WRF模式物理过程参数化方案简介

合集下载

WRF模式中微物理和积云参数化方案的对比试验

WRF模式中微物理和积云参数化方案的对比试验
与W S 、WS 一样 ,饱 和 度 调节 按 D d it M3 M5 u ha 】
a 以上。 rn i 本文模拟了5 4 0 月l 日0 时一 1 日o 时f 5 0 世 界时 ,下同) 发生在广东中部 的强降水过程。
3 试验 设计 . 2

般 认 为 ,对 于WRF 式 ,积 云参 数 适用 于 模
模拟中,究竟采取哪一种方案 的结果会更理想 ,
在 不 同区域 ,仍需 要 深入 研究 [] 1。 1
目前 , 对珠 三 角地 区WR 模 式 的微 物理 过 针 F
L  ̄'] i T 以及Rl de 1的参数化方案的基础 n 2 l leg等[ t 1 3 ]
上得到 ,饱和修正方案采mT o 的方法 。这 a 等【】
收稿 日期 :2 1—83;修 订 日期 :2 1d11 000 —0 Ol 8
资助项 目:国家自然基金. 广东联合基金重点项 H( 83 0 ) U0 30 1 资助 ;中山大学高性能与网格计算中心支持。 通讯 作 者 :王雪 梅 ,女 ,从 事 环境 科学 研 究工 作 。E i es x ma :ew m@ma. s. uc l is ue . ly d n
量分 离 成格 点单元 的立 体 块 。这种 处理 方法 ,伴
随对快速微物理过程处理方法的一些修改 ,使得 方案在大时间步长时计算结果稳定 。 根据R a的 yn 观测结果 ,冰的平均半径假定为温度函数。冰水 混合相仅在温度高于一 ℃时考虑 ,而冰面饱和 1 0 状态则假定在云体低于- 0℃。 1
第2卷 第4 8 期
21 0 2年 8月
J U N L O 热T 带 PC L ME E R L G O R A F R I A 象 学 报 O Y O 气 TQ O

WRF介绍

WRF介绍

9.2.4.3 辐射
3-5 MM5 Dadhia短波辐射方案: 该方案来自于MM5模式,对短波辐射通量向下进行简单积分。 它能够反映晴空散射、水汽吸收和云的反射与吸收。另外,还考虑了 地形坡度和阴影对地表短波辐射通量影响。 3-6 Goddard短波辐射方案: 该方案共有11个谱段,采用二流近似方法计算太阳短波辐射的散 射和直接辐射分量,并且方案中考虑了已有臭氧垂直廓线的气候分布。 3-7 CAM短波辐射方案: 该方案也是用于NCAR大气环流模式的谱段处理方案,主要用来 气候模拟。它能够处理几种气溶胶和痕量气体的光学特征。该方案特 别适用于区域气候模拟。
9.2.4.3 辐射
3-1 快速辐射传输长波模式(RRTM): 该模式来自MM5模式,采用谱段处理方案。它是利用一个预设好的 查算表准确地表示由于水汽、臭氧、二氧化碳和痕量气体(大气中含量极 少的气体)引起的长波辐射过程,同时也能表示云的光学厚度。 3-2 GFDL长波辐射方案: 该方案来自美国地球流体动力实验室,计算与二氧化碳、水汽、和 臭氧相关谱段上的长波辐射,采用简化的交换方法。该方案中云的重叠是 随机的。 3-3 CAM长波辐射方案: 该方案是用于NCAR大气环流模式的谱段处理方案,主要用来进行气 候模拟。它能够处理几种痕量气体,并与可分辨云和云量进行相互作用。 3-4 GFDL短波辐射方案: 该方案同样来自于美国地球流体动力实验室,考虑了二氧化碳、水 汽和臭氧的效应,采用积分时间间隔内日间平均的太阳天顶角余弦值计算 段波辐射。该方案中云的重叠是随机的。
9.2.4.1 微物理过程
1-1 Kessler暖云方案: 该方案来源于COMMAS模式,是一个简单的暖云降水方案,考虑的微 物理过程包括:雨水的产生、降落与蒸发,云水的碰并增长与自动转化, 以及由凝结产生云水的过程。该方案显式预报水汽、云水和雨水,无冰 相过程。 1-2 Purdue-Lin方案: 该方案包括了对水汽、云水、雨、云冰、雪和霰6种类型水成物的处理。 该方案是 WRF模式中相对比较复杂的微物理方案,更适合于理论研究 。 1-3 WRF单参数—3类水成物(WSM3)方案: 该方案包括冰沉降和新的冰相参数化。与其他方案最大的不同之处在于, 该方案是基于冰的质量含量而非利用温度的诊断关系计算冰粒子浓度。 假设高于冰点的水成物为云水和雨,冰点以下的为云冰和雪,对包含冰 过程的计算效率很高。可以对三类水成物(即水汽、云水或云冰、雨或雪) 进行预报,被称为简单冰方案。但要注意的是,该方案缺少过冷水和逐步 融化率过程。

