初一数学重难点
初一期末数学试卷难点

一、代数部分1. 一元一次方程与不等式一元一次方程与不等式是初中数学的基础内容,也是初一期末考试的重点。
在解答这类题目时,学生往往容易犯以下错误:(1)移项时不注意符号的变换,导致方程无解或解不正确;(2)解不等式时,没有正确掌握不等号的方向,导致解不正确;(3)在求解不等式组时,没有正确理解“同大取大,同小取小,大小小大中间找,大大小小找不到”的原则。
2. 因式分解因式分解是初中数学的重要知识点,也是难点。
学生在解答因式分解题目时,常见错误如下:(1)不熟悉各种因式分解公式,导致无法正确分解;(2)在提取公因式时,没有正确找出公因式,导致分解错误;(3)在运用十字相乘法分解因式时,没有正确确定因式,导致分解错误。
二、几何部分1. 平行四边形与矩形平行四边形与矩形是初中几何的基础内容,学生在解答相关题目时,常见错误如下:(1)不熟悉平行四边形与矩形的性质,导致无法正确运用;(2)在证明平行四边形或矩形时,没有正确找到合适的证明方法;(3)在计算平行四边形或矩形的面积时,没有正确应用公式。
2. 三角形三角形是初中几何的核心内容,学生在解答相关题目时,常见错误如下:(1)不熟悉三角形的基本性质,导致无法正确运用;(2)在证明三角形全等时,没有正确找到合适的证明方法;(3)在计算三角形面积时,没有正确应用公式。
三、应用题部分1. 利润问题利润问题是初一期末考试中的难点,学生在解答这类题目时,常见错误如下:(1)不理解利润问题的基本模型,导致无法正确列出方程;(2)在计算利润时,没有正确应用公式;(3)在解答利润问题时,没有正确分析题意,导致答案错误。
2. 行程问题行程问题是初一期末考试中的难点,学生在解答这类题目时,常见错误如下:(1)不熟悉行程问题的基本模型,导致无法正确列出方程;(2)在计算速度、时间、路程时,没有正确应用公式;(3)在解答行程问题时,没有正确分析题意,导致答案错误。
总之,初一期末数学试卷的难点主要集中在代数和几何部分,以及应用题。
初一数学上册必考的知识点及重难点

初一数学上册必考的知识点及重难点1.整数:-整数的概念及表示方法;-整数之间的大小关系;-整数的加法、减法、乘法和除法运算;-整式的化简和展开。
2.分数:-分数的概念及表示方法;-分数与数轴的关系;-分数的加法、减法、乘法和除法运算;-分数的化简和约分。
3.小数:-小数的概念及表示方法;-小数与分数的相互转换;-小数的加法、减法、乘法和除法运算;-小数的进位与舍位计算。
4.平方根:-平方根的概念及表示方法;-平方根的计算;-平方根与平方的关系;-平方根的应用。
5.比例与比例的应用:-比例的概念及表示方法;-比例的性质与判定方法;-比例的四种基本关系;-比例的应用,如物体相似、线段分割等。
6.百分数与百分数的应用:-百分数的概念及表示方法;-百分数与分数、小数的相互转换;-百分数的基本计算;-百分数的应用,如利润、增长率、折扣等。
7.几何图形:-点、线、面、角的基本概念;-直线、射线、线段的区别与判定方法;-正方形、长方形、菱形、平行四边形等各种图形的性质;-三角形及各种特殊三角形的性质。
8.平面与空间:-平面与立体图形的概念;-各种立体图形的性质,如长方体、正方体、棱锥、棱柱等;-空间几何体的展开与折叠。
9.统计与概率:-了解统计学的基本概念;-数据的收集、整理与分析方法;-概率的基本概念及计算方法;-利用概率进行问题解答。
1.整数运算中的进位与舍位计算;2.分数和小数之间的转换;3.平方根的计算和应用;4.比例和百分数的应用问题;5.图形的性质及判定方法;6.立体图形的展开与折叠;7.数据的收集、整理与分析方法;8.概率的计算和应用。
