量子点敏化太阳能电池研究进展文档解析
《2024年CuInS2基量子点太阳电池光阳极制备及敏化特性研究》范文

《CuInS2基量子点太阳电池光阳极制备及敏化特性研究》篇一一、引言随着环境问题的日益突出和能源需求的不断增长,寻找清洁、可持续的能源成为了科学研究的热点。
太阳能作为一种无污染、可再生的能源,其利用方式多种多样,其中太阳电池技术是利用太阳能的主要手段之一。
CuInS2基量子点因其独特的电子结构和光电性能,在太阳电池领域展现出巨大的应用潜力。
本文将重点研究CuInS2基量子点太阳电池光阳极的制备工艺及其敏化特性。
二、CuInS2基量子点的制备与性质CuInS2基量子点因其优异的光电性能,被广泛应用于太阳电池的光吸收层。
其制备方法主要包括化学浴沉积法、共沉淀法等。
这些方法可以制备出具有良好分散性、尺寸均匀的CuInS2基量子点。
量子点的尺寸效应和表面效应使得其具有较高的光吸收系数和较大的载流子迁移率,从而提高了太阳电池的光电转换效率。
三、CuInS2基量子点太阳电池光阳极的制备CuInS2基量子点太阳电池光阳极的制备过程主要包括以下几个步骤:1. 基底选择与处理:选择适当的基底,如FTO玻璃等,并进行清洗、干燥处理。
2. 制备光阳极薄膜:采用溶胶-凝胶法或喷雾热解法等制备TiO2光阳极薄膜。
3. 制备CuInS2基量子点敏化层:将制备好的CuInS2基量子点溶液涂覆在光阳极薄膜上,形成敏化层。
4. 后续处理:对敏化层进行烧结、退火等处理,以提高其结晶度和稳定性。
四、敏化特性研究CuInS2基量子点敏化太阳电池的光电性能主要取决于敏化层的性质。
本文将重点研究CuInS2基量子点敏化层的敏化特性,包括以下几个方面:1. 光吸收性能:通过紫外-可见吸收光谱、光谱响应等手段,研究CuInS2基量子点敏化层的光吸收性能,分析其光吸收范围和光吸收强度。
2. 载流子传输性能:通过电化学工作站等设备,研究CuInS2基量子点敏化层的载流子传输性能,分析其电子迁移率、复合速率等参数。
3. 稳定性分析:通过长时间光照实验、循环伏安法等手段,研究CuInS2基量子点敏化层的稳定性,分析其在不同环境下的老化机制和稳定性影响因素。
基于量子点的太阳能电池的光电转换机制研究与优化

基于量子点的太阳能电池的光电转换机制研究与优化随着能源紧缺和环境问题的日益突出,太阳能作为一种清洁、可再生的能源逐渐受到人们的关注。
其中,基于量子点的太阳能电池作为一种新兴的光电转换技术备受瞩目。
本文旨在深入探讨基于量子点的太阳能电池的光电转换机制,并提出优化措施以提高其光电转换效率。
一、量子点的特性及应用量子点是一种纳米级的半导体材料,其可调控的能带结构使得其在光电转换中具有独特的优势。
首先,量子点可以通过调控其大小和组成来实现对光的吸收和发射波长的精确控制;其次,量子点的巨大表面积可以增强光吸收;此外,量子点还可以通过光敏材料与电子传输材料相结合,形成高效的光电转换体系。
二、基于量子点的太阳能电池的结构与原理基于量子点的太阳能电池通常由多个层次构成,包括透明导电衬底、电子传输层、量子点敏化层和电解质等。
其工作原理是通过光的吸收和电子传输来实现光电转换。
当太阳光照射到量子点敏化层时,光子激发量子点中的电子,产生电子-空穴对。
这些电子-空穴对会被电子传输层分离,并在外部电路中形成电流,最终将光能转化为电能。
三、光电转换机制的研究进展为了深入理解基于量子点的太阳能电池的光电转换机制,许多研究工作已经展开。
一方面,研究人员通过调控量子点的大小、形状和表面修饰等手段来优化光吸收效率;另一方面,他们探索了不同材料的应用,如半导体纳米线和有机无机杂化材料,以进一步提高光电转换效率。
此外,一些研究还关注了光电转换过程中的热损耗和电荷转移过程的动力学特性,以期找到进一步提升效率的途径。
四、优化基于量子点的太阳能电池的方法在研究基于量子点的太阳能电池的光电转换机制的基础上,为了进一步提高其光电转换效率,可以采取以下优化措施。
1. 优化量子点敏化层通过调节量子点的大小、形状和表面修饰等参数,可以实现更宽波长范围内的光吸收,并提高光子传导效率。
2. 设计高效的电子传输层合理选择电子传输材料,提高电子传输速率和电荷分离效率,以减少能量损耗。
量子点太阳能电池的研究进展与展望