WRF使用说明范文

WRF使用说明范文

WRF使用说明范文WRF (Weather Research Forecasting model) 是一个高分辨率的天气模式系统,用于模拟和预测各类天气现象。

它由国家大气研究中心(NCAR)和国家环境保护署(EPA)共同开发,已成为全球范围内天气预报、气候研究和环境模拟的重要工具。

本文将介绍WRF的基本使用说明。

一旦配置完成,用户可以使用WRF模式进行多种类型的模拟和预测。

WRF可以模拟从几十米到数百公里尺度上的天气现象,并且可以针对不同的气候区域进行区域定制。

使用WRF之前,用户需要准备好输入数据,包括地形数据、气象观测数据、近地面条件数据等。

WRF模型的运行包括两个主要步骤:预处理和模拟。

预处理步骤主要用于准备输入数据,包括将地形数据转换为模型所需格式,插值气象观测数据到模型网格,生成气象初值和边界条件等。

WRF提供了多个辅助工具,如WPS (WRF Preprocessing System) 来帮助用户完成这些预处理任务。

模拟步骤是WRF模型的核心部分,主要用于模拟和预测天气现象。

用户需要选择合适的模拟选项,包括时间步长、水平和垂直分辨率、物理参数化方案等。

WRF提供了多种物理参数化方案,如微物理方案、积云方案和辐射方案,用户可以根据需要进行选择。

总结起来,WRF是一种功能强大的天气模式系统,可以用于模拟和预测各类天气现象。

但是,使用WRF需要较高的计算机配置和编程基础,以及一定的气象和数值模式理论基础。

用户需要准备好输入数据,进行模拟参数配置,运行模拟,并使用后处理工具进行结果分析和可视化。

建议用户从官方文档和培训材料入手,学习相关的数值模式理论和编程技巧,并与其他用户和研发人员进行交流和讨论。

只有通过不断地实践和学习,用户才能更加熟练地使用WRF模型,并获得准确和可靠的模拟和预测结果。

WRF短期气候预测实验介绍

WRF短期气候预测实验介绍

WRF短期气候预测实验介绍2.1 WRF模式简介:WRF模式是以美国国家大气研究中心(NCAR)、美国环境预测中心(NCEP)等美国的科研机构为中心开发的新一代中尺度天气预报模式和同化系统。

WRF 模式系统具有可移植、易维护、可扩充、高效率、方便等诸多特性,各模式下端应用行业可以便捷地将各自的行业业务预测模式耦合链接于该模式。

由于该模式集成了过去几十年所有中尺度模式研究的成果,在数值计算、模式框架、程序优化等方面采用了当前最为成熟和最优的技术,因此世界上大多数国家选用该模式作为中尺度预报模式应用业务和科研[13]。

在软件设计方面,WRF模式应用了继承式软件设计、多级并行分解算法、选择式软件管理工具、中间软件包(连接信息交换、输入/输出以及其他服务程序的外部软件包)结构,并引入了更为先进的数值计算和资料同化技术、多重移动嵌套网格性能以及更为完善的物理过程(尤其是对流和中尺度降水过程)。

因此,WRF模式在天气预报、大气化学、区域气候、数值模拟研究等领域有着广泛的应用。

和其他的中尺度模式比较,该模式具有许多优越性。

2.1.1 主要特点(1)适用于全球各地,灵活的设置选择(2)是一个完全可压的、非静力模式(3)资料输入方便(4)采用了成熟和新的物理参数化方案(5)新的积分方案和网格形式(6)后处理方便(7)可在多操作平台、不同UNIX、Linux环境下运行2.1.2 模式基本方程组及差分方案方程取地形追随静力气压垂直坐标,即垂直质量坐标,形式为:η=(p h-p ht)/μ其中μ=p hs-p ht 。