要提高数学水平,建议学生重点掌握以下方法:1.培养数学的逻辑思维能力,学会分析问题并找出解决方法;2.注重基础知识的掌握,特别是对概念和运算规则的理解;3.多进行练习,通过做题来巩固知识,理清思路;4.注意归纳总结,将不同类型的题目归类整理,帮助记忆和应用;5.多与同学和老师进行交流和讨论,探讨解题思路和方法;6.及时查漏补缺,对于不懂的知识点可以与老师或同学请教。
人教版初一数学各章重难点

初一上册重点知识第一章:有理数1.本章的知识点有:负数,数轴,相反数,绝对值,加法法则,减法法则,乘法法则,除法法则,乘方,乘方的相关符号法则,科学记数法,有效数字等相关知识点。
2. 本章的难点是:绝对值的性质(难题常从这里处出)学生一般理解不够透彻,运用得灵活度不够。
3.有理数的运算不难,但易错,不容易得分。
易错处:(1)加法法则;(2)在去括号与添括号中变号问题易错(符号易错);(3)乘法中也是符号易错,除法常忘记变倒数:(4)乘方部分易和乘法混:如:(-2)3=-6,(×)(-1)2010与-12010;(5)科学记数法与有效数字(中考必考)精确位数易错,但较简单。
同时很多老师和学生很容易忽略掉的知识点是:加法法则(很多学生因为加法法则没学好导致第二章整式只考二三十分,这是我在教学过程中悟出来的)。
本章在预习过程中所需的课时是6-8次课,即12-16小时。
第二章:整式1.本章的知识点有:单项式,多项式,同类项,合并同类项及相关知识点。
2.本章的易错点是:(1)单项式和多项式的次数问题;(2)含参数的多项式;(3)单项式的相关概念与方程结合;(4)同类项概念与参数结合;(5)整式的加减法运算(中考必考5分)化简求值对熟练程度和准确度要求较高,初学时易错(符号变换问题)较难的是那种一眼看不出个所以然的,一般都把握不好。
(整体代入是基本思想)本章在预习过程中所需的课时是2-4次课,即4-8小时。
第三章:一元一次方程:1.重点在于思维的转换和数学模型的建立。
对于本章的概念理解即可,稍难一些的是含有参数的方程求参数值;2.解一元一次方程中较难的是绝对值方程;列方程解应用题(较难),几种常见的类型有①和差倍分、②行程问题、③工程问题、④数位问题、⑤商品销售中的盈亏问题、⑥比例问题、⑦生活中的投资决策问题、⑧体育比赛中的积分问题。
小学学过奥数的一般都没有问题。
这一章所有学生都觉得很难的是与商品销售有关的应用题。
七年级下册数学湘教版教学重点和难点

七年级下册数学湘教版教学重点和难点全文共5篇示例,供读者参考七年级下册数学湘教版教学重点和难点篇1一、指导思想在教学中努力推进九年义务教育,落实新课改,体现新理念,培养创新精神。
以“面向每一个学生,一切为了学生的发展”为知道思想,在教学的同时,渗透情感教育。
二、教学目标1、让学生学到的知识技能是社会对青少年所需求的;2、要让学生知道这是自己终身学习和发展所需要的;3、贴近生活实际让学生爱数学,自主的学教学;4、让学生掌握数学基本知识和技能三、教材分析:本册教材是在新《课标》的指导下,编写的一本全新教材。
无论其教学理念,目标要求,教材框架,教材的整合跟以往教材比,都有很大的变化。
本次教材更名为《义务教育课程标准试验教科书·数学·七年级上册》这样更名体现了九年义务教育的一贯制,教学时要注意九年数学教学的连贯性。
本册教材共分为六章26节。
四、教学措施:第一章重视一元一次不等式的解法与应用注意从学生的生活经验和已有知识出发,创设生动有趣的教学情境,关注学生在学习活动中的情感和态度表现,给学生足够的活动空间,认真实施分层教学第二章灵活运用代入法或加减法解简单的二元一次方程组。
