x轴对称;②点M(-2,1)与点N(2,1)关于y轴对称;③与点(-3,3)关于y轴对称的点在第二象限;④点P(2,a)与点Q(b,-3)关于x轴对称,则a-b的值为1.其中正确的是()A.①②B.②③C.②④D.③④ 【练2-6】在平面直角坐标系中,过一点分别作x 轴,y 轴的垂线,若坐标轴围成矩形的周长与面积相等,则这个点叫做和谐点.给出以下结论:①点M (2,4)是和谐点;②不论a 为何值时,点P (2,a )不是和谐点;③若点P (a ,3)是和谐点,则a=6;④若点F 是和谐点,则点F 关于坐标轴的对称点也是和谐点. 正确结论的序号是 .【例题3】垂直平分线的性质与判定如图,已知线段AB ,BC 的垂直平分线l 1,l 2交于点M ,则线段AM ,CM 的大小关系是( ) A.AM >CM B.AM=CM C.AM <CM D.无法确定【练3-1】如图,在△ABC 中,分别以点A 和点C 为圆心,大于21AC 长为半径画弧,两弧相交于点M ,N ,作直线MN 分别交BC ,AC 于点D ,E .若AE=3cm ,△ABD 的周长为13cm ,则△ABC 的周长为( ) A .16cm B .19cmC .22cmD .25cm【练3-2】如图,△ABC 和△ADE 关于直线L 对称,下列结论:①△ABC ≌△ADE ;②L 垂直平分DB ;③∠C=∠E ;④BC 与DE 的延长线的交点一定落在直线l 上.其中错误的有( )A.0个B.1个C.2个D.3个【练3-3】如图,在△ABC中AB=AC,∠BAC=54°,∠BAC的平分线与AB的垂直平分线交于点O,将∠C沿EF折叠,点C与点O恰好重合,则∠OEC为度【练3-4】如图,已知AB-AC=2cm,BC的垂直平分线交AB于点D,交BC于点E,△ACD的周长为14cm,求AB,AC的长.【练3-5】如图,在△ABC中,AB=AC,AB的垂直平分线交AB于点N,交BC的延长线于点M.(1)若∠A=40°,求∠NMB的度数;(2)如果将(1)中∠A的度数改为70°,其余条件不变,再求∠NMB的度数;(3)由(1)(2)你发现有什么样的规律,试证明.【例题4】尺规作图尺规作图要求:Ⅰ、过直线外一点作这条直线的垂线;Ⅱ、作线段的垂直平分线;Ⅲ、过直线上一点作这条直线的垂线;Ⅳ、作角的平分线.如图是按上述要求排乱顺序的尺规作图:则正确的配对是()A.①﹣Ⅳ,②﹣Ⅱ,③﹣Ⅰ,④﹣Ⅲ B.①﹣Ⅳ,②﹣Ⅲ,③﹣Ⅱ,④﹣ⅠC.①﹣Ⅱ,②﹣Ⅳ,③﹣Ⅲ,④﹣Ⅰ D.①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ【练4-1】如图,方格纸中每个小正方形的边长均为1,四边形ABCD的四个顶点都在小正方形的顶点上,点E在BC边上,且点E在小正方形的顶点上,连接AE.(1)在图中画出△AEF,使△AEF与△AEB关于直线AE对称,点F与点B是对称点;(2)请直接写出△AEF与四边形ABCD重叠部分的面积.【4-2】如图,某城市规划局为了方便居民的生活,计划在三个住宅小区A,B,C之间修建一个购物中心,试问:该购物中心应建于何处,才能使得它到三个小区的距离相等?【例题5】几何最值问题:两点之间,线段最短 (1)如图,在l 找一点P ,使PA+PB 最小.BAl(2)如图,在l 找一点P ,使PA+PB 最小.(3)如图,点P 在锐角∠AOB 的内部,在OB 边上求作一点D ,在OA 边上求作一点C ,使△PCD 周长最小.(4)如图,点C 、D 在锐角∠AOB 的内部,在OB 边上求作一点F ,在OA 边上求作一点E ,使四边形CEFD 周长最小.三、温故知新1.下列说法正确的是( )lBADCA OA.轴对称涉及两个图形,轴对称图形涉及一个图形B.如果两条线段互相垂直平分,那么这两条线段互为对称轴C.所有直角三角形都不是轴对称图形D.有两个内角相等的三角形不是轴对称图形2.已知∠AOB=30°,点 P 在∠AOB 的内部,P1与 P 关于 OA 对称,P2与 P 关于 OB 对称,则△P1OP2是()A.含 30°角的直角三角形B.顶角是30°的等腰三角形C.等边三角形D.等腰直角三角形3.已知点 P 在线段 AB 的中垂线上,点 Q 在线段AB的中垂线外,则()A.PA+PB>QA+QBB.PA+PB<QA+QBC.PA+PB=QA+QBD.不能确定4.(1)若点(5﹣a,a﹣3)在第一、三象限角平分线上,求a的值;(2)已知两点A(﹣3,m),B(n,4),若AB∥x轴,求m的值,并确定n的范围;(3)点P到x轴和y轴的距离分别是3和4,求点P的坐标;(4)已知点A(x,4﹣y)与点B(1﹣y,2x)关于y轴对称,求y x的值.5.已知△ABC中∠BAC=130°,BC=18cm,AB、AC的垂直平分线分别交BC于E、F,与AB、AC分别交于点D、G.求:(1)∠EAF的度数;(2)求△AEF的周长.6.如图,在旷野上,一个人骑马从A出发,他先使马从A出发,他先使马到草地边l1吃草,再到河边l2饮水,最后返回A,他是怎样走才能使总路程最短?7.如图,已知Rt△ABC,∠ACB=900,AD平分∠BAC与BC交于D点,M、N分别在线段AD、AC上的动点,连接MN、MC,当MN+MC最小时,画出M、N的位置.已知△ABC的面积为12cm2,AB=6cm,求MN+MC的最小值.8.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,AB=10,AD是∠BAC的平分线.若P,Q分别是AD和AC上的动点,则PC+PQ的最小值为多少?。
人教版八年级上册数学第13章 轴对称 单元练习卷(配套练习附答案)

【解析】
【分析】
首先要进行分析题意,“等腰三角形的一个内角”没明确是顶角还是底角,所以要分两种情况进行讨论.
【详解】本题可分两种情况:
①当70°角为底角时,顶角为180°−2×70°=40°;
②70°角为等腰三角形的顶角;
因此这个等腰三角形的顶角为40°或70°.
故选C
【点睛】考查等腰三角形的性质,注意分类讨论,不要漏解.
∴BM=AM,CN=AN,∴∠MAB=∠B,∠CAN=∠C,∵∠BAC=120°,AB=AC,∴∠B=∠C=30°,
∴∠BAM+∠CAN=60°,∠AMN=∠ANM=60°,∴△AMN是等边三角形,∴AM=AN=MN,∴BM=MN=NC,
∵BC=9cm,∴MN=3cm.
故答案为3cm.
考点:1.线段垂直平分线的性质;2.等腰三角形的性质;
【点睛】考查等边三角形 性质,熟练掌握等边三角形的性质是解题的关键.
4.等腰三角形的周长为16,其一边长为6,则另两边为_____.
【答案】6和4或5和5.
【解析】
当腰是6时,则另两边是4,6,且4+6>6,满足三边关系定理;
当底边是6时,另两边长是5,5,5+5>6,满足三边关系定理.
故该等腰三角形的另两边为6和4或5和5.
A. B. C. D. 7
【答案】A
【解析】
【分析】
根据轴对称性质可得出PM=MQ,PN=RN,因此先求出QN的长度,然后根据QR=QN+NR进一步计算即可.
【详解】由轴对称性质可得:PM=MQ=2.5cm,PN=RN=3cm,
∴QN=MN−MQ=1.5cm,
∴QR=QN+RN=4.5cm,
人教版初中数学八年级上单元试卷第章 轴对称【培优卷】(原卷版)

第13章轴对称培优一、单选题1. ( 3分) 平面直角坐标系中,点P(﹣2,3)关于x轴对称的点的坐标为()A. (2,﹣3)B. (﹣2,3)C. (﹣2,﹣3)D. (2,3)2. ( 3分) 下列图案中,既是中心对称图形也是轴对称图形的个数为()A. 1个B. 2个C. 3个D. 4个3. ( 3分) 在下列命题中,正确的是()A. 一组对边平行的四边形是平行四边形B. 有一个角是直角的四边形是矩形C. 有一组邻边相等的四边形是菱形D. 对角线互相垂直平分的四边形是菱形4. ( 3分) 如图,已知AB=AC=BD,那么∠1与∠2之间的关系是()A. ∠1=2∠2B. 2∠1+∠2=180°C. ∠1+3∠2=180°D. 3∠1-∠2=180°5. ( 3分) 下列图形既是轴对称图形又是中心对称图形的图形是( )A. 等腰三角形B. 等边三角形C. 长方形D. 梯形6. ( 3分) 在平面直角坐标系中,点P(3,-4)关于x轴对称的点的坐标是( )A. (3,4)B. (3,-4)C. (-3,-4)D. (4,3)7. ( 3分) 如图,已知∠AOB=60°,点P在边OA上,OP=12,点M,N在边OB上,PM=PN,若MN=2,则OM=()A. 8B. 6C. 5D. 38. ( 3分) 如图,正方形网格中的每个小正方形边长都是1.已知A、B是两格点,若△ABC为等腰三角形,且S△ABC=1.5,则满足条件的格点C有()A. 1个B. 2个C. 3个D. 4个9. ( 3分) 如图,在△ABC中,∠ABC=50°,∠ACB=100°,点M是射线AB上的一个动点,过点M作MN∥BC 交射线AC于点N,连结BN。
若△BMN中有两个角相等,则∠MNB的度数不可能是( )A. 25°B. 30°C. 50°D. 65°10. ( 3分) 如图,在菱形ABCD中,∠BAD=60°,AC与BD交于点O,E为CD延长线上的一点,且CD=DE,连接BE分别交AC、AD于点F、G,连接OG,则下列结论中一定成立的是( )AB ;②与△DEG全等的三角形共有5个;③四边形ODEG与四边形OBAG面积相等;④由点①OG= 12A、B、D、E构成的四边形是菱形A. ①③④B. ①④C. ①②③D. ②③④二、填空题目11. ( 4分) 在ΔABC中, AB=AC,AB的垂直平分线与AC所在的直线相交所得的钝角为130°,则∠B等于________ 度。
成都四川国际学校八年级数学上册第三单元《轴对称》测试题(答案解析)