由于μ(x,y)可看作是区域内(x,y)格点上的单位水平面积上气柱的质量,预报量和守恒通量都可写成近似的通量形式。

水平空间差分格式采用Arakawa C跳点格式,热力学变量和水汽变量定义在整数格点上,而υ、ν、ω交错排列与0.5dx、0.5dy、0.5dz上,这样ω与υ、ν在垂直方向上相差半个格距,使得连续方程求解ω时的计算精度更高,而T 与υ、ν在水平方向上错开半个格距以提高Φ的精度,而减少了由于地形引起的误差。

《2024年WRF-Chem模式不同参数化方案对呼和浩特大气污染的数值模拟研究》范文

《2024年WRF-Chem模式不同参数化方案对呼和浩特大气污染的数值模拟研究》范文

《WRF-Chem模式不同参数化方案对呼和浩特大气污染的数值模拟研究》篇一一、引言随着工业化和城市化的快速发展,大气污染问题日益严重,成为全球关注的焦点。

呼和浩特作为我国北方的重要城市,其大气污染问题尤为突出。

为了更好地理解和预测大气污染过程,数值模拟成为重要的研究手段。

本文利用WRF-Chem模式,针对不同参数化方案对呼和浩特大气污染进行数值模拟研究,以期为该地区的污染防治提供科学依据。

二、WRF-Chem模式简介WRF-Chem模式是一种集天气预报与空气质量模拟于一体的数值模式。

该模式通过设置不同的参数化方案,可以模拟不同地区、不同气象条件下的空气质量状况。

本文采用WRF-Chem模式,针对呼和浩特地区的大气污染进行数值模拟研究。

三、不同参数化方案本文选取了WRF-Chem模式中的几种不同参数化方案,包括积云参数化方案、边界层参数化方案、气溶胶参数化方案等。

这些参数化方案对于模拟大气污染过程具有重要意义。

不同的参数化方案可能会导致模拟结果的差异,因此需要进行比较分析。

四、数值模拟方法与过程1. 模型设置:根据呼和浩特的地理位置、气象条件、排放源等实际情况,设置WRF-Chem模式的初始条件和边界条件。

2. 模拟实验:采用不同的参数化方案进行模拟实验,分析各方案对呼和浩特大气污染的影响。

3. 结果分析:对比不同参数化方案的模拟结果,分析其优缺点,为实际应用提供依据。

五、模拟结果与分析1. 不同参数化方案对PM2.5浓度的模拟结果:在不同参数化方案的模拟下,呼和浩特的PM2.5浓度呈现出不同的变化趋势。

其中,方案X的模拟结果较为接近实际观测值,具有较高的准确性。

2. 不同参数化方案对气象场的影响:不同的参数化方案对气象场的影响也不同。

例如,方案Y在模拟过程中能够更好地描述呼和浩特的边界层结构,而方案Z则能更准确地反映风场的变化。

3. 参数化方案的适用性分析:通过对不同参数化方案的模拟结果进行比较,发现每种方案都有其适用范围和局限性。

wrf模型预测的知识

wrf模型预测的知识

wrf模型预测的知识1. 引言WRF模型(Weather Research and Forecasting Model)是一种用于天气和气候预测的数值模型。

它是由美国国家大气研究中心(NCAR)和美国国家海洋和大气管理局(NOAA)共同开发的,广泛应用于全球各地的天气预报和气候研究中。

本文将深入探讨WRF模型的基本原理、应用领域以及其在天气预测中的优势。

2. WRF模型的基本原理WRF模型是一种基于数学和物理方程的数值模型,通过将大气系统划分为一个个离散的网格点,对每个网格点上的物理过程进行模拟和计算,从而得到对未来天气的预测。

WRF模型的基本原理可以总结为以下几个步骤:2.1 网格划分WRF模型将大气系统划分为水平和垂直两个方向上的网格点。