会列出二元一次方程组解简单应用题,并能分析结果理解解方程组“消元”的思想,领会“转化”的思想,妥善处理学生“主体”与教师“主导”的`关系,突出解二元一次方程组通法的教学,加强学生之间的合作学习,注意教材弹性。
第三章平面上直线的位置关系和度量关系。
了解同一平面上的两条直线的三种关系,初步理解平移的概念,平行与垂直的性质与判定,注重从学生实际出发,注重概念引入多联系实际,尽量利用教具或多媒体设备,保持教材的逻辑体系,注重联系教材的文化背景。
第四章多项式的运算能进行多项式的加减乘法运算,体会乘法公式在计算中的简便作用。
第五章轴对称图形利用轴对称进行图案设计,认识和欣赏轴对称在现实中的应用,认识特殊三角形的性质及角平分线、垂直平分线的性质设计开放《湘教版七年级数学下册教学计划》第六章数据的分析与比较对加权平均数、极差、方差的概念,注意把握教学的层次让学生自主思考、相互交流,以形成结论。
七年级数学上册教案精选12篇

七年级数学上册教案精选12篇课时篇一三维目标七年级上册数学教案篇二一、知识与技能能判断一个数是正数还是负数,能用正数或负数表示生活中具有相反意义的量。
二、过程与方法借助生活中的实例理解有理数的意义,体会负数引入的必要性和有理数应用的广泛性。
三、情感态度与价值观培养学生积极思考,合作交流的意识和能力。
教学重、难点与关键1、重点:正确理解负数的意义,掌握判断一个数是正数还是负数的方法。
2、难点:正确理解负数的概念。
3、关键:创设情境,充分利用学生身边熟悉的事物, 加深对负数意义的理解。
教具准备投影仪。
教学过程四、课堂引入我们知道,数是人们在实际生活和生活需要中产生,并不断扩充的。
人们由记数、排序、产生数1,2,3,…;为了表示“没有物体”、“空位”引进了数“0”, 测量和分配有时不能得到整数的结果,为此产生了分数和小数。
在生活、生产、科研中经常遇到数的表示与数的运算的问题,例如课本第2 页至第3页中提到的四个问题,这里出现的新数:-3,-2,-2.7%在前面的实际问题中它们分别表示:零下3摄氏度,净输2球,减少2.7%。
五、讲授新课(1)、像-3,-2,-2.7%这样的数(即在以前学过的0以外的数前面加上负号“-”的数)叫做负数。
而3,2,+2.7%在问题中分别表示零上3摄氏度,净胜2球,增长2.7%, 它们与负数具有相反的意义,我们把这样的数(即以前学过的0 以外的数)叫做正数,有时在正数前面也加上“+”(正)号,例如,+3,+2,+0.5,+ ,…就是3,2,0.5,,…一个数前面的“+”、“-”号叫做它的符号,这种符号叫做性质符号。
(2)、中国古代用算筹(表示数的工具)进行计算,红色算筹表示正数,黑色算筹表示负数。
(3)、数0既不是正数,也不是负数,但0是正数与负数的分界数。
(4)、0可以表示没有,还可以表示一个确定的量,如今天气温是0 ,是指一个确定的温度;海拔0表示海平面的平均高度。
用正负数表示具有相反意义的量(5)、把0以外的数分为正数和负数,起源于表示两种相反意义的量。
初一数学重点难点总结

初一数学重点难点总结初一数学的重点难点总结初一数学是学生们接触到的初中数学的起点,对于初一学生来说,数学知识的掌握和理解是非常重要的。
在初一数学中,有一些重点和难点知识点,下面我将针对这些知识点进行总结。
一、重点知识点1. 数的大小比较:数的大小比较是数学中最基础的知识点之一。
初一学生需要掌握比较两个数大小的方法,包括使用大小关系符号、找出数的相对大小等。
2. 小数的运算:小数的加减乘除是初一数学中的重点内容之一。
学生需要掌握小数加减乘除的计算方法,包括进位借位的处理、小数点的对齐、小数的乘法分配律和除法结合律等。