一、选择题1.如图,在△ABC 中,∠C =90°,∠B =30°,AD 平分∠CAB 交BC 于点D ,E 为AB 上一点,连接DE ,则下列四个结论正确的有( ).①∠CAD =30° ②AD =BD ③BD =2CD ④CD =EDA .1个B .2个C .3个D .4个2.如图,在平面直角坐标系xOy 中,点A 的坐标为()4,3-,点P 在x 轴上,且使AOP 为等腰三角形,符合题意的点P 的个数为( ).A .2B .3C .4D .53.如图所示,等腰直角三角形ADM 中,AM DM =,90AMD ∠=︒,E 是AD 上一点,连接ME ,过点D 作DC ME ⊥交ME 于点C ,过点A 作AB ME ⊥交ME 于点B ,4AB =,10CD =,则BC 的长度为( )A .3B .6C .8D .104.下列命题中,假命题是( )A .两条直角边对应相等的两个直角三角形全等B .等腰三角形顶角平分线把它分成两个全等的三角形C .相等的两个角是对顶角D .有一个角是60的等腰三角形是等边三角形5.点1(1,2020)P a -和2(2017,1)P b -关于x 轴对称,则()2021a b +的值为( ) A .1- B .1 C .0D .2021- 6.下列命题正确的是( )A .全等三角形的对应边相等B .面积相等的两个三角形全等C .两个全等三角形一定成轴对称D .所有等腰三角形都只有一条对称轴 7.若a ,b 为等腰ABC 的两边,且满足350a b -+-=,则ABC 的周长为( )A .11B .13C .11或13D .9或15 8.如图,长方形ABCD 沿直线EF 、EG 折叠后,点A 和点D 分别落在直线l 上的点A '和点D 处,若130∠=︒,则2∠的度数为( )A .30°B .60°C .50°D .55°9.如图,已知AD 为ABC 的高线,AD BC =,以AB 为底边作等腰Rt ABE △,且点E 在ABC 内部,连接ED ,EC ,延长CE 交AD 于F 点,下列结论:①EBD DAE ∠=∠;②ADE BCE ≌△△;③BD AF =;④BDE ACE S S =△△,其中正确的结论有( )A .1个B .2个C .3个D .4个10.以下说法正确的是( )A .三角形中 30°的对边等于最长边的一半B .若a + b = 3,ab = 2,则a - b = 1C .到三角形三边所在直线距离相等的点有且仅有一个D .等腰三角形三边垂直平分线的交点、三个内角平分线的交点、顶角的顶点三点共线 11.如图,在等腰ABC 中,118ABC ︒∠=,AB 垂直平分线DE 交AB 于点D ,交AC 于点E ,BC 的垂直平分线PQ 交BC 于点P ,交AC 于点Q ,连接BE ,BQ ,则EBQ ∠=( )A .65︒B .60︒C .56︒D .50︒12.已知等边△ABC 的边长为6,D 是AB 上的动点,过D 作DE ⊥AC 于点E ,过E 作EF ⊥BC 于点F ,过F 作FG ⊥AB 于点G .当G 与D 重合时,AD 的长是( )A .1B .2C .3D .4二、填空题13.若一条长为24cm 的细线能围成一边长等于6cm 的等腰三角形,则该等腰三角形的腰长为__________cm .14.如图30AOB ∠=︒,OC 平分AOB ∠,P 为OC 上一点,//PD OA 交OB 于点D ,PE OA ⊥于E ,6cm OD =,则PE =________.15.如图,在平面直角坐标系xOy 中,点B 的坐标为(2,0),若点A 在第一象限内,且AB =OB ,∠A =60°,则点A 到y 轴的距离为______.16.已知等腰三角形的一边长为5,另一边长为10,则这个等腰三角形的周长为___________.17.如图,在Rt ABC 中,90ACB ∠=︒,30A ∠=︒,BD 平分ABC ∠,如果9cm AC =,那么AD = ___________cm .18.如图,点D 是ABC ∠内一点,点E 在射线BA 上,且15DBE BDE ∠=∠=︒,//DE BC ,过点D 作DF BC ⊥,垂足为点F ,若BE a =,则DF =___________(用含a 的式子表示).19.如图,在ABC 中,12 cm AB AC ==, 6 cm BC =,D 为AC 的中点,动点P 从点A 出发,以每秒1 cm 的速度沿A B C --的方向运动,设运动时间为t ,当过D ,P 两点的直线将ABC 的周长分成两部分,当其中一部分是另一部分的2倍时,t =_________.20.如图,△ABC 中,AB =AC ,点D 、E 、F 分别在AB 、BC 、CA 边上,且BE =CF ,BD =CE ,如果∠A =44°,则∠EDF 的度数为__.三、解答题21.在平面直角坐标系中,点A 在x 轴正半轴上,以OA 为边在x 轴上方作等边OAC . (1)如图1,在AC 的右上方作线段AD ,点D 在y 轴正半轴上,10DAC ∠=︒,以AD 为边在AD 右侧作等边ADE ,则AEC ∠=______.(2)如图2,点P 是x 轴正半轴上且在点A 右侧的一动点,PAM △为等边三角形,OM 与PC 交于点F .求证:AF MF PF +=.(3)如图3,点P 是x 轴正半轴上且在点A 右侧的一动点,CPM △为等边三角形,MA 的延长线交y 轴于点N ,请直接写出线段AM 、AP 、AN 的数量关系______.22.如图,在ABC 中,AB AC =,D 为AC 的中点,DE AB ⊥于点E ,DF BC ⊥于点F ,且DE DF =,连接BD ,点G 在BC 的延长线上,且CD CG =.(1)求证:ABC 是等边三角形;(2)若2CG =,求BC 的长.23.如图,△ABC 为等边三角形,直线l 经过点C ,在l 上位于C 点右侧的点D 满足∠BDC =60°.(1)如图1,在l 上位于C 点左侧取一点E ,使∠AEC = 60°,求证:△AEC ≌△CDB ; (2)如图2,点F 、G 在直线l 上,连AF ,在l 上方作∠AFH =120°,且AF =HF ,∠HGF =120°,求证:HG +BD =CF ;(3)在(2)的条件下,当A 、B 位于直线l 两侧,其余条件不变时(如图3),线段HG 、CF 、BD 的数量关系为 .24.如图,已知四边形ABCD 中,60B ∠=,边8cm AB BC ==,动点P ,Q 同时从A ,B 两点出发,分别沿AB ,BC 方向匀速运动,其中点P 运动的速度是每秒1cm ,点Q 运动的速度是每秒2cm ,当点Q 到达点C 时,P ,Q 两点都停止运动,设运动时间为t 秒.解答下列问题:(1)AP =_______________,BP =______________,BQ =______________.(用含t 的式子表示)(2)当点Q 到达点C 时,PQ 与AB 的位置关系如何.请说明理由.(3)在点P 与点Q 的运动过程中,BPQ 是否能成为等边三角形.若能,请求出t 的值.若不能,请说明理由.25.如图所示,已知AB AC =,AD 是中线,BE CF =.(1)求证:BDE CDF ≌;(2)当60B ∠=︒时,过AB 的中点G ,作//GH BD ,求证:4GH AB 1=. 26.如图,ABC 中,AD 平分BAC ∠,BC 的垂直平分线DG 交AD 于D ,DE AB ⊥于E ,DF AC ⊥于F .求证:(1)BE CF =.(2)2AB AC CF -=.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据三角形内角和定理求出∠CAB ,求出∠CAD=∠BAD=∠B ,推出AD=BD ,AD=2CD 即可.【详解】解:∵在△ABC 中,∠C=90°,∠B=30°,∴∠CAB=60°,∵AD 平分∠CAB ,∴∠CAD=∠BAD=30°,①正确;∴∠CAD=∠BAD=∠B ,∴AD=BD ,AD=2CD ,②正确;∴BD=2CD ,③正确;根据已知不能推出CD=DE ,故④错误;故选:C .【点睛】本题考查了三角形的内角和定理,等腰三角形的判定,含30度角的直角三角形的性质的应用,注意:在直角三角形中,如果有一个角等于30°,那么它所对的直角边等于斜边的一半.2.C解析:C【分析】以O 为圆心,AO 长为半径画圆可得与x 轴有2个交点,再以A 为圆心,AO 长为半径画圆可得与x 轴有1个交点,然后再作AO 的垂直平分线可得与x 轴有1个交点.【详解】解:如图所示:点P 在x 轴上,且使△AOP 为等腰三角形,符合题意的点P 的个数共4个,故选:C .【点睛】此题主要考查了等腰三角形的判定,关键是考虑全面,作图不重不漏.3.B解析:B【分析】通过先证明AMB MDC △≌△,得到=4AB MC =,=10MB CD =,即可求得=BC MB MC -,即可得到答案.【详解】解:∵DC ME ⊥,AB ME ⊥,90AMD ∠=︒∴DCM B ∠=∠,+90AMB DMC ∠∠=︒,+90MDC DMC ∠∠=︒∴AMB ∠=MDC ∠∵AM DM =∴AMB MDC △≌△∴AB MC =,MB CD =∵4AB =,10CD = ∴4MC =,10MB =∴=1046BC MB MC -=-=故选B .【点睛】本题考查了全等三角形的判定与性质,等腰直角三角形的定义,熟练掌握全等三角形判定和性质,并能进行推理计算是解决问题的关键.4.C解析:C【分析】利用全等三角形的判定和等腰三角形的性质判断A 、B ,根据对顶角的定义判断C ,根据等边三角形的判定判断D .【详解】解:A .两条直角边对应相等的两个直角三角形,符合两三角形的判定定理“SAS”;故本选项是真命题;B .已知等腰三角形的两腰相等,且顶角的平分线即为底边上的高,则可根据为HL 可以得出两个三角形全等,故本选项是真命题;C 、相等的角不一定是对顶角,故错误,是假命题;D 、有一个角为60°的等腰三角形是等边三角形,正确,是真命题;故选C .【点睛】本题考查了命题和定理,解题的关键是明确题意,可以判断题目中的命题的真假,对于假命题能举出反例或者说明理由.5.A解析:A【分析】关于x 轴对称的点,横坐标相同,纵坐标互为相反数,可得a ,b 的值,进一步可得答案.【详解】解:∵1(1,2020)P a -和2(2017,1)P b -关于x 轴对称,得a-1=2017,1-b=2020.解得a=2018,b=-2019,∴()()()202120212021=2018201911a b +-=-=- 故选:A .【点睛】本题考查了关于x 轴、y 轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x 轴对称的点,横坐标相同,纵坐标互为相反数;关于y 轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数. 6.A解析:A【分析】分别利用全等三角形的性质以及等腰三角形的性质判断得出即可.【详解】解:A 、全等三角形的对应边相等,是真命题;B 、面积相等的两个三角形不一定全等,原命题是假命题;C 、两个全等三角形不一定成轴对称,原命题是假命题;D 、所有等腰三角形不一定都只有一条对称轴,如等边三角形有三条对称轴,原命题是假命题;故选:A .【点睛】本题主要考查了命题与定理,熟练掌握几何性质与判定是解题的关键.7.C解析:C【分析】根据非负数的意义列出关于a 、b 的方程并求出a 、b 的值,再根据b 是腰长和底边长两种情况讨论求解.【详解】解:根据题意得a-3=0,b-5=0,解得a=3,b=5,(1)若3是腰长,则三角形的三边长为:3、3、5,能组成三角形,周长为:3+3+5=11;(2)若3是底边长,则三角形的三边长为:3、5、5,能组成三角形,周长为3+5+5=13.