水平方向上的网格点通常采用经纬度坐标系,垂直方向上的网格点则采用气压坐标系或高度坐标系。

2.2 物理参数化方案WRF模型使用物理参数化方案来模拟和计算各种物理过程,如辐射传输、湍流混合、云微物理过程等。

这些参数化方案基于数学和物理原理,通过对各种过程进行近似和模拟,得到对未来天气的预测。

2.3 初始和边界条件WRF模型需要提供初始和边界条件作为模拟的起点。

初始条件包括大气的温度、湿度、风场等,边界条件则包括大气系统与周围环境的交换过程。

这些初始和边界条件可以通过观测数据、卫星观测数据或其他数值模型的输出结果来获得。

2.4 数值求解WRF模型使用数值方法对模型的物理方程进行求解。

常用的数值方法包括有限差分法、有限元法和谱方法等。

通过迭代计算,WRF模型可以得到在未来一段时间内的天气预测结果。

3. WRF模型的应用领域WRF模型广泛应用于天气预报和气候研究的各个领域,包括但不限于以下几个方面:3.1 短期天气预报WRF模型可以对未来几天内的天气进行准确的预测。

它可以提供高分辨率的天气预报结果,对于城市气象、灾害预警等方面具有重要意义。

3.2 长期气候预测WRF模型还可以用于对未来几个月或几年的气候进行预测。

WRF介绍-PPT

WRF介绍-PPT
该方案是MRF边界层方案的改进版本,在MRF边界层方案中增加了对边界层 顶夹卷层的显式处理,从而有效解决了MRF方案中过度混合的缺点。 4-3 MYJ边界层方案:
该方案是基于1.5阶湍流闭合的边界层参数化模式,从2阶闭合方案简化而来。 相对于完整的2阶闭合方法,它计算量小,有一定的精确性。 4-4 ACM2边界层方案:
9.2.4.2 积云对流
2-1 Kain-Fritsch方案: 该方案是质量通量类型,在Eta模式中进行测试调整,采用一个含有水
汽上升和下降过程的简单云模式,包括卷入和卷出,以及相对粗糙的微物理 过程。
2-2 Betts-Miller-Janjic方案: 该方案是对流调整方案,其最主要的改进在于引入成云效率参数,这
• 垂直方向则采用地形跟随质量坐标。
• 时间积分方案上采用三阶或者四阶的 Runge-Kutta算法。
RK3方案对中央差分以 及上风平流方案都具有较 好的稳定性。其稳定时间 步长大小比二阶蛙跃式时 间步长方案要大2~3倍, 可以节省机时。
三阶Runge-Kutta积分方案
9.2.4 物理过程介绍
假设高于冰点的水成物为云水和雨,冰点以下的为云冰和雪,对包含冰 过程的计算效率很高。可以对三类水成物(即水汽、云水或云冰、雨或雪) 进行预报,被称为简单冰方案。但要注意的是,该方案缺少过冷水和逐步 融1-4 WSM5方案: 该方案与WSM3的简单冰方案类似,但由于将水汽、雨、雪、云冰和云水存储在5个 不同数组,因此允许有过冷水的存在,并且允许雪下降到融化层以下进行逐步融化。 该方案与Purdue Lin方案不同的是,该方案对冰和水的饱和调整过程是分开处理的。 另外,该方案在格距介于中尺度和可分辨云尺度的格点计算效率很高。
气溶胶化学机理 • Sectional MOSAIC • Modal MADE/SORGAM • GOCART • MADE/VBS

wrf模型的基本知识

wrf模型的基本知识

wrf模型的基本知识WRF模型的基本知识一、概述WRF(Weather Research and Forecasting)模型是一种用于天气和气候预报的数值模拟工具。