3. 数字的整除性和倍数关系:初一数学需要学生掌握数的整除性和倍数关系。
学生需要学会用因数分解法求一个数的因数和倍数,以及求最大公因数和最小公倍数的方法。
4. 分数的基本概念和运算规则:分数是初一数学中的重要内容,学生需要掌握分数的基本概念、分数的加减乘除法、分数的约分和通分方法等。
5. 简单方程和方程的解法:初一学生需要学会解一元一次方程,包括通过加减乘除等运算将方程化简为一般形式,然后应用等式的性质求解方程。
6. 图形的认识和运用:初一数学需要学生对各种图形进行认识和运用。
学生需要学会测量图形的面积和周长,以及解决与图形有关的问题。
二、难点知识点1. 百分数和比例:初一数学中的百分数和比例是难点知识点。
学生需要学会将百分数与十进制数、分数进行转换,同时要能够计算比例的值和求解与比例有关的问题。
2. 三角形的面积与勾股定理:初一学生需要学会计算三角形的面积,包括等腰三角形、直角三角形和任意三角形的面积计算公式。
此外,学生还需要学习勾股定理的应用,解决与直角三角形有关的问题。
3. 平面直角坐标系和二元一次方程:初一数学中的平面直角坐标系和二元一次方程也是难点知识点。
学生需要学会画出平面直角坐标系并进行坐标定位,同时要学会解二元一次方程,掌握方程的图象和解方程的方法。
4. 统计与概率:初一数学中的统计与概率是难点知识点之一。
初一数学重点难点总结
初一数学重点难点总结引言数学是一门重要的学科,也是初中阶段学习的重点和难点之一。
初一数学内容较为基础,但有些知识点对于学生来说较为困难或容易混淆。
本文将总结初一数学的重点知识和难点,并给出相关的解决方法和学习建议。
一、整数的加减运算整数的加减运算是初一数学的基础知识。
学生常常会在负数的运算中出现错误,特别是符号的使用和运算规则的掌握。
以下是一些常见问题及解决方法:1.问题1:+和-符号的混淆学生容易混淆加法和减法的符号,特别是在复合运算时更容易出错。
解决方法:对于相连出现的符号,可以通过先确定正负号再进行计算,或者使用括号来确保计算顺序。
2.问题2:负数的引入学生在刚接触负数时常常会感到困惑,不知道如何与正数进行加减运算。
解决方法:可以采用物质或情境的引入,帮助学生形象地理解负数的概念。
例如,用温度为例,正数表示高温,负数表示低温,通过温度变化的情景帮助学生理解正负数之间的关系。
二、图形的面积和周长计算图形的面积和周长计算是初一数学中的重点难点,涉及到多种图形的计算方法和公式的运用。
以下是一个常见问题及解决方法:问题:面积和周长的混淆学生容易混淆图形的面积和周长的计算方法,特别是在形状类似但计算方法不同的图形中容易出错。
解决方法:可以通过绘制图形、构造实物或使用计算器等辅助工具来帮助学生理解图形的形状以及面积和周长的计算方法。
同时,要注重培养学生观察问题、发现规律和运用公式的能力,引导学生通过具体情境来解决问题。
三、代数的基本概念与运算代数是初一数学的重点知识,涉及到代数式的定义、代数运算法则以及代数式的计算等内容。
以下是一些常见问题及解决方法:1.问题1:字母的意义理解不清学生对代数中的字母常常会感到困惑,不知道字母代表什么意思。
解决方法:可以通过实际问题引入代数式,帮助学生理解字母的含义,并将其与实际情境进行对应。
例如,通过问题引导学生将未知数表示为字母,进而解决问题。
2.问题2:代数运算法则理解不深学生在代数运算中容易出错,特别是在括号展开、合并同类项和因式分解等步骤中较为困难。
七年级上册数学必备重难点知识总结大全
七年级上册数学必备重难点知识总结大全七年级上册数学重难点知识1.1 正数与负数①正数:大于0的数叫正数。