故选:C .【点睛】本题考查了等腰三角形的性质、非负数的性质及三角形三边关系;解题主要利用了非负数的性质,分情况讨论求解时要注意利用三角形的三边关系对三边能否组成三角形作出判断.8.B解析:B【分析】根据折叠的性质得到∠AEF=130∠=︒,2D EG '∠=∠,根据12180AEF D EG '∠+∠+∠+∠=︒得到2(12)180∠+∠=︒,即可求出答案.【详解】解:由折叠得:∠AEF=130∠=︒,2D EG '∠=∠,∵12180AEF D EG '∠+∠+∠+∠=︒,∴2(12)180∠+∠=︒,∴260∠=︒故选:B .【点睛】此题考查折叠的性质,平角有关的计算,正确理解折叠性质得到∠AEF=130∠=︒,2D EG '∠=∠是解题的关键.9.D解析:D【分析】由AD 为△ABC 的高线,可得∠CBE+∠ABE+∠BAD=90°,Rt △ABE 是等腰直角三角形, 可得90ABE BAD DAE ∠+∠+∠=︒,从而可判断①;由等腰Rt ABE △可得AE BE =,结合AD BC =,∠DAE=∠CBE ,可判断②;由△ADE ≌△BCE ,可得,ADE BCE ∠=∠ 再证明∠BDE=∠AFE ,结合EBD DAE ∠=∠,AE BE =, 证明△AEF ≌△BED ,可判断③;由△ADE ≌△BCE ,可得,DE CE = 由△AEF ≌△BED ,,EF DE = 证明,EF CE =从而可判断④.【详解】解:∵AD 为△ABC 的高线,∴∠CBE+∠ABE+∠BAD=90°,∵Rt △ABE 是等腰直角三角形,∴90ABE BAD DAE ∠+∠+∠=︒,∴∠DAE=∠CBE ,即EBD DAE ∠=∠,故①正确;∵Rt △ABE 是以AB 为底等腰直角三角形,∴AE=BE ,在△ADE 和△BCE 中,AE BE DAE CBE AD BC =⎧⎪∠=∠⎨⎪=⎩,∴△ADE ≌△BCE (SAS ); 故②正确;△ADE ≌△BCE ,,ADE BCE ∴∠=∠∵∠BDE=∠ADB+∠ADE ,∠AFE=∠ADC+∠ECD ,90ADB ADC ∠=∠=︒,∴∠BDE=∠AFE ,在△AEF 和△BED 中,FAE DBE AFE BDE AE BE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AEF ≌△BED (AAS ),∴AF BD =; 故③正确;∵△ADE ≌△BCE ,∴,DE CE =△AEF ≌△BED ,,,AEF BED EF DE S S ∴==,EF CE ∴=∴,AEF ACE SS = ∴ ,BDE ACES S =故④正确; 综上:正确的有①②③④.故选:D .【点睛】本题考查的是三角形的内角和定理,三角形的中线与高的性质,三角形全等的判定与性质,等腰直角三角形的性质,掌握以上知识是解题的关键.10.D解析:D【分析】对每个选项一一分析即可得到正确答案.【详解】解:A 、错误,正确的说法是:含30°的直角三角形中 30°的对边等于最长边的一半; B 、错误,例如a =1,b=2,满足a + b = 3 , ab = 2,但不满足a - b = 1;C 、错误,到三角形三边所在直线距离相等的点有4个,在三角形内部的有一个,是三个内角角平分线的交点,在三角形的外部还有三个,是三角形的外角角平分线的交点;D 、正确,等腰三角形三边垂直平分线的交点、三个内角平分线的交点、顶角的顶点三点共线,都在等腰三角形的底边的垂直平分线上,故选:D .【点睛】本题考查了含30°的直角三角形的性质,等腰三角形的性质,三角形的角平分线的性质,熟练掌握相关图形的性质是解决本题的关键.11.C解析:C【分析】根据等腰ABC ,118ABC ︒∠=,得到AB=CB ,∠A=∠C=1(180)312ABC ︒︒-∠=,由DE 垂直平分AB ,求得∠ABE=31A ∠=︒,同理:31QBC C ∠=∠=︒,根据∠EBQ=∠ABC-∠ABE-∠QBC 计算得出答案.【详解】在等腰ABC 中,118ABC ︒∠=,∴AB=CB ,∠A=∠C=1(180)312ABC ︒︒-∠=, ∵DE 垂直平分AB ,∴AE=BE ,∴∠ABE=31A ∠=︒,同理:31QBC C ∠=∠=︒,∴∠EBQ=∠ABC-∠ABE-∠QBC=56︒,故选:C.【点睛】此题考查等腰三角形的性质,线段垂直平分线的性质,三角形的内角和定理,熟记线段垂直平分线的性质是解题的关键.12.D解析:D【分析】设BD=x,根据等边三角形的性质得到∠A=∠B=∠C=60°,由垂直的定义得到∠BDF=∠DEA=∠EFC=90°,依次表示出BF、CF、CD、AE、AD,然后根据AD+BD=AB列方程即可求出x的值.【详解】解:如图,设BD=x,∵△ABC是等边三角形,∴∠A=∠B=∠C=60°,∵DE⊥AC于点E,EF⊥BC于点F,FG⊥AB,∴∠BDF=∠DEA=∠EFC=90°,∴∠BFD=∠ADE=∠CEF=30°,∴BF=2x,∴CF=6-2x,∴CE=2CF=12-4x,∴AE=6-CE=4x-6,∴AD=2AE=8x-12,∵AD+BD=AB,∴8x-12+x=6,∴x=2,∴AD=8x-12=16-12=4.故选:D.【点睛】本题考查了等边三角形的性质,含30°角的直角三角形的性质,熟练掌握等边三角形的性质是解题的关键.二、填空题13.【分析】分两种情况根据等腰三角形的性质及三角形的三边关系解答【详解】分两种情况:当6cm的边为腰时底边长=24-6-6=12(cm)∵6+6=12故不能构成三角形;当6cm的边为底边时腰长=(cm)解析:9【分析】分两种情况,根据等腰三角形的性质及三角形的三边关系解答.【详解】分两种情况:当6cm的边为腰时,底边长=24-6-6=12(cm),∵6+6=12,故不能构成三角形;当6cm的边为底边时,腰长=1(246)92⨯-=(cm),由于6+9>9,故能构成三角形,故答案为:9.【点睛】此题考查等腰三角形的性质:两腰相等,依据三角形三边关系,解题中运用分类思想解答.14.3cm【分析】过点P作PF⊥OB于F根据角平分线上的点到角的两边距离相等可得PF=PE根据角平分线的定义可得∠AOC=∠BOC根据两直线平行内错角相等可得∠AOC=∠OPD两直线平行同位角相等可得∠解析:3cm【分析】过点P作PF⊥OB于F,根据角平分线上的点到角的两边距离相等可得PF=PE,根据角平分线的定义可得∠AOC=∠BOC,根据两直线平行,内错角相等可得∠AOC=∠OPD,两直线平行,同位角相等可得∠PDF=∠AOB,再求出∠BOC=∠OPD,根据等角对等边可得PD=OD,然后根据直角三角形30°角所对的直角边等于斜边的一半可得PF=12PD,进而即可求解.【详解】如图,过点P作PF⊥OB于F,∵OC平分∠AOB,PE⊥OA,∴PE=PF,∵OC平分∠AOB,∴∠AOC=∠BOC,∵PD ∥OA ,∴∠AOC =∠OPD ,∠PDF =∠AOB =30°,∴∠BOC =∠OPD ,∴PD =OD =6cm ,∴PF =12PD =12×6=3cm , ∴PE =PF =3cm .故答案为:3cm .【点睛】本题考查了角平分线的性质,平行线的性质,等腰三角形的性质,直角三角形30°角所对的直角边等于斜边的一半,熟记各性质并作辅助线是解题的关键.15.1【分析】过A 作AC ⊥OB 首先证明△AOB 是等边三角形再求出OC 的长即可【详解】解过A 作AC ⊥OB 于点C ∵AB=OB ∠A=60°∴∠AOB=60°且△AOB 是等边三角形∵点B 的坐标为(20)∴OB=解析:1【分析】过A 作AC ⊥OB ,首先证明△AOB 是等边三角形,再求出OC 的长即可.【详解】解,过A 作AC ⊥OB 于点C ,∵AB=OB ,∠A=60°∴∠AOB=60°且△AOB 是等边三角形,∵点B 的坐标为(2,0)∴OB=2∵AC ⊥OB∴112122OC OB ==⨯= 故答案为:1.【点睛】 此题主要考查了坐标与图形的性质,掌握等边三角形的性质是解答此题的关键. 16.25【分析】分腰长为10和腰长为5两种情况讨论不合题意的舍去据此即可求解【详解】解:当腰长为10时三边分别为10105构成三角形周长为10+10+5=25;当腰长为5时三边分别为5510∵5+5=1解析:25【分析】分腰长为10和腰长为5两种情况讨论,不合题意的舍去,据此即可求解.【详解】解:当腰长为10时,三边分别为10、10、5,构成三角形,周长为10+10+5=25; 当腰长为5时,三边分别为5、5、10,∵5+5=10,无法构成三角形,不合题意. 故答案为:25【点睛】本题考查了等腰三角形的定义和三角形的三边关系,熟知相关定理是解题关键. 17.6【分析】先求得∠ABD=∠CBD=30°进而得AD=BD 设AD=BD=x(cm)列出关于x 的方程即可求解【详解】∵在中∴∠ABC=60°∵BD 平分∴∠ABD=∠CBD=30°∴∠ABD=∠A ∴AD解析:6【分析】先求得∠ABD=∠CBD=30°,进而得AD=BD ,设AD=BD=x(cm),列出关于x 的方程,即可求解.【详解】∵在Rt ABC 中,90ACB ∠=︒,30A ∠=︒,∴∠ABC=60°,∵BD 平分ABC ∠,∴∠ABD=∠CBD=30°,∴∠ABD=∠A ,∴AD=BD ,设AD=BD=x(cm),∵AC=9cm ,∴CD=(9-x)cm , ∴912x x -=,即:x=6, ∴AD =6.故答案是:6【点睛】 本题主要考查等腰三角形的判定定理以及含30°角的直角三角形的性质,熟练掌握“直角三角形中,30°角所对的直角边是斜边的一半”是解题的关键.18.【分析】作DH ⊥AB 根据直角三角形的性质求出DH 根据平行线的性质角平分线的性质解答【详解】解:作DH ⊥AB 于H ∵∴∠DEH=∠DBE+∠BDE=30°∴DH=∵DE ∥BC ∴∠DBF=∠BDE ∴∠DB 解析:12a 【分析】作DH ⊥AB ,根据直角三角形的性质求出DH ,根据平行线的性质,角平分线的性质解答.【详解】解:作DH ⊥AB 于H ,∵15DBE BDE ∠=∠=︒∴∠DEH=∠DBE+∠BDE=30°,DE BE a ==∴DH=11=22DE a , ∵DE ∥BC ,∴∠DBF=∠BDE , ∴∠DBF=∠DBH ,又DF ⊥BC ,DH ⊥AB ,∴DF=DH=12a , 故答案为:12a . 【点睛】本题考查的是角平分线的性质,直角三角形的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.19.4或14秒【分析】由于动点P 从点A 出发沿的方向运动所以分两种情况进行讨论:(1)P 点在AB 上时设P 点运动了t 秒用含t 的代数式分别表示BPAP 根据条件过DP 两点的直线将的周长分成两部分使其中一部分是另解析:4或14秒.