它是由美国国家大气研究中心(NCAR)和美国国家海洋和大气管理局(NOAA)共同研发的。

WRF模型具有可配置性强、适应性广、精度高等特点,被广泛应用于全球各地的天气和气候研究。

二、模型结构WRF模型采用了多种物理参数化方案,包括动力学参数化方案、湍流参数化方案、辐射参数化方案等。

它基于天气和气候的基本方程组,通过离散化和数值求解,模拟大气运动、能量传递和水循环等过程。

WRF模型的核心是动力学内核,它采用了各种数值求解方法,如有限差分法、谱方法等,以求解大气运动方程。

三、模拟过程WRF模型的模拟过程主要包括数据预处理、初始条件和边界条件设置、模型运行和后处理等步骤。

数据预处理主要包括对观测数据进行插值、平滑和纠正等处理,以提供模型初始场和边界场所需的数据。

初始条件和边界条件设置是模拟过程中非常重要的一环,它们直接影响着模拟结果的准确性和可靠性。

模型运行是指将WRF模型输入数据和参数配置文件加载到计算机中,并进行模拟计算的过程。

后处理是指对模拟结果进行可视化、分析和评估的过程,以便更好地理解和利用模拟结果。

四、应用领域WRF模型可以用于天气预报、气候模拟、环境污染预测等多个领域。

在天气预报方面,WRF模型可以提供高时空分辨率的天气预报产品,帮助决策者和公众做出准确的天气决策。

在气候模拟方面,WRF模型可以模拟全球和区域的气候变化过程,为气候研究和政策制定提供科学依据。

在环境污染预测方面,WRF模型可以模拟大气污染物的扩散和传输过程,为环境管理和应急决策提供支持。

五、发展趋势随着计算机技术的不断进步和数据观测能力的提高,WRF模型正不断发展和完善。

未来,WRF模型将更加精细化、高分辨率、多尺度,并且与其他模型和数据进行集成,以提高预报准确性和可靠性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第24卷 第20期2008年10月甘肃科技GansuScienceandTechnologyVol.24 No.20Oct. 2008

WRF模式物理过程参数化方案简介*胡向军1,2,陶健红1,郑 飞2,3,王 娜2,4,张铁军1,刘世祥1,尚大成1(1.兰州中心气象台,甘肃兰州730020;甘肃省干旱气候变化与减灾重点实验室,甘肃兰州730020;2.兰州大学大气科学学院,甘肃兰州730000;3.中国科学院大气物理研究所国际气候与环境科学中心,北京100029;4.陕西省气候中心,陕西西安710014)

摘 要:文章较全面的介绍了新一代中尺度天气预报WRF(WeatherResearchandForecast)模式各种物理过程参数化方案的基本情况,进行了参数化方案选择应用的一些讨论,对模式研究和预报应用时如何选取参数化方案提供了一定的参考。关键词:WRF;物理过程;参数化;选择应用中图分类号:P457.6

在数值模式模拟天气过程时,往往由于模式分辨率不足等原因,对次网格尺度的物理过程不能很好的描述,需要诸如辐射、边界层、微物理等物理过程参数化来完善模拟的效果。目前很多参数化方案均来自各种当前较为流行的气象模式所使用的方案,本文介绍的WRF模式参数化方案是目前参数化方案较为丰富,代表性较好的一类。WRF模式系统是由美国研究部门及大学的科学家共同参与进行开发研究的新一代中尺度同化预报系统,其目的是提高我们对中尺度天气系统的认识和预报水平,以及促进研究成果向业务应用的转化[1]。在未来的研究和业务预报中,WRF模式系统将成为改进从云尺度到天气尺度等不同尺度重要天气特征预报精度的工具[2]。邓莲堂[3]、章国材[4]、李毅[5]、汤浩[6]等人已对WRF模式的基本结构和框架情况做了介绍,但并未对其物理过程参数化方案的相关情况做全面的介绍,本文即是在此基础上更进一步的对该模式各种物理过程参数化方案进行简要的介绍,文中以WRFv2版本为基础进行论述,为研究和业务人员根据自己的研究对象而选取不同的参数化方案提供一定的参考。1 辐射过程参数化1.1 RRTM长波辐射方案来自于MM5模式,采用了Mlawer等人的方法。它是利用一个预先处理的对照表来表示由于水汽、臭氧、二氧化碳和其他气体,以及云的光学厚度引起的长波过程。1.2 Dudhia短波辐射方案来自于MM5模式,采用Dudhia的方法,它是简单地累加由于干净空气散射、水汽吸收、云反射和吸收所引起的太阳辐射通量。采用了Stephens的云对照表。1.3 Goddard短波辐射方案它是由Chou和Suarez发展的一个复杂光学方案。包括了霰的影响,适用于云分辨模式。1.4 EtaGeophysicalFluidDynamicsLaboratory(GFDL)长波辐射方案 这个辐射方案来自于GFDL。它将Fels和

Schwarzkopf的两个方案简单的结合起来了,计算了二氧化碳、水汽、臭氧的光谱波段。1.5 EtaGeophysicalFluidDynamicsLaboratory(GFDL)短波辐射方案 这个短波辐射方案是Lacis和Hansen参数化

的GFDL版本。用Lacis和Hansen的方案计算大气水汽、臭氧的作用。用Sasamori等人的方案计算二氧化碳的作用。云是随机重叠考虑的。短波计算用到时间间隔太阳高度角余弦的日平均。