(根据需要,有时在正数前面也加上“+”)②负数:在以前学过的0以外的数前面加上负号“—”的数叫负数。
与正数具有相反意义。
③0既不是正数也不是负数。
0是正数和负数的分界,是唯一的中性数。
注意搞清相反意义的量:南北;东西;上下;左右;上升下降;高低;增长减少等1.2 有理数1、有理数(1)整数:正整数、0、负整数统称整数;(2)分数;正分数和负分数统称分数;(3)有理数:整数和分数统称有理数。
2、数轴(1)定义:通常用一条直线上的点表示数,这条直线叫数轴;(2)数轴三要素:原点、正方向、单位长度;(3)原点:在直线上任取一个点表示数0,这个点叫做原点;(4)数轴上的点和有理数的关系:所有的有理数都可以用数轴上的点表示出来,但数轴上的点,不全表示有理数。
3、相反数只有符号不同的两个数互为相反数。
(如2的相反数是-2,0的相反数是0)4、绝对值(1)数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|。
从几何意义上讲,数的绝对值是两点间的距离。
(2) 一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。
两个负数,绝对值大的反而小。
1.3 有理数的加减法有理数加法法则:1、同号两数相加,取相同的符号,并把绝对值相加。
2、绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。
互为相反数的两个数相加得0。
3、一个数同0相加,仍得这个数。
加法的交换律和结合律。
有理数减法法则:减去一个数等于加上这个数的倒数。
1.4 有理数的乘除法有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数同0相乘,都得0。
乘积是1的两个数互为倒数。
乘法交换律、结合律、分配律。
②有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数;两数相除,同号得正,异号得负,并把绝对值相除;0除以任何一个不等于0的数,都得0。
初一上数学重难点知识点归纳总结
初一上数学重难点知识点归纳总结一、整数和有理数1. 整数的概念及表示方法2. 整数的加减法3. 整数的乘除法4. 有理数的概念及性质5. 有理数的加减法6. 有理数的乘除法二、代数1. 代数式、代数式的值2. 一元一次方程及其解法3. 一元一次方程组及其解法4. 化简代数式三、图形的性质1. 点、线、面的基本概念2. 直线、线段、射线的概念3. 多边形的性质及判定4. 直角三角形、等腰三角形、等边三角形的性质四、比例和百分数1. 比例的概念及性质2. 比例的应用3. 百分数的概念及表示方法4. 百分数与小数的相互转化五、公式和方程1. 正比例函数及其性质2. 反比例函数及其性质3. 一元二次方程的解法4. 用方程解决实际问题六、统计与概率1. 数据的收集与整理2. 数据的描述性统计3. 概率的概念及性质4. 概率的计算方法以上即是初一上数学的重难点知识点的归纳总结。
通过系统地学习和掌握这些知识点,能够帮助同学们更好地理解数学的基本概念和方法,为日后学习数学打下扎实的基础。
希望同学们能够认真对待这些知识点,不断巩固和提高自己的数学水平。
对初一上数学的重难点知识点做一些扩写,更加深入地讨论。
我们知道,整数和有理数是数学中非常基础的概念,而且在日常生活中也经常会涉及到。
整数的概念很简单,它包括了正整数、负整数和零,形如……….整数的加减法和乘除法也是我们需要掌握的重要内容。
对于整数的加法,当两个整数同号时,直接将它们的绝对值相加,然后保留原来的符号;异号时,要进行减法运算,即用较大数的绝对值减去较小数的绝对值,差的符号与绝对值较大的那个数的符号相同。