【分析】由于动点P 从点A 出发,沿A B C --的方向运动,所以分两种情况进行讨论:(1)P 点在AB 上时,设P 点运动了t 秒,用含t 的代数式分别表示BP ,AP ,根据条件过D ,P 两点的直线将ABC 的周长分成两部分,使其中一部分是另一部分的2倍,求出t 的值;(2)P 点在BC 上时,同理,可解得t 的值.【详解】解:分两种情况:(1)P 点在AB 上时,如图,∵12 cm AB AC ==,1 6 cm 2AD CD AC ===, 设P 点运动了t 秒,则AP t =,12BP t =-,由题意得: ()12AP AD BP BC CD +=++或()12AP AD BP BC CD +=++, ∴()1612662t t +=-++①或1(6)12662t t +=-++②, 解①得4t =秒,解②得,14t =(舍去);(2)P 点在BC 上时,如图,P 点运动了t 秒,则AB BP t +=,18PC AB BC t t =+-=-,由题意得:()2AD AB BP PC CD ++=+或()2AD AB BP PC CD ++=+, ∴()62186t t +=-+①或()26186t t +=-+②解①得14t =秒,解②得,4t =秒(舍去).故当4t =或14秒时,过D 、P 两点的直线将ABC 的周长分成两个部分,使其中一部分是另一部分的2倍.故答案为4或14秒.【点睛】本题考查了等腰三角形的性质及动点问题.解答此题时要分情况进行讨论,不要漏解. 20.56°【分析】根据可求出根据△DBE ≌△ECF 利用三角形内角和定理即可求出的度数【详解】解:∵AB =AC ∴∠ABC =∠ACB 在△DBE 和△CEF 中∴△DBE ≌△ECF (SAS )∴DE =EF ∴△DEF解析:56°【分析】根据44A ∠=︒可求出68ABC ACB ∠=∠=︒,根据△DBE ≌△ECF ,利用三角形内角和定理即可求出 EDF ∠的度数.【详解】解:∵AB =AC ,∴∠ABC =∠ACB ,在△DBE 和△CEF 中BE CF ABC ACB BD CE =⎧⎪∠=∠⎨⎪=⎩,∴△DBE ≌△ECF (SAS ),∴DE =EF ,∴△DEF 是等腰三角形,∵△DBE ≌△ECF ,∴∠1=∠3,∠2=∠4,∵∠A +∠B +∠C =180°, ∴()118044682B ∠=︒-︒=︒, ∴1218068∠+∠=︒-︒,∴3218068∠+∠=︒-︒,∴∠DEF =68°, ∴18068562EDF ︒-︒∠==︒. 故答案为:56°.【点睛】 此题主要考查全等三角形的判定与性质的理解和掌握,主要应用了三角形内角和定理和平角是180︒,根据等腰三角形的性质得出B C ∠=∠是解题的关键.三、解答题21.(1)20°;(2)证明见解析;(3)12AM AN AP =+. 【分析】(1)借助等边三角形的性质可证明△CAE ≌△OAD ,再利用直角三角形两锐角互余即可得出结论;(2)在OM 上截取EM=PF ,证明△FAP ≌△EAM ,得出AE=AF ,∠EAM=∠FAP ,再利用角的和差可得∠EAF=∠MAP=60°,即△AEF 为等边三角形,继而得出结论;(3)证明△CAM ≌△COP 可得AM=OP=OA+AP ,利用三角形内角和定理和对顶角相等可得∠OAN=60°,∠ONA=30°,根据直角三角形30°角所对边是斜边的一半可得12OA AN =,继而可得12AM AN AP =+. 【详解】解:(1)∵△AOC 和△DAE 是等边三角形,∴AC=AO ,AE=AD ,∠OAC=∠EAD=60°,∵10DAC ∠=︒, 6070CAE DAO DAC ∴∠=∠=︒+∠=︒,在△CAE 和△OAD 中∵AC AO CAE OAD AE AD =⎧⎪∠=∠⎨⎪=⎩∴△CAE ≌△OAD (SAS ),∴∠AEC=∠ADO ,∵∠ADO=90°-∠DAO=20°,∴∠AEC=20°,∴故答案为:20°;(2)与(1)同理可证,△OAM ≌△CAP ,∴∠OMA=∠CPA ,AM=AP ,如下图,在OM 上截取EM=PF ,在△FAP 和△EAM 中,∵PF ME OMA CPA AP AM =⎧⎪∠=∠⎨⎪=⎩,∴△FAP ≌△EAM (SAS ),∴∠EAM=∠FAP ,EA=FA ,∵∠EAF=∠EAM-∠FAM ,∠MAP=∠FAP-∠FAM ,∴∠EAF=∠MAP=60°,∴△AEF 为等边三角形,EF=AF ,∴AF MF EF MF EM PF +=+==,即AF MF PF +=;(3)与(1)同理可证△CAM ≌△COP ,∠MCP=60°,∴AM=OP=OA+AP ,∠AMC=∠OPC ,∵OP=OA+AP ,∴AM=OA+AP ,∵∠CEM=∠AEP ,∠AMC=∠OPC ,∴∠PAM=∠MCP=60°,∴∠OAN=60°,∠ONA=30°, ∴12OA AN =, ∴12AM AN AP =+, 故答案为:12AM AN AP =+. 【点睛】本题考查全等三角形的性质和判定,等边三角形的性质和判定.(1)中理解等边三角形三边相等,三角都等于60°是解题关键;(2)能根据“截长补短”作出辅助线构造全等三角形是解题关键;(3)中根据三角形内角和定理和对顶角相等得出∠OAN=60°是解题关键. 22.(1)见解析 (2)4【分析】(1)只要证明Rt △ADE ≌Rt △CDF ,推出∠A=∠C ,推出BA=BC ,又AB=AC ,即可推出AB=BC=AC ;(2)证明BD 是等边三角形的∠ABC 的平分线,得∠DBC =30゜,再利用直角三角形的性质求解即可.【详解】解:(1)证明:∵DE ⊥AB ,DF ⊥BC ,垂足分别为点E ,F ,∴∠AED=∠CFD=90°,∵D 为AC 的中点,∴AD=DC ,在Rt △ADE 和Rt △CDF 中,AD DC DE DF ⎧⎨⎩==, ∴Rt △ADE ≌Rt △CDF ,∴∠A=∠C ,∴BA=BC ,∵AB=AC ,∴AB=BC=AC ,∴△ABC 是等边三角形.(2)∵DE ⊥AB ,DF ⊥BC ,且DE DF =,∴BD 平分ABC ∠,∵ABC 是等边三角形,∴60ABC ACB ∠=∠=︒,∴BD AC ⊥,30CBD ∠=︒, ∴2BC CD =,∵CD CG =,2CG =∴24BC CG ==.【点睛】本题考查全等三角形的判定和性质、等边三角形的判定和性质、直角三角形的性质等知识,解题的关键是正确寻找全等三角形解决问题.23.(1)证明见解析;(2)证明见解析;(3)HG=CF+BD .【分析】(1)先利用角的和差证明∠BCD=∠EAC ,然后利用AAS 即可证明△AEC ≌△CDB ; (2)在l 上C 点左侧取一点E ,使∠AEC=60°,连接AE ,依次证明△AEC ≌△CDB 和△HGF ≌△FEA 即可得出结论;(3)在l 上位于C 点右侧取一点E ,使∠AED=60°,连接AE ,在l 上取一点M ,使BM=BD ,依次证明△ACE ≌△CBM 和△HGF ≌△FEA 即可得出结论.【详解】解:(1)证明:∵△ABC 是等边三角形,∴AC=BC ,∠ACB=60°,∴∠BCD+∠ACE=120°,∵∠AEC=60°,∴∠ACE+∠EAC=120°,∴∠BCD=∠EAC ,在△AEC 和△CDB 中∵60AEC BDC BCD EAC AC BC ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩, ∴△AEC ≌△CDB (AAS );(2)证明:如图2,在l 上C 点左侧取一点E ,使∠AEC=60°,连接AE ,由(1)知:△AEC≌△CDB,∴BD=CE,∵∠AEC=60°,∴∠AEF =120°,∵∠AFH =120°,∴∠AFE+∠FAE=∠AFE+∠GFH=60°,∴∠FAE=∠GFH,∵∠HGF=∠AEF=120°,AF=FH,∴△HGF≌△FEA(AAS),∴GH=EF,∴CF=EF+CE=HG+BD;(3)解:HG=CF+BD,理由是:如图3,在l上位于C点右侧取一点E,使∠AED=60°,连接AE,在l上取一点M,使BM=BD,∵∠BDC=60°,∴△BDM是等边三角形,∴∠BMD=60°,∵∠AED=60°,∴∠AEC=∠CMB=120°,∵∠ACB=60°,∴∠ACE+∠BCE=∠ACE+∠CAE=60°,∴∠CAE=∠BCE,∵AC=BC,∴△ACE≌△CBM(AAS),∴CE=BM=BD,由(2)可证△HGF≌△FEA(AAS),∴GH=FE,∵EF=CF+CE∴HG=CF+BD .故答案为:HG=CF+BD .【点睛】本题考查等边三角形的性质和判定,全等三角形的性质和判断,三角形外角的性质等.掌握一线三等角的模型,能借助一线三等角证明对应角相等是解题关键.24.(1)AP t =,8BP t =-,2BQ t =;(2)PQ AB ⊥,理由见解析;(3)能,当t 为83时,BPQ 为等边三角形 【分析】(1)根据点P 、Q 的运动速度解答;(2)连接AC ,得到△ABC 为等边三角形,根据等腰三角形的三线合一证明;(3)根据等边三角形的判定定理列出方程,解方程即可.【详解】解:(1)AP t =,8BP t =-,2BQ t =故答案为:t ;8-t ;2t ;(2)PQ AB ⊥.理由如下:连接AC∵AB BC =,60B ∠=,∴ABC 是等边三角形.∵Q 的速度是每秒2cm ,故当Q 与C 重合时,t 4= 又P 的速度是每秒1cm ,=8cm AB ,∴=4AB BP =又∵=CA CB ,∴PQ AB ⊥.(3)能.∵60B ∠=,∴当BP BQ =时,BPQ 为等边三角形,∴82t t -=.∴83t =.∴当t为83时,BPQ 为等边三角形. 【点睛】 本题考查的是等腰三角形的性质、等边三角形的判定和性质,掌握等腰三角形的三线合一、等边三角形的判定定理和性质定理是解题的关键.25.(1)见详解;(2)见详解.【分析】(1)由AB=AC ,AD 是中线,得到∠B=∠C ,BD=CD ,即可得到结论;(2)由等腰三角形的性质得到AD ⊥BC ,根据平行线的性质得到∠AHG=90°,再根据三角形的中位线定理即可得到结果.【详解】证明(1)如图:∵AB=AC ,AD 是中线,∴∠B=∠C ,BD=CD ,在△BDE 与△CDF 中,BE CF B C BD CD =⎧⎪∠=∠⎨⎪=⎩,∴△BDE ≌△CDF ;(2)∵GH ∥BD ,∠B=60°,∴∠AGH=60°,∵AB=AC ,AD 是中线,∴AD ⊥BC ,∴∠BAD=30°∠AHG=90°,∴GH=12AG , ∵AG=12AB , ∴GH=14AB . 【点睛】本题考查了等腰三角形的判定与性质,全等三角形的判定与性质,直角三角形的性质,掌握定理是解题的关键.26.(1)证明见解析;(2)证明见解析【分析】(1)连接DB 、DC ,先由角平分线的性质就可以得出DE=DF ,再证明△BDE ≌△CDF 就可以得出结论;(2)由条件可以得出△DAE ≌△DAF 就可以得出AE=AF ,进而就可以求出结论.【详解】(1)连接DB 、DC ,如图所示,DG 垂直平分BC ,DB DC ∴=,又AD 平分BAC ∠,DE AB ⊥,DF AC ⊥,DE DF ∴=,90DEB DFG ∠=∠=︒,DAE DAF ∠=∠, 在Rt BDE 和Rt CDF 中,DB DC DE DF =⎧⎨=⎩, ()HL Rt BDE Rt CDF ∴≅,BE CF ∴=.(2)在Rt DAE 和Rt DAF △中,DA DA DE DF =⎧⎨=⎩, ()Rt DAE Rt DAF HL ∴≅,AE AF ∴=,AB AE BE -=,AB AF CF ∴-=,()AB AC CF CF -+=,AB AC CF CF --=,2AB AC CF -=.【点睛】本题考查了角平分线的性质的运用,线段垂直平分线的性质的运用,全等三角形的判定与性质的运用,解答时证明三角形全等是关键.。