2 微物理过程参数化2.1 Kessler暖云方案来自于COMMAS模式,是一个简单的暖云降水方案,考虑的微物理过程包括:雨水的产生、降落以及蒸发,云水的增长,以及由凝结产生云水的过程,

*基金项目:国家自然基金科学基金项目(No.40675078);甘肃省气象局青年科技基金;中国气象局区域中心能力建设项目共同资助微物理过程中显式预报水汽、云水和雨水,无冰相过程。2.2 PurdueLin方案微物理过程中,包括了对水汽、云水、雨、云冰、雪和霰的预报,在结冰点以下,云水处理为云冰,雨水处理为雪。所有的参数化项都是在Lin等人以及Rutledge和Hobbs的参数化方案的基础上得到的,某些地方稍有修改,饱和修正方案采用Tao的方法。这个方案是WRF模式中相对比较成熟的方案,更适合于理论研究。2.3 EtaFerrier方案此方案预报模式平流项中水汽和总凝结降水的变化。程序中,用一个局域数组变量来保存初始猜测场信息,然后从中分解出云水,雨水,云冰,以及降冰的变化的密度(冰的形式包括雪、霰或冰雹)。降冰密度是根据存有冰的增长信息的局域数组来估计,其中,冰的增长与水汽凝结和液态水增长有关。沉降过程的处理是将降水时间平均通量分离成格点单元的立体块。这种处理方法,伴随对快速微物理过程处理方法的一些修改,使得方案在大时间步长时计算结果稳定。根据Ryan的观测结果,冰的平均半径假定为温度函数。冰水混合相仅在温度高于-10e时考虑,而冰面饱和状态则假定在云体低于-10e。2.4 WRFSingle-Moment3-class(WSM3)方案 该方案来自于旧的NCEP3方案的修正,包括冰的沉降和冰相的参数化。和其它方案不同的是诊断关系所使用冰的数浓度是基于冰的质量含量而非温度。方案包括三类水物质:水汽、云水或云冰、雨水或雪。在这种被称为是简单的冰方案里面,云水和云冰被作为同一类来计算。它们的区别在于温度,也就是说当温度低于或等于凝结点时冰云存在,否则水云存在,雨水和雪也是这样考虑的。该方案对于业务模式来说已足够有效。2.5 WSM5方案与WSM3类似的对NCEP5方案进行了修正,它代替了NCEP5版本。2.6 WSM6方案该方案扩充了WSM5方案,它还包括有霰和与它关联的一些过程。这些过程的参数化大多数和Lin等人的方案相似,在计算增长和其它参数上有些差别。为了增加垂直廓线的精度,在下降过程中会考虑凝结/融化过程。过程的顺序会最优化选择,是为了减少方案对模式时间步长的敏感性。和WSM3、WSM5一样,饱和度调节按照Dudhia和Hong等人的方案分开处理冰和水的饱和过程。2.7 Thompson方案该方案改进了较早的Reisner方案,还作了广泛的测试。该方案还被用来做理想试验研究和中纬度冬季观测资料的比较。这个方案被设计用来提高冻雨天气情况下航天安全保障的预报。微物理部分的详细描述可在闫之辉和邓莲堂的文献[2]中得到说明。

3 边界层参数化方案3.1 MM5相似理论近地面层方案这个方案用了Paulson、Dyer和Webb稳定性函数来计算地面热量、湿度、动力的交换系数。用Be-ljaars提出的对流速度来加强地面热量和湿度通量。常与MRF或YSU边界层方案联合使用。3.2 ETA相似理论近地面层方案基于Monin-Obukhov理论,在水面上,粘性下层显式参数化,在陆地近地面层上,粘性下层则考虑了变化的位势高度对温度和湿度的作用,近地面通量通过迭代途径进行计算,并用Beljaars修正法来避免在不稳定表面层和无风时出现的奇异性。常与ETAM-Y-JTKE边界层方案联合使用。3.3 EtaMellor-Yamada-JanjicTKE边界层方案 此方案用边界层和自由大气中的湍流参数化过