对于整数的乘法和除法也有相应的规则和性质。
有理数的加减法和乘除法基本类似于整数的运算,但是有理数包括了整数和分数,所以在运算时需要注意分子和分母的变化规律。
学生们需要在这方面多加练习,熟练掌握运算的技巧。
代数方面的内容就更加深奥了。
代数式的概念及值的计算,需要对字母代表的数进行替换运算,这是一种抽象思维的训练。
掌握初一数学:重难点题型全面解析
掌握初一数学:重难点题型全面解析引言初一下册数学内容丰富,涵盖了相交线和平行线、实数、平面直角坐标系、二元一次方程组、不等式和不等式组等多个重要知识点。
本文将对这些重难点题型进行详细解析,帮助学生更好地掌握初一数学。
一、相交线和平行线1.重难点解析:平行线的性质:平行线的性质是初中数学的重要内容,常以选择题和填空题形式出现。
1.例题:已知两条平行线被第三条直线所截,求对应角、内错角和同位角的关系。
2.解析:利用平行线的性质,找出对应角、内错角和同位角的相等关系。
2.平行线的判别方法:掌握平行线的判别方法是解题的关键。
1.例题:给出几组角度,判断哪些角度可以判定两条直线平行。
2.解析:根据平行线的判别方法,判断角度关系是否满足平行条件。
二、实数1.重难点解析:实数的概念和运算:实数的概念和运算是基础内容,常以计算题形式出现。
1.例题:计算给定实数的加减乘除。
2.解析:熟练掌握实数的运算规则,进行正确计算。
2.实数的分类:了解实数的分类及其性质。
1.例题:将给定的数分类为有理数或无理数。
2.解析:根据实数的定义和性质进行分类。
三、平面直角坐标系1.重难点解析:坐标系的基本概念:掌握平面直角坐标系的基本概念和应用。
1.例题:在坐标平面上标出给定点的坐标。
2.解析:理解坐标系的构成,正确标出点的位置。
2.函数图像的绘制:学会绘制简单函数的图像。
1.1.例题:绘制一次函数的图像。
2.解析:根据函数的解析式,确定函数图像的形状和位置。
四、二元一次方程组1.重难点解析:方程组的解法:掌握解二元一次方程组的方法,如代入法和加减法。
1.例题:解给定的二元一次方程组。
2.解析:选择合适的方法,逐步求解方程组。
2.应用题的解法:将实际问题转化为二元一次方程组进行求解。
1.例题:根据题意列出二元一次方程组并求解。
2.解析:理解题意,正确列出方程组并求解。
五、不等式和不等式组1.重难点解析:不等式的解法:掌握一元一次不等式和不等式组的解法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初一数学重难点 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998 代数 有理数 ★重难点★有理数的有关概念及性质,数轴、绝对值和相反数的全面掌握,有理数的运算(加减乘除、乘方以及混合运算) 一、重要概念 1.数的分类及概念 数系表: 2.非负数:正实数与零的统称。(表为:x≥0) 常见的非负数有:0、1、2… 性质:若干个非负数的和为0,则每个非负担数均为0。 3.倒数:①定义及表示法 ②性质:≠1/a(a≠±1);a中,a≠0;<a<1时1/a>1;a>1时,1/a<1;D.积为1。 4.相反数:①定义及表示法 ②性质:≠0时,a≠-a;与-a在数轴上的位置;C.和为0,商为-1。 5.数轴:①定义(“三要素”) ②作用:A.直观地比较实数的大小;B.明确体现绝对值意义;C.建立点与实数的一一对应关系。 6.奇数、偶数、质数、合数(正整数—自然数) 定义及表示:奇数:2n-1 偶数:2n(n为自然数) 7.绝对值:①定义(两种): 代数定义:
几何定义:数a的绝对值顶的几何意义是实数a在数轴上所对应的点到原点的距离。 ②│a│≥0,符号“││”是“非负数”的标志;③数a的绝对值只有一个;④处理任何类型的题目,只要其中有“││”出现,其关键一步是去掉“││”符号。 二、有理数的运算 1.运算法则(加、减、乘、除、乘方、开方) 2.运算定律(五个—加法[乘法]交换律、结合律;[乘法对加法的]分配律) 3.运算顺序:A.高级运算到低级运算;B.(同级运算)从“左” 到“右”(如5÷×5);C.(有括号时)由“小”到“中”到“大”。
整式 ★重难点★整式的有关概念及性质,整式的运算,去括号(代数式运算中最常用、最基本的恒等变形),同类项、乘法公式、分解因式 一、重要概念 1.整式 用运算符号把数或表示数的字母连结而成的式子,叫做代数式。单独 的一个数或字母也是代数式。 没有除法运算或虽有除法运算但除式中不含有字母的有理式叫做整式。 分类:单项式、多项式 3.单项式与多项式 没有加减运算的整式叫做单项式。(数字与字母的积—包括单独的一个数或字母) 几个单项式的和,叫做多项式。 4.系数与指数 区别与联系:①从位置上看;②从表示的意义上看 5.同类项及其合并 条件:①字母相同;②相同字母的指数相同 合并依据:乘法分配律 9.指数 ⑴(—幂,乘方运算) ①a>0时,na>0;②a<0时,na>0(n是偶数),na<0(n是奇数)
⑵零指数:0a=1(a≠0)
负整指数:1a=1/a(a≠0,p是正整数)
二、运算定律、性质、法则 3.整式运算法则(去括号、添括号法则) 4.幂的运算性质:①ma·na=mna;②ma÷na=mna;③()nab=nnab;④()mna=mna;
5.乘法法则:⑴单×单;⑵单×多;⑶多×多。 6.乘法公式:(正、逆用) (a+b)(a-b)=22ab(a±b)=2a±2ab+2b
7.除法法则:⑴单÷单;⑵多÷单。 8.因式分解:⑴定义;⑵方法:A.提公因式法;B.公式法;C.十字相乘法;D.分组分解法;E.求根公式法。 11.科学记数法:(1≤a<10,n是整数=
方程(组) ★重点★一元一次、二元一次方程组的解法;方程的有关应用题(特别是行程、工程问题) 一、基本概念 1.方程、方程的解(根)、方程组的解、解方程(组) 二、解方程的依据—等式性质 1.a=b←→a+c=b+c 2.a=b←→ac=bc(c≠0) 三、解法 1.一元一次方程的解法:去分母→去括号→移项→合并同类项→ 系数化成1→解。 2.元一次方程组的解法:⑴基本思想:“消元”⑵方法:①代入法 ②加减法 六、列方程(组)解应用题 (一)概述 列方程(组)解应用题是中学数学联系实际的一个重要方面。其具体步骤是: ⑴审题。理解题意。弄清问题中已知量是什么,未知量是什么,问题给出和涉及的相等关系是什么。 ⑵设元(未知数)。①直接未知数②间接未知数(往往二者兼用)。一般来说,未知数越多,方程越易列,但越难解。 ⑶用含未知数的代数式表示相关的量。 ⑷寻找相等关系(有的由题目给出,有的由该问题所涉及的等量关系给出),列方程。一般地,未知数个数与方程个数是相同的。 ⑸解方程及检验。 ⑹答案。 综上所述,列方程(组)解应用题实质是先把实际问题转化为数学问题(设元、列方程),在由数学问题的解决而导致实际问题的解决(列方程、写出答案)。在这个过程中,列方程起着承前启后的作用。因此,列方程是解应用题的关键。 (二)常用的相等关系 1.行程问题(匀速运动)基本关系:s=vt ⑴相遇问题(同时出发):⑵追及问题(同时出发):⑶水中航行:; 2.配料问题:溶质=溶液×浓度溶液=溶质+溶剂 3.增长率问题: 4.