人教版八年级数学轴对称章检测卷
第1页 共8页 ◎ 第2页 共8页人教版八年级数学轴对称章检测卷学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知点A (a ,2)与点B (3,b )关于x 轴对称,则a +2b =( ) A .-4B .-1C .-2D .42.下列图标中,是轴对称图形的是( )A .B .C .D .3.在平面直角坐标系中,点A (3,﹣1)关于x 轴对称的点的坐标为( ) A .(﹣3,1)B .(1,﹣3)C .(﹣3,﹣1)D .(3,1)4.如图,在ABC 中,DE 是AC 的垂直平分线,且分别交BC 、AC 于点D 和E ,70B ∠=︒,25C ∠=︒,则BAD ∠为( )A .55︒B .60︒C .65︒D .70︒5.剪纸是我国传统的民间艺术.将一张正方形纸片按图1,图2中的方式沿虚线依次对折后,再沿图3中的虚线裁剪,最后将图4中的纸片打开铺平,所得图案应该是( )A .B .C .D .6.如图,在△ABC 中,BD 平分△ABC ,BC 的垂直平分线交BD 于点E ,连接CE ,若△A =60°,△ACE =24°,则△ABE 的度数为( )A .24°B .30°C .32°D .48°7.下列图案中,是轴对称图形的是( )A .B .C .D .第3页 共8页 ◎ 第4页 共8页8.如图,△ABC 与A B C '''关于直线MN 对称,BB '交MN 于点O ,则下列结论不一定正确的是( )A .AC AC =''B .BO B O ='C .AA MN '⊥D .AB B C ''∥9.下列图形中,轴对称图形的个数是( )A .1个;B .2个;C .3个;D .4个;10.如图,△ABC 中△A =40°,E 是AC 边上的点,先将△ABE 沿着BE 翻折,翻折后△ABE 的AB 边交AC 于点D ,又将△BCD 沿着BD 翻折,点C 恰好落在BE 上的点G 处,此时△BDC =82°,则原三角形的△B 的度数为( )A .57°B .60°C .63°D .70°二、填空题11.把一张长方形纸条ABCD 沿EF 折叠成图△,再沿HF 折叠成图△,若△DEF =β(0°<β<90°),用β表示△C ''FE ,则△C ''FE =_______.12.如图,将ABC 沿AB 边对折,使点C 落在点D 处,延长CA 到E ,使AE AD =,连接CD 交AB 于F ,连接ED ,则下列结论中:△若ABC 的周长为12,5DE =,则四边形ABDE 的周长为17;△AB DE ∥;△90CDE ∠=︒;△2ADE ADF S S =△△,正确的有_____________.13.如图,在△ABC 中,△B 、△C 的平分线交于点F ,过点F 作DE △BC 交AB 于点D ,交AC 于点E ,下列结论:△△BDF ,△ADE 都是等腰三角形;△DE =BD +CE ;△△ADE 的周长等于AB +AC ;△BF=CF ;△若△A =80°,则△BFC =130°,其中正确的有_________14.如图,在平行四边形ABCD 中,60C ∠=︒,以点A 为圆心,AB 长为半径画弧交AD 于点F ,再分别以点B ,F 为圆心,大于12BF 的长为半径画弧,两弧交于一点P ,连接AP 并延长交BC 于点E ,连接EF .设AE 与BF 相交于点O ,若四边形ABEF 的周长为16,则四边形ABEF 的面积是_________.第5页 共8页 ◎ 第6页 共8页15.如图,四边形ABCD 的对角线AC 、BD 相交于点O ,△ABO △△ADO ,下列结论:△AC △BD ;△CB =CD ;△△ABC △△ADC ;△DA =DC .其中不正确结论的序号是____.16.如图,在ABC 中,90ACB ∠=︒,15B ∠=︒,DE 的垂直平分线AB 分别交AB 、BC 于点D 、E ,连接AE ,若6cm BE =,则AC 等于___________cm .17.等腰三角形的顶角是100︒,那么它的一个底角的度数是________.18.如图,在△ABC 中,AB =8,BC =9,AC =5,直线m 是△ABC 中BC 边的垂直平分线,P 是直线上的一动点,则△APC 的周长的最小值为________.三、解答题19.如图,在△ABC 中,AB =BC ,△ABC =120°,AB 的垂直平分线DE 交AC 于点D ,连接BD ,若AC =12(1)求证:BD △BC . (2)求DB 的长.20.如图,E 为ABC 的外角CAD ∠平分线上的一点,AE //BC ,BF AE =.(1)求证:ABC 是等腰三角形;(2)若4AF =,求CE 的长.21.如图,△ABC 是边长为6的等边三角形,三边上分别有点E 、D 、F ,使得AE =BD =CF ,过点E 作EP △DF ,垂足为点P(1)求证:△BDE △△CFD ; (2)求△DEP 的度数;第7页 共8页 ◎ 第8页 共8页(3)当点E 、D 、F 分别在三边BA 、CB 及AC 的延长线上时,过点E 作EP △DF ,垂足为点P ,若AE =BD =CF =2,若△BDE 的周长为19,求DP 的长. 22.如图,AB 是线段,AD 和BC 是射线,AD//BC .(1)尺规作图:作AB 的垂直平分线EF ,垂足为O ,且分别与射线BC 、AD 相交于点E 、F (不写作法,保留作图痕迹);(2)在(1)条件下,连接AE ,求证:AE=AF .23.已知:如图,△ABC 是等边三角形,边长为6,点D 为动点,AD 绕点A 逆时针旋转60°得到AE .(1)如图1,连接BD ,CE ,求证BD CE =;(2)如图2,BAD DBC ∠=∠,连接DE ,求证:点B ,D ,E 三点在同一条直线上; (3)如图3,点D 在△ABC 的高BF 上,连接EF ,求EF 的最小值. 24.已知:Rt ABC ,90B .求作:点P ,使点P 在ABC 内部,且,45PB PC PBC =∠=︒.25.在正方形网格中,建立如图所示的平面直角坐标系,△ABC 的三个顶点都在格点上,△ABC 关于y 轴对称图形为△A 1B 1C 1(要求:A 与A 1,B 与B 1,C 与C 1相对应)(1)写出A 1,B 1,C 1的坐标,并画出△A 1B 1C 1的图形; (2)求△A 1B 1C 1的面积;(3)点P 是y 轴上一动点,画出P A +PC 最短时,点P 的位置.(保留作图痕迹,不写画法)26.如图,在平面直角坐标系中,A (3,4),B (1,2),C (5,1).(1)作出△ABC 关于y 轴的对称图形△1A 1B 1C ; (2)写出△1A 1B 1C 的三个顶点的坐标;(3)连接1AA ,1BB ,并求出四边形11ABB A 的面积.参考答案:1.B【分析】先根据关于x轴对称的点的坐标特点求出a、b,再代入计算即可.【详解】解:△点A(a,2)与点B(3,b)关于x轴对称,所以a=3,b=−2,△a+2b=3+2×(−2)=-1.故选B.【点睛】此题主要考查关于x轴对称的点的坐标特点.关于x轴对称的点的坐标特点:横坐标不变,纵坐标互为相反数.2.D【分析】根据轴对称图形的定义“如果一个平面图形沿着一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形”逐项判断即可.【详解】A、不是轴对称图形,此项不符题意;B、不是轴对称图形,此项不符题意;C、不是轴对称图形,此项不符题意;;D、是轴对称图形,此项符合题意;故选:D.【点睛】本题考查了轴对称图形的定义,熟记定义是解题关键.3.D【分析】关于x轴对称的点,横坐标相同,纵坐标互为相反数,可得答案.【详解】解:点P(3,−1)关于x轴对称的点的坐标是(3,1)故选:D.【点睛】本题考查了关于x轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.4.B【分析】根据线段垂直平分线的性质得到DA=DC,根据等腰三角形的性质得到△DAC=△C,根据三角形内角和定理求出△BAC的度数,计算出结果.【详解】解:△DE是AC的垂直平分线,△DA=DC,△△DAC=△C=25°,△△B=70°,△C=25°,△△BAC=85°,△△BAD=△BAC-△DAC=60°,故选:B.【点睛】本题考查的是线段垂直平分线的性质的知识,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.5.A【分析】依据翻折变换,将图4中的纸片按顺序打开铺平,即可得到一个图案.【详解】解:将图4中的纸片打开铺平,所得图案应该是:故选:A.【点睛】本题主要考查了剪纸问题,解决这类问题要熟知轴对称图形的特点,关键是准确地找到对称轴.一般方法是动手操作,拿张纸按照题目的要求剪出图案,展开即可得到正确的图案.6.C【分析】先根据BC的垂直平分线交BD于点E证明△BFE△△CFE(SAS),根据全等三角形∠=∠=∠,再根据三角形内角和定理即可得到的性质和角平分线的性质得到ABE EBF ECF答案.【详解】解:如图:△BC的垂直平分线交BD于点E,△BF=CF,△BFE=△CFE=90°,在△BFE和△CFE中,EF EF EFB EFC BF CF =⎧⎪∠=∠⎨⎪=⎩, △△BFE △△CFE (SAS ),△EBF ECF ∠=∠(全等三角形对应角相等), 又△BD 平分△ABC , △ABE EBF ECF ∠=∠=∠,又△180ABE EBF ECF ACE A ∠+∠+∠+∠+∠=︒(三角形内角和定理), △180602496ABE EBF ECF ∠+∠+∠=︒-︒-︒=︒, △196323ABE ∠=⨯︒=︒,故选:C .