程代替Mellor-Yamada的2.5阶湍流闭合模型。这是将用于Eta模式中的Mellor-Yamada-Janjic方案引入该模式的一种边界层方案,它预报湍流动能,并有局地垂直混合。该方案调用SLAB(薄层)模式来计算地面的温度;在SLAB之前,用相似理论计算交换系数,在SLAB之后,用隐式扩散方案计算垂直通量。3.4 MediumRangeForecastModel(MRF)边界层方案 该方案在不稳定状态下使用反梯度通量来处理热量和水汽。在行星边界层中使用增强的垂直通量系数,行星边界层高度由临界Richardson数决定。它利用一个基于局地自由大气Ri的隐式局地方案来处理垂直扩散项。3.5 YonseiUniversity(YSU)边界层方案YSU是MRF边界层方案的第二代。对于MRF增加了处理边界层顶部夹卷层的方法。

74 甘 肃 科 技 第24卷4 积云对流参数化4.1 浅对流EtaKain-Fritsch方案在Eta模式中对Kain-Fritsch方案进行了调整,利用了一个简单的云模式伴随水汽的上升和下沉,同时包括了卷入和卷出,以及相对粗糙的微物理过程的作用。4.2 Betts-Miller-Janjic方案对Betts-Miller方案进行了调整和改进,在一给定的时段,对热力廓线进行张弛调整,在张弛时间内,对流的质量通量可消耗一定的有效浮力。此方案为对流调整方案,浅对流调整是该方案的重要部分。4.3 Kain-Frisch方案此方案是KF方案的修正方案。与老的KF方案一样,此方案也用了一个简单的包含水汽抬升和下沉运动的云模式,包括卷出、卷吸、气流上升和气流下沉现象。4.4 Grell-Devenyi集合方案该方案是质量通量类型,用不同的上升、下沉、卷入、卷出的参数和降水率。静态控制的不同结合了动态控制的不同,这是决定云质量通量的方法。5 陆面过程参数化5.1 热量扩散方案基于MM5的5层土壤温度模式,分别是1、2、4、8和16cm,在这些层下温度固定为日平均值。能量计算包括辐射、感热和潜热通量,同时也允许雪盖效应。5.2 Noah方案Noah陆面过程参数化是OSU的后继版,与原先的相比,可以预报土壤结冰、积雪影响,提高了处理城市地面的能力,考虑了地面发射体的性质,这些是OSU所没有的。5.3 RapidUpdateCycle(RUC)方案这个方案有六个土壤层和两个雪层。它考虑了土壤结冰过程、不均匀雪地、雪的温度和密度差异,以及植被效应和冠层水。6 讨论1)参数化的选取与模式的分辨率有关,应根据模式网格设计情况选取相适应的参数化方案。如在高分辨率情况下,对流已不再完全是次网格尺度现象,这时应考虑选择合理的纯显式云物理方案[7]。对于格距小于5km的情况,一般建议不采用积云参数化方案。2)由于各种参数化方案在设计原理、复杂程度、计算耗费机时和成熟程度等方面存在差异,研究者应根据研究目的和计算条件等情况来综合判断、对比选择。如对中尺度系统的考察,积云参数化需包括湿下沉气流、中上层的云卷出和非降水性浅对流,显式云物理方案则需同时加入含有水相和冰相的预报方程,以计入水负荷、凝结蒸发、冻结融化和凝华升华的影响[8]。3)由于模式在区域预报的效果与参数化方案的适应性至关重要,目前很多参数化方案对中小尺度系统描述能力不足,所以开发适合本地域特点的参数化方案意义重大。参考文献:[1] Skamarock,W.C.,J.B.Klemp,J.Dudhia,eta,lADescriptionoftheAdvancedResearchWRFVersion2.NCARTechnicalNote,NCAR/TN–468+STR,2007.[2] 闫之辉,邓莲堂.WRF模式中的微物理过程及其预报对比试验[J].沙漠与绿洲气象,2007,1(6):1-6.[3] 邓莲堂,王建捷.新一代中尺度天气预报模式)))WRF模式简介[J].天气与气候,2003.[4] 章国材.美国WRF模式的进展和应用前景[J].气象,2004,30(12):27-31.[5] 李毅,潘晓滨.新一代天气研究预报模式WRF简介[J].教学与研究,2003,24(1):54-59.[6] 汤浩,贾丽红.美国ARW模式系统简介[J].新疆气象,2006,29(6):24-26.[7] 程麟生.中尺度大气数值模式发展现状和应用前景[J].高原气象,1999,18(3):350-360.[8] 张大林.各种非绝热物理过程在中尺度模式中的作用[J].大气科学,1998,22(4):548-561.

相关文档
最新文档