工程问题:基本关系:工作量=工作效率×工作时间(常把工作量看着单位“1”)。 5.几何问题:常用勾股定理,几何体的面积、体积公式,相似形及有关比例性质等。 (三)注意语言与解析式的互化 如,“多”、“少”、“增加了”、“增加为(到)”、“同时”、“扩大为(到)”、“扩大了”、…… 又如,一个三位数,百位数字为a,十位数字为b,个位数字为c,则这个三位数为:100a+10b+c,而不是abc。 四注意从语言叙述中写出相等关系。 如,x比y大3,则x-y=3或x=y+3或x-3=y。又如,x与y的差为3,则x-y=3。五注意单位换算 如,“小时”“分钟”的换算;s、v、t单位的一致等。
几何 认识图形 ★重点★图形的变化、展开折叠、从三个方向看 ★难点★点线面、正方体张开折叠、三视图 1、棱柱棱锥、圆柱圆锥 体 棱数 侧棱数 顶点数 底面形状 侧面数 棱柱 3N N 2N N边形 N 棱锥 2N N N+1 N边形 N 圆柱 0 圆 1 圆锥 1 圆 1
2、点动成线,线动成面、面动成体
3、判断一个展开图是否可以折叠成正方体 4、三视图的判断以及三视图的画法 直线形 ★重难点★相交线与平行线、三角形的有关概念、判定、性质,直线平行判定以及性质、三角形全等判定以及性质。 一、直线、相交线、平行线 1.线段、射线、直线三者的区别与联系 从“图形”、“表示法”、“界限”、“端点个数”、“基本性质”等方面加以分析。 2.线段的中点及表示 3.直线、线段的基本性质(用“线段的基本性质”论证“三角形两边之和大于第三边”) 4.两点间的距离(三个距离:点-点;点-线;线-线) 5.角(平角、周角、直角、锐角、钝角) 6.互为余角、互为补角及表示方法 7.角的平分线及其表示 8.垂线及基本性质(利用它证明“直角三角形中斜边大于直角边”) 9.对顶角及性质 10.平行线及判定与性质(互逆)(二者的区别与联系) 11.常用定理:①同平行于一条直线的两条直线平行(传递性);②同垂直于一条直线的两条直线平行。 12.定义、命题、命题的组成 13.公理、定理 14.逆命题 二、三角形 分类:⑴按边分:⑵按角分: 1.定义(包括内、外角) 2.三角形的边角关系:⑴角与角:①内角和及推论;②外角和;③n边形内角和;④n边形外角和。⑵边与边:三角形两边之和大于第三边,两边之差小于第三边。⑶角与边:在同一三角形中, 3.三角形的主要线段 讨论:①定义②××线的交点—三角形的×心③性质 ①高线②中线③角平分线④中垂线⑤中位线 ⑴一般三角形⑵特殊三角形:直角三角形、等腰三角形、等边三角形 4.特殊三角形(直角三角形、等腰三角形、等边三角形、等腰直角三角形)的判定与性质 5.全等三角形 ⑴一般三角形全等的判定(SAS、ASA、AAS、SSS)(易错点:SSA) ⑵特殊三角形全等的判定:①一般方法②专用方法 6.三角形的面积 ⑴一般计算公式⑵性质:等底等高的三角形面积相等。 7.重要辅助线 ⑴中点配中点构成中位线;⑵加倍中线;⑶添加辅助平行线 8.证明方法 ⑴直接证法:综合法、分析法 ⑵间接证法—反证法:①反设②归谬③结论 ⑶证线段相等、角相等常通过证三角形全等 ⑷证线段倍分关系:加倍法、折半法 ⑸证线段和差关系:延结法、截余法 ⑹证面积关系:将面积表示出来 统计与概率 一、数据 ★重点★调查方法、统计图、频数分布直方图 ★难点★统计图 1、普查与抽样调差以及一些基本概念 总体、个体、样本、容量 2、统计图:扇形统计图、条形统计图、折线统计图 3、频数分布直方图频数 二、概率 ★重难点★理解几种事件、可能性 1、可能事件、不可能事件、随机事件 2、可能性 3、概率:可能事件、不可能事件、随机事件的概率