【点睛】本题主要考查了三角形全等的判定与性质、角平分线的性质、三角形内角和定理,解题的关键是证明ABE EBF ECF ∠=∠=∠. 7.C【分析】根据轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,对各选项判断即可.【详解】根据轴对称图形的定义可知A 、B 、D 均不是轴对称图形, 只有C 是轴对称图形. 故选:C .【点睛】本题考查了轴对称图形的知识,属于基础题,解答本题的关键是找出对称轴从而判段是否是轴对称图形. 8.D【分析】根据轴对称的性质逐项判断即可得.【详解】解:A .AC AC='',则此项正确,不符合题意; B .BO B O =',则此项正确,不符合题意; C .AA MN '⊥,则此项正确,不符合题意; D .AB B C ''∥不一定正确,则此项符合题意; 故选:D .【点睛】本题考查了轴对称的性质,解题的关键是熟练掌握轴对称的性质:成轴对称的两个图形的对应边相等,对应角相等,对称轴垂直平分对应点连接的线段.9.C【分析】根据轴对称图形的概念对各图形分析判断即可得解. 【详解】解:第1个不是轴对称图形; 第2个是轴对称图形; 第3个是轴对称图形; 第4个是轴对称图形; 故选:C .【点睛】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合. 10.C【分析】根据折叠的性质可知:△BDG =△BDC =82°,△ABE =△A 'BE =△A 'BG=△A 'BC ,根据三角形外角性质可得:△DBA =△BDC ﹣△A =82°﹣40°=42°,进一步可求出△ABE =△A 'BE =21°,△ABC =3×21°=63°,即原三角形的△B =63°.【详解】解:由折叠性质可得,△BDG =△BDC =82°,△ABE =△A 'BE =△A 'BG=△A 'BC , △△BDC 是△BDA 的外角,△△DBA =△BDC ﹣△A =82°﹣40°=42°, △△ABE =△A 'BE =21°,△△ABC =3×21°=63°,即原三角形的△B =63°, 故选:C .【点睛】此题主要考查的是图形的折叠及三角形外角性质,能够根据折叠的性质发现△BDG =△BDC =82°,△ABE =△A 'BE =△A 'BG=△A 'BC 是解答此题的关键. 11.1803β︒-【分析】先利用平行线的性质得到EFH DEF β∠=∠=,180EFC β∠=︒-,再根据折叠的性质得到180EFC β∠'=︒-,所以1802HFC β∠'=︒-,接着再利用折叠的性质得到1802C FH C FH β∠''=∠'=︒-,然后计算C FH EFH ''∠-∠即可.【详解】四边形ABCD 为长方形,//AD BC ∴,EFH DEF β∴∠=∠=,180EFC β∠=︒-,方形纸条ABCD 沿EF 折叠成图△, 180EFC EFC β∴∠'=∠=︒-,1801802HFC EFC EFH βββ∴∠'=∠'-∠=︒--=︒-,长方形ABCD 沿HF 折叠成图△, 1802C FH C FH β∴∠''=∠'=︒-,18021803C FE C FH EFH βββ∴∠=∠-∠=︒--=''︒-''.故答案为:1803β︒-.【点睛】本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等. 12.△△△△【分析】△由题知AE =AC ,BD =BC ,可得结论正确;△由三角形外角知△CAB +△DAB =△ADE +△AED ,又知△CAB =△DAB ,△ADE =△AED ,即可得△CAB =△DAB =△ADE =△AED ,即可得证结论; △由对称知CD △AB ,由AB △DE 可得结论;△由△知S △ADE =12DF •DE ,S △ADF =12DF •AF ,证AF 是中位线可得AF =12DE ,即可得证结论.【详解】解:△由图形翻折可知,AD =AC ,BD =BC , △AE =AD , △AE =AC ,△C 四边形ABDE =C △ABC +DE , △C △ABC =12,DE =5, △C 四边形ABDE =17, △△正确;△由图形翻折知,△CAB =△DAB , △AE =AD , △△ADE =△AED ,又△△CAB +△DAB =△ADE +△AED , △△CAB =△DAB =△ADE =△AED , △AB //DE , △△正确;△由△知,AB //DE ,由图形翻折知,CD△AB,△△CF A=△CDE=90°,△△正确;△由△知,△CF A=△CDE=90°,△S△ADE=12DF•DE,S△ADF=12DF•AF,△A是EC的中点,AB//DE,△AF是△CDE的中位线,△AF=12DE,△S△ADE=2S△ADF,△△正确,故答案为:△△△△.【点睛】本题主要考查图形的翻折,三角形的面积,平行线的判定和性质等知识点,证明AB DE是解题的关键.13.△△△【分析】由平行线得到角相等,由角平分线得角相等,根据平行线的性质及等腰三角形的判定和性质.【详解】解:△△B、△C的角平分线交于点F,△△DBF=△CBF,△ECF=△BCF,设△DBF=△CBF=α,△ECF=△BCF=β,△DE BC∥,△△DFB=△CBF=α,△EFC=△BCF=β,△△DBF=△DFB,△EFC=△ECF,△DB=DF,EF=EC,△△BDF与△CEF为等腰三角形,△DE=DF+EF=BD+CE,故△正确;△△ADE的周长为AD+AE+DE=AD+AE+BD+CE=AB+AC,故△正确;只有当△ABC是等腰三角形时,即△ABC=△ACB,则△FBC=△FCB,△ADE=△AED,则BF =CF,AD=AE,根据现有条件无法证明BF=CF,并且无法证明△ADE=△A或△AED=△A,即无法证明△ADE为等腰三角形,故△、△错误;△△A =80°,△△FBC +△FCB =218080︒-︒=50°, △△BFC =180°-50°=130°,故△正确.故答案为△△△.【点睛】本题考查了等腰三角形的性质与判定及角平分线的定义及平行线的性质,三角形内角和定理;题目利用了两直线平行,内错角相等,及等角对等边来判定等腰三角形的;等量代换的利用是解答本题的关键.14.【分析】根据题意可知AE 是BF 的垂直平分线,可得AB=AF ,BE=EF ,再根据“AAS ”证明△AOF △△EOB ,可得AF=BE ,进而根据“四边相等的四边形是菱形”得出四边形ABEF 是菱形,可知AF=AB=4,再说明△ABF 是等边三角形,可求出BF=4,然后根据勾股定理求出AO ,最后根据菱形的面积等于对角线乘积的一半得出答案即可.【详解】根据题意可知AE 是BF 的垂直平分线,△AB=AF ,BE=EF .△△F AO=△BEO ,△AOF=△BOE ,BO=FO ,△△AOF △△EOB ,△AF=BE ,△AB=BE=EF=AF ,△四边形ABEF 是菱形,△AF=AB=4.△四边形ABCD 是平行四边形,且△C =60°,△△BAF =60°,△△ABF 是等边三角形,△BF=4,△OF=2.在Rt △AOF 中,AO ===,△AE =△11==422ABEF S AE BF ⨯⋅⨯⨯四边形故答案为:【点睛】本题主要考查了尺规作垂直平分线,菱形的判定和性质,平行四边形的性质,等边三角形的判定和性质,勾股定理等,掌握菱形面积的计算方法是解题的关键.15.△【分析】根据全等三角形的性质可得AOB AOD ∠=∠,根据平角的定义可得1180902AOB AOD ∠=∠=⨯︒=︒,即可判断△,根据全等三角形的性质得出AB AD =,BO DO =,结合△可得AC 是BD 的垂直平分线,即可判断△,根据SSS 即可证明△,不能得出结论△.【详解】解:△△ABO △△ADO ,△AOB AOD ∠=∠,AB AD =,BO DO =△四边形ABCD 的对角线AC 、BD 相交于点O , △1180902AOB AOD ∠=∠=⨯︒=︒, △△AC △BD 正确;△AB AD =,BO DO =△AC 是BD 的垂直平分线,△△CB =CD 正确;△,,AB AD BC DC AC AC ===,△△△ABC △△ADC 正确;由已知条件不能判断△DA =DC .故答案为:△.【点睛】本题考查了全等三角形的性质与判定,垂直平分线的性质与判定,掌握以上知识是解题的关键.16.3【分析】根据垂直平分线的性质,可知6AE BE ,再由三角形外角的性质得出30AEC ABE BAE ∠=∠+∠=︒,最后由含30°的直角三角形的性质得出AC 的值即可.【详解】解:△DE 垂直平分AB ,6BE =△6AE BE ,又15B ∠=︒△15ABE BAE ∠=∠=︒,△30AEC ABE BAE ∠=∠+∠=︒,又△90ACB ∠=︒△在Rt AEC 中,132AC AE == 故答案为:3.【点睛】本题考查了垂直平分线的性质、三角形的外角的性质、含30°的直角三角形的性质,解题的关键在于对知识的灵活运用.17.40︒##40度【分析】根据等腰三角形的性质即可得. 【详解】解:根据题意得,底角的度数为:1(180100)402⨯︒-︒=︒, 故答案为:40︒.【点睛】本题考查了等腰三角形的性质,解题的关键是熟记等腰三角形的性质. 18.13【分析】首先连接PC ,由中垂线的性质可得PB =PC ,由于△APC 的周长为AC +P A +PC ,AC 长度固定,则只要P A +PB 最小即可,此时可推出P 、A 、B 三点共线,即P A +PB =AB ,由此计算即可.【详解】解:如图,连接PC ,则由中垂线的性质可得PB =PC ,△△APC 的周长=AC +P A +PC ,△△APC 的周长=AC +P A +PB ,△AC =5,△要使得△APC 的周长最小,使得P A +PB 最小即可,显然,根据两点之间线段最短,可知当P 、A 、B 三点共线时,P A +PB 最小此时,P 点即在AB 边上,P A +PB =AB ,△P A +PB 最小值为8,△△APC 的周长最小为:8+5=13,故答案为:13.【点睛】本题考查最短路径问题,以及中垂线的性质,理解并掌握中垂线的性质,以及最短路径问题的基本处理方式是解题关键.19.(1)见解析(2)4【分析】(1)根据等腰三角形的性质和三角形内角和定理求出△A=△C=30°,再根据线段垂直平分线的性质得出AD=BD,求出△DBA=30°,据此即可证得;(2)根据含30°角的直角三角形的性质求出BD=12CD,求出AD=12CD,据此求出答案即可.【详解】(1)证明:△AB=BC,△ABC=120°,△1180302A C ABC∠=∠=︒-∠︒()=,△AB的垂直平分线是DE,△AD=BD,△△DBA=△A=30°,△△DBC=△ABC﹣△DBA=120°﹣30°=90°,△BD△BC;(2)解:△△DBC=90°,△C=30°,△12BD CD=,△AD=BD,△1123AD CD AC==,△AC=12,△AD=4,△BD=AD=4.【点睛】本题考查了线段垂直平分线的性质,含30°角的直角三角形的性质,三角形内角和定理,等腰三角形的性质等知识点,能灵活运用知识点进行推理和计算是解此题的关键.20.(1)证明见解析(2)4【分析】(1)先根据平行线的性质可得DAE B ∠=∠,EAC ACB ∠=∠,再根据角平分线的定义可得DAE EAC ∠=∠,从而可得B ACB ∠=∠,然后根据等腰三角形的判定即可得证; (2)先根据三角形全等的判定证出ABF CAE ≅,再根据全等三角形的性质即可得.【详解】(1)证明:△AE //BC ,DAE B ∴∠=∠,EAC ACB ∠=∠, E 为ABC 的外角CAD ∠平分线上的一点,DAE EAC ∴∠=∠,B ACB ∴∠=∠,AB AC ∴=,ABC ∴是等腰三角形.(2)解:由(1)已得:,DAE B DAE EAC ∠=∠∠=∠,B EAC ∴∠=∠,在ABF △和CAE 中,AB CA B EAC BF AE =⎧⎪∠=∠⎨⎪=⎩,(SAS)ABF CAE ∴≅,AF CE ∴=,4AF =,4CE ∴=.【点睛】本题考查了等腰三角形的判定、三角形全等的判定与性质等知识点,熟练掌握等腰三角形的判定是解题关键.21.(1)见解析;(2)30°;(3)4.5【分析】(1)直接根据SAS 证明△BDE △△CFD 即可;(2)由(1)得△BDE △△CFD ,则△BED =△CDF ,即可推出△ EDP =△B =60°,再由EP △DF ,即可得到△ DEP =30° ;(2)根据△ABC 边长为6, AE =BD =2,得到BE =AB +AE =8,由△BDE 的周长为19,求出DE =19-BD -BE =9,然后证明△BDE △△CFD 得到△DEB =△FDC ,推出△EDP =60°,即可利用含30度角的直角三角形的性质求解.【详解】解:(1)△△ABC是等边三角形,△△B=△C=60°,AB=BC,△AE=BD=CF,△AB-AE=BC-BD,即BE=CD,△△BDE△△CFD(SAS);(2)由(1)得△BDE△△CFD,△△BED=△CDF,又△△EDC=△B+△BED,△△ EDP+△CDF=△B+△BED,△△ EDP=△B=60°,△EP△DF,△△EPD=90°,△△ DEP=30° ;(2)△△ABC边长为6,AE=BD =2,△BE=AB+AE=8,又△△BDE的周长为19,△ DE=19-BD-BE=9,△△ABC是等边三角形,△△ABC=△ACB=60°,BA=CB,△△EBD=180°-△ABC=180°-△ACB=△DCF=120°,又△BD=AE,△BA+AE=CB+BD,即BE=CD,△△BDE△△CFD(SAS),△△DEB=△FDC,△△EBC=△EDB+△DEB=60°,△△EDB+△FDC=60°,即△EDP=60°,又△EP△DF,△△EPD=90°,△△ DEP=30°,△DE=2DP,△DP= 4.5.【点睛】本题主要考查了等边三角形的性质,全等三角形的性质与判定,三角形外角的性质,含30度角的直角三角形的性质,解题的关键在于能够熟练掌握全等三角形的性质与判定条件.22.(1)见详解;(2)见详解【分析】(1)按照垂直平分线的作法画出AB的垂直平分线即可;(2)通过平行线的性质及垂直平分线的性质得出BAF EAB∠=∠,然后通过ASA证明≅,再由全等三角形的性质即可得出结论.AOE AOF【详解】(1)如图(2)如图,连接AE//AD BCEBA BAF∴∠=∠△EF是AB的垂直平分线,90 EB EA AOE AOF∴=∠=∠=︒EBA EAB∴∠=∠BAF EAB∴∠=∠在AOE△和AOF中,EAO FAO AO AOAOE AOF ∠=∠⎧⎪=⎨⎪∠=⎩()AOE AOF ASA∴≅AE AF∴=【点睛】本题主要考查尺规作图及全等三角形的判定及性质,掌握垂直平分线的作法和全等三角形的判定方法及性质是解题的关键.23.(1)见解析(2)见解析(3)3 2【分析】(1)证明△BAD△△CAE,从而得出结论;(2)△BAD=△CAE=△CBE,所以△ABC=△ABD+△CBE=△ABD+△BAD=60°,从而得出△ADB=120°,进一步得出结论;(3)可证得△ACE=△ABF=30°,从而得出点E的运动轨迹,进而求得EF的最小值.【详解】(1)△△ABC是等边三角形,△AB=AC,△BAC=60°,△AD 绕点A 逆时针旋转60°得到AE ,△△DAE =60°,AD =AE ,△△BAC =△DAE ,△△BAC -△DAC =△DAE -△DAC ,即:△BAD =CAE ,在△BAD 和△CAE 中,AB AC BAD CAE AD AE ⎧⎪∠∠⎨⎪⎩=== , △△BAD △△CAE (SAS ),△BD =CE ;(2)由(1)知:△CAE =△BAD ,△△CAE =△CBE ,△△BAD =△CBE ,△△ABC 是等边三角形,△△ABC =60°,△△ABD +△CBE =60°,△△ABD +△BAD =60°,△△ADB =180°-(△ABD +△BAD )=120°,△AD =AE ,△DAE =60°,△△ADE 是等边三角形,△△ADE =60°,△△ADB +△ADE =180°,△B 、D 、E 在同一条直线上;(3)如图,连接CE ,由(1)得:△BAD △△CAE ,△△ACE=△ABD,△△ABC是等边三角形,△AB=BC,△ACB=△ABC=60°,△BF△AC,△△ABF=12△ABC=30°,CF=AF=12AC=3,△△ACE=30°,△△BCE=△ACB+△ACE=90°,△点E在过点C且与BC垂直的直线上运动,△当FE垂直于该直线时,CE最小(图中点CE′),△△CE′F=90°,△ACE=30°,△FE′=12CF=32,△EF的最小值为:32.【点睛】本题考查了等边三角形性质,直角三角形性质,全等三角形的判定和性质等知识,解决问题的关键是熟练掌握“手拉手”模型.24.见解析【分析】分别以点B、C为圆心,大于BC长的一半为半径画弧,交于两点,连接这两点,然后再以点B为圆心,适当长为半径画弧,交AB、BC于点M、N,以点M、N为圆心,大于MN长一半为半径画弧,交于一点Q,连接BQ,进而问题可求解.【详解】解:如图,点P即为所求:【点睛】本题主要考查角平分线与垂直平分线的尺规作图,熟练掌握角平分线与垂直平分线的尺规作图是解题的关键.25.(1)A1(4,1) ;B1(2,-1);C1(1,3);见解析;(2)5;(3)见解析【分析】(1)根据关于y轴对称的点的坐标特征,纵坐标相同,横坐标互为相反数,先找到A 、B 、C 关于y 轴对称的点,然后顺次连接即可;(2)根据111A B C △的面积等于其所在的长方形面积减去周围三个三角形面积求解即可; (3)连接1A C 与y 轴交于点P 即为所求.【详解】解:(1)如图所示,111A B C △即为所求;由图可知,1A 的坐标为(4,1),1B 的坐标为(2,-1),1C 的坐标为(1,3);(2)由图可知111111341422325222A B C S =⨯-⨯⨯-⨯⨯-⨯⨯=△; (3)如图所示,连接1A C 与y 轴交于点P 即为所求;【点睛】本题主要考查了画轴对称图形,坐标与图形变化,轴对称最短路径等等,解题的关键在于能够熟练掌握关于y 轴对称的点的坐标特征.26.(1)作图见详解(2)1(3,4)A -,1(1,2)B -,1(5,1)C -(3)作图见详解,四边形11ABB A 的面积为8【分析】(1)先依次作A ,B ,C 关于y 轴的对称点,再顺次连接即可.(2)由图写出1A ,1B ,1C 坐标即可.(3)由图可知四边形11ABB A 为梯形,用梯形面积公式即可求得面积.【详解】(1)(2)解:由(1)中图可知1(3,4)A -,1(1,2)B -,1(5,1)C -(3)解:如图四边形11ABB A 的面积=1(26)282+⨯= 【点睛】本题考查了轴对称的作图,以及平面直角坐标系相关知识点.掌握轴对称的作图步骤是解题关键.。
苏科版八年级上《第2章轴对称图形》单元测试含答案解析
1 / 14 《第2章 轴对称图形》 一、选择题 1.下列图案中,属于轴对称图形的是( )
A. B. C. D. 2.到三角形三个顶点距离相等的是( ) A.三边高线的交点 B.三条中线的交点 C.三条垂直平分线的交点 D.三条内角平分线的交点 3.如图,△ABC与△A′B′C′关于直线l对称,且∠A=78°,∠C′=48°,则∠B的度数为( )
A.48° B.54° C.74° D.78° 4.如图,Rt△ABC中,∠ACB=90°,∠A=50°,将其折叠,使点A落在边CB上A′处,折痕为CD,则∠A′DB=( )
A.40° B.30° C.20° D.10° 二、填空题(共6小题,每小题3分,满分18分) 5.如图,AD∥BC,BD平分∠ABC,且∠A=110°,则∠D= °. 2 / 14
6.如图,△ABC中,∠B,∠C的平分线相交于点O,过O作DE∥BC,若BD+EC=5cm,则DE等于 cm. 7.如图,在正方形ABCD中,E是AB上一点,BE=2,AE=3BE,P是AC上一动点,则PB+PE的最小值是 . 8.点P在线段AB的垂直平分线上,PA=10,则PB= . 9.如图,△ABC中,∠ACB=90°,AD平分∠BAC,AD=10,AC=8.则点D到AB边的距离为 .
10.如图,△ABC中,AB+AC=6cm,BC的垂直平分线l与AC相交于点D,则△ABD的周长为 cm.
三、解答题 11.已知:如图,在△ABC中,∠BAC=90°,BD平分∠ABC,DE⊥BC于E.证明:BD垂直平分AE.
12.已知:如图,∠ABC=∠ADC=90°,E、F分别是AC、BD的中点.求证:EF⊥BD. 3 / 14
13.(1)如图,在△ABC中,∠BAC=90°,AB=AC,点D在BC上,且BD=BA,点E在BC的延长线上且CE=CA,试求∠DAE的度数; (2)如果把第(1)题中“AB=AC”的条件去掉,其余条件不变,那么∠DAE的度数会改变吗?说明理由; (3)如果把第(1)题中“∠BAC=90°”的条件改为“∠BAC>90°”,其余条件不变,那么∠DAE与∠BAC有怎样的大小关系?
安徽安庆市八年级数学上册第十三章《轴对称》经典练习卷(含答案解析)
一、选择题1.如图,在△ABC 中,∠C =90°,∠B =30°,AD 平分∠CAB 交BC 于点D ,E 为AB 上一点,连接DE ,则下列四个结论正确的有( ).①∠CAD =30° ②AD =BD ③BD =2CD ④CD =EDA .1个B .2个C .3个D .4个2.下列命题中,假命题是( )A .两条直角边对应相等的两个直角三角形全等B .等腰三角形顶角平分线把它分成两个全等的三角形C .相等的两个角是对顶角D .有一个角是60的等腰三角形是等边三角形3.如图,已知60AOB ∠=︒, 点P 在OA 边上,8OP cm =,点M 、N 在边OB 上,PM PN =,若2MN cm =,则OM 为( )A .2cmB .3cmC .4cmD .1cm4.如图,在ABC 中,90C ∠=︒,30B ∠=︒,以点A 为圆心,任意长为半径画弧分别交AB ,AC 于点M 和N ,再分别以点M ,N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,连接AP 并延长交BC 于点D .则下列说法中正确的个数是( ) ①AD 是BAC ∠的平分线;②60ADC ∠=︒;③点D 在AB 的中垂线上;④:2:5DAC ABC S S =△△A .1B .2C .3D .45.如图所示,已知ABC 和DCE 均是等边三角形,点B 、C 、E 在同一条直线上,连接AE 、BD 、FG ,AE 与BD 交于点O ,AE 与CD 交于点G ,AC 与BD 交于点F ,则下列结论中:①AE BD =; ②AG BF =; ③FG//BE ; ④CF CG =,以上结论正确的有( )A .1个B .2个C .3个D .4个6.如图,在ABC 中,AB AC =,D 为BC 的中点,AD AE =,若40BAD ∠=︒,则CDE ∠的度数为( )A .10︒B .20︒C .30D .40︒ 7.在等腰ABC ∆中,80A ∠=︒,则B 的度数不可能是( )A .80︒B .60︒C .50︒D .20︒ 8.定义:等腰三角形的一个底角与其顶角的度数的比值()1k k >称为这个等腰三角形的“优美比”.若在等腰三角形ABC 中,36,A ∠=︒则它的优美比k 为( )A .32B .2C .52D .39.如图,在ABC 中,AB AC =,108BAC ∠=︒,72ADB ∠=︒,DE 平分ADB ∠,图中等腰三角形的个数是( )A .3B .4C .5D .610.如图,已知点D 为ABC 内一点,CD 平分ACB ∠,BD CD ⊥,A ABD ∠=∠,若6AC =,4BC =,则BD 的长为( )A .2B .1.5C .1D .2.5 11.下列推理中,不能判断ABC 是等边三角形的是( ) A .A B C ∠=∠=∠ B .,60AB AC B =∠=︒C .60,60A B ∠=︒∠=︒D .AB AC =,且B C ∠=∠ 12.如图所示,D 为 BC 上一点,且 AB =AC =BD ,则图中∠1 与∠2 的关系是( )A .∠1=2∠2B .∠1+∠2=180°C .∠1+3∠2=180°D .3∠2﹣∠1=180° 13.如果等腰三角形两边长分别是8cm 和4cm ,那么它的周长( )A .8cmB .20cmC .16cm 或20cmD .16cm 14.如图,在Rt ABC 中,∠BAC =90°,以点A 为圆心,以AB 长为半径作弧交BC 于点D ,再分别以点B ,D 为圆心,以大于12BD 的长为半径作弧,两弧交于点P ,作射线AP 交BC 于点E ,如果AB =3,AC =4,那么线段AE 的长度是( )A .125B .95C .85D .7515.如图,在ABC 中,∠ACB =90°,边BC 的垂直平分线EF 交AB 于点D ,连接CD ,如果CD =6,那么AB 的长为( )A .6B .3C .12D .4.5二、填空题16.平面直角坐标系xOy 中,先作出点P (2,3)-关于y 轴的对称点,再将该对称点先向下平移1个单位,再向左平移2个单位得到点P 1,称为完成一次图形变换,再将点P 1进行同样的图形变换得到点P 2,以此类推,则点P 2020的坐标为___________.17.在平面直角坐标系中,将点(3,2)P -向右平移4个单位得到点P ',则点P '关于x 轴的对称点的坐标为________.18.如图,线段AB ,BC 的垂直平分线1l ,2l 相交于点O .若135∠=︒,则A C ∠+∠的度数为______.19.如图,等边ABC 的边长为4,AD 是BC 边上的中线,F 是AD 边上的动点,E 是AC 边上一点.若2AE =,当EF CF +取最小值时,ECF ∠的度数为___________度.20.在平面直角坐标系中,O 为坐标原点,()1,1A ,在x 轴上确定一点P ,使AOP 为等腰三角形,则符合条件的等腰三角形的顶角度数为______.21.若点P(x-y ,y)与点Q(-1,-5)关于x 轴对称,则x+y=______.22.如图,在锐角△ABC 中,AB =62 ,∠BAC =45°,∠BAC 的平分线交BC 于点D ,M ,N 分别是AD 和AB 上的动点,则BM +MN 的最小值是_____________.23.嘉嘉和淇淇下棋,嘉嘉执圆形棋子,淇淇执方形棋子,如图,棋盘中心的圆形棋子的位置用()1,1-表示,右下角的圆形棋子用()0,0表示,淇淇将第4枚方形棋子放入棋盘后,所有棋子构成的图形是轴对称图形.则淇淇放的方形棋子的位置是__________.24.如图,25AOB ∠=︒,点M ,N 分别是边OA ,OB 上的定点,点P ,Q 分别是边OB ,OA 上的动点,记MPQ α∠=,PQN β∠=,当MP PQ QN ++的值最小时,βα-的大小=__________(度).25.如图,在ABC 中,点D 是BC 上一动点,BD ,CD 的垂直平分线分别交AB ,AC 于点E ,F ,在点D 的运动过程中,EDF ∠与A ∠的大小关系是EDF ∠______A ∠(填“>”“=”或“<”).26.如图,△ABC 中,AB =AC ,点D 、E 、F 分别在AB 、BC 、CA 边上,且BE =CF ,BD =CE ,如果∠A =44°,则∠EDF 的度数为__.三、解答题27.如图,点E 在ABC 的边AB 上,90ABC EAD ∠=∠=︒,30BAC ADE ∠=∠=︒,DE 的延长线交AC 于点G ,交BC 延长线于点F .AB=AD ,BH ⊥DF ,垂足为H .(1)求HAE ∠的度数;(2)求证:DH FB FH =+.28.在等边三角形ABC 中,点E 为线段AB 上一动点,点E 与A ,B 不重合,点D 在CB 的延长线上,且ED =EC .(1)当E 为边AB 的中点时,如图1所示,确定线段AE 与BD 的大小关系,并证明你的结论;(2)如图2,当E 不是边AB 的中点时,(1)中的结论是否成立?若不成立,请直接写出BD 与AE 的数量关系;若成立,请给予证明;(提示:过E 作//EF BC 交AC 于点F ) (3)在等边三角形ABC 中,点E 在直线AB 上,点D 在直线BC 上,且ED =EC ,ABC 的边长为1,AE =2,请直接写出CD 的长.29.如图,在Rt ABC △中,90ACB ∠=︒,CAP 和CBQ △都是等边三角形,BQ 和CP 交于点H ,求证:BQ CP ⊥.30.如图,△ABC 为等边三角形,直线l 经过点C ,在l 上位于C 点右侧的点D 满足∠BDC =60°.(1)如图1,在l 上位于C 点左侧取一点E ,使∠AEC = 60°,求证:△AEC ≌△CDB ; (2)如图2,点F 、G 在直线l 上,连AF ,在l 上方作∠AFH =120°,且AF =HF ,∠HGF =120°,求证:HG +BD =CF ;(3)在(2)的条件下,当A 、B 位于直线l 两侧,其余条件不变时(如图3),线段HG 、CF 、BD 的数量关系为 .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[教育资源网 http://www.edu5.net] 百万教学资源,完全免费,无须注册,天天更新!
[教育资源网 http://www.edu5.net] 教学资源集散地。最大的免费教育资源网!
八年级数学(上)
第十二章 轴对称 整章测试(A)
(时间90分钟 满分100分)
班级 学号 姓名 得分
一、填空题(每题2分,共32分)
1.轴对称是指____个图形的位置关系;轴对称图形是指____个具有特殊形状的图形.
2.设A、B两点关于直线MN对称,则______垂直平分________.
3.等腰三角形是_______对称图形,它至少有________条对称轴.
4.小明上午在理发店理发时,•从镜子内看到背后墙上普通时钟的时
针与分针的位置如图所示,此时时间是__________.
5.点(1,3)P关于x轴的对称点的坐标为 .
6.已知等腰三角形的顶角是30°,则它的一个底角是 .
7.已知等腰三角形有一个角是50°,则它的另外两个角是 .
8.等腰三角形两边长为4cm 和 6cm ,则它的周长为 .
9.已知点P在线段AB的垂直平分线上,PA=6,则PB= .
10.如图,在Rt△ABC中,∠C=90°,∠A=30°,BD是∠ABC的平分线,若BD=10,
则CD= .
11.如图,在等边△ABC中,AD⊥BC,AB=5cm ,则DC的长为 .
12.如图,△ABC中,AB=AC,DE是AB的垂直平分线, AB=8,BC=4,∠A=36°,
则∠DBC= ,△BDC的周长C△BDC = .
A B C D 第10题 第11题图 第12题图 第13题图 B A
D
C
B
C
D
A
E
1
2
B C A D
E
第4题图
[教育资源网 http://www.edu5.net] 百万教学资源,完全免费,无须注册,天天更新!
[教育资源网 http://www.edu5.net] 教学资源集散地。最大的免费教育资源网!
B
C
A
13.如图,∠1=50°,∠2=80°,DB=AB,CE=CA,则∠D= ,∠DAE= .
14.如图,AB=AC,∠A=40o,AB的垂直平分线MN交AC于点D,则∠DBC=_______.
15.如图,若P为∠AOB内一点,分别作出P点关于OA、OB的对称点P1P2,连接
P1P2交OA于M,交OB于N,P1P2=15,则△PMN的周长是________.
16.如图,若B、D、F在MN上,C、E在AM上,且AB=BC=CD,EC=ED=EF,∠A=20o,
则∠FEB=________.
二、解答题(共68分)
17.(7分)已知:如图,△ABC,分别画出与△ABC关于x轴、y轴对称的图形△A1B1C1
和△A2B2C2 , △A1B1C1 和△A2B2C2 各顶点坐标为:A1( , );B
1
( , );C1( , );A2( , );B2( , );
C2( , ).
18.(5分)已知:如图,AC和BD交于点O,AB//CD ,OA=OB .求证:OC=OD
第14题图 第15题图 第16题图
[教育资源网 http://www.edu5.net] 百万教学资源,完全免费,无须注册,天天更新!
[教育资源网 http://www.edu5.net] 教学资源集散地。最大的免费教育资源网!
A
COBD
19.(5分)在Rt△ABC中,∠C=90°,DE是AB的垂直平分线,且∠BAD∶∠BAC
=1∶3,求∠B的度数.
20.(5分)已知:如图△ABC中,AB=AC,∠C=30°,AB⊥AD,AD=4cm,求BC的
长.
21.(5分)如图所示,∠AOP=∠BOP=15°,PC∥OA,PD⊥OA,若PC=4,求PD的
长.
[教育资源网 http://www.edu5.net] 百万教学资源,完全免费,无须注册,天天更新!
[教育资源网 http://www.edu5.net] 教学资源集散地。最大的免费教育资源网!
D
E
C
B
A
O
A
B
C
D
E
O
C
B
A
D
www.czsx.com.cn
P
22.(5分)如图,△ABC中,AB=AC, △ABC的两条中线BC、CE交于O点,求证:OB=OC.
0
D
E
C
A
B
23.(5分)如图,△ABD、△AEC都是等边三角形,求证:BE=DC .
24.(6分)已知:E是∠AOB的平分线上一点,EC⊥OA ,ED⊥OB ,垂足分别为C、
D.求证:(1)∠ECD=∠EDC ;(2)OE是CD的垂直平分线.
[教育资源网 http://www.edu5.net] 百万教学资源,完全免费,无须注册,天天更新!
[教育资源网 http://www.edu5.net] 教学资源集散地。最大的免费教育资源网!
A
D
E
F
B
C
25.(5分)已知:△ABC中,∠B、∠C的角平分线相交于点D,过D作EF//BC交
AB于点E,交AC于点F.求证:BE+CF=EF
26.(6分)已知:如图△ABC中,AB=AC,AD和BE是高,它们交于点H,且AE=BE,
求证:AH=2BD.
27.(6分)如图,已知在△ABC中,AB=AC,∠BAC=120o,AC的垂直平分线EF交
AC于点E,交BC于点F.求证:BF=2CF.
[教育资源网 http://www.edu5.net] 百万教学资源,完全免费,无须注册,天天更新!
[教育资源网 http://www.edu5.net] 教学资源集散地。最大的免费教育资源网!
28.(8分)如图,某船在上午11点30分在A处观测岛B在东偏北30o,该船以10
海里/时的速度向东航行到C处,再观测海岛在东偏北60o,且船距海岛40海里.
(1)求船到达C点的时间;
(2)若该船从C点继续向东航行,何时到达B岛正南的D处?
28.①船到达C点的时间是下午3时30分;②船在下午5时30分到达B岛的正南的
D处.
参考答案
一、填空题
1.2,1 2.MN,AB 3.轴,1 4.10点45分 5.(-1,-3)6.75度7.65度或50
度8.14cm或16cm 9.6 10.5 11.2.5cm 12.36度,12 13.25度,115度 14.30
度 15.15 16.100度
[教育资源网 http://www.edu5.net] 百万教学资源,完全免费,无须注册,天天更新!
[教育资源网 http://www.edu5.net] 教学资源集散地。最大的免费教育资源网!
二、解答题
17.111222(0,2),(2,4),(4,1),(0,2),(2,4),(4,1)ABCABC 18.略 19.25度20.12
21.2 22.略 23.略 24.略 25.略 26.略 27.略 28.3时30分,5点30分。