量子点太阳能电池的研究进展与展望随着全球能源需求的不断增加和以化石能源为主的能源结构趋于枯竭,可再生能源逐渐成为人们眼中的宝贵财富。
太阳能电池是一种最为广泛应用的可再生能源,但其能效和成本仍然是相对薄弱的环节,这也使得太阳能电池的性能与稳定性受到诸多限制。
近年来,量子点太阳能电池作为一种新型太阳能电池备受研究人员关注,其特殊的光电性质和高效率的能量转换使得其被誉为太阳能电池技术的“未来之星”。
本文将就量子点太阳能电池的研究进展及其未来发展趋势进行探讨。
一、量子点太阳能电池的基本原理量子点太阳能电池是一种基于半导体量子点的太阳能电池,利用量子点表面和体积效应调控电子能带结构和载流子性质,来提高太阳能电池的转换效率。
其基本结构由p型和n型半导体夹层组成,中间加入由量子点形成的导电通道,形成一个电子-空穴对的太阳能电池器件。
量子点具有在大面积表面积下形成高能量状态的能力,这使得量子点具有独特的光电性质。
太阳光线照射量子点,可激发其内部原子的电子跃迁至更高的能级,释放出生动的电子-空穴对。
这些电子-空穴对会向导电通道聚集,形成电子流和空穴流,从而发挥太阳能电池所应有的作用。
二、量子点太阳能电池的研究进展1.量子点材料的开发和改良量子点太阳能电池依赖于量子点材料的特殊性质,大多数被用作量子点材料的是二氧化硅和硒化硒等无机材料。
此外,近年来也出现了基于有机分子、高分子、金属有机框架等新型量子点材料。
在量子点材料的改良方面,主要包含两个方向:一是利用新型合成技术,生产出单晶质量较高的大面积化合物量子点;二是通过表面修饰、包覆等手段,控制量子点光电性能,提高光电转换效率和稳定性。
这都为量子点太阳能电池的研究提供了基础。
2.量子点太阳能电池性能的改善量子点太阳能电池将太阳能转化成电能的效率主要取决于太阳光的吸收程度、电荷转移效率和载流子耗散的抑制程度。
近年来的研究表明,在量子点太阳能电池的系统中引入阴极、阳极二氧化钛载体等结构,可以大幅度提升电池的光电转换效率。
量子点敏化太阳能电池的研究及应用前景

量子点敏化太阳能电池的研究及应用前景随着环保意识的日益增强,太阳能电池作为一种可再生能源,备受人们的关注。
近年来,量子点敏化太阳能电池的研究备受关注,被认为是未来太阳能电池的发展方向之一。
本文将从量子点敏化太阳能电池的基本原理、研究进展和应用前景三个方面展开探讨。
一、基本原理量子点是一种新型半导体材料,由于其晶体大小只有几个纳米级别,使其具有很多特殊的性质。
量子点敏化太阳能电池是一种以量子点材料为敏化剂的电池,主要由传统钙钛矿太阳能电池和量子点层组成。
传统钙钛矿太阳能电池是目前市场上应用最广泛的太阳能电池,其材料主要有二氧化钛等。
由于钙钛矿材料的局限性,如光电性能不稳定、生产成本高等问题,人们将目光投向了材料和结构更加复杂的量子点敏化太阳能电池。
量子点敏化太阳能电池的原理是通过将量子点敏化剂涂在钙钛矿层上,利用量子点本身的特性来增加太阳能电池对光的吸收能力,从而提高光电转化效率。
具体来说,量子点可以实现光的多次散射,形成“光捕获漏斗”结构,使得钙钛矿更容易吸收光线并将其转化为电流。
此外,量子点的带隙可以通过控制粒子的大小和组成来调整,以实现对太阳光谱的优化。
二、研究进展量子点敏化太阳能电池的研究始于20世纪90年代,至今已有20余年历史。
研究者们通过不断尝试新的材料和结构,逐渐提高了太阳能电池的光电转化效率。
如2005年,研究者就利用CdS量子点敏化剂成功制备了4.2%的太阳能电池,并将效率提升至6.7%后,量子点材料正式引起了全球研究者的关注。
不断的研究和改进,使得该太阳能电池的效率已达到了13%。
在研究进展的基础上,量子点敏化太阳能电池被广泛应用于生活中的不同领域。
如,量子点敏化太阳能电池可以应用于智能家居领域,为家居设备提供可更换电池的智能技术,增强家居设备的收集、传输和处理信息的能力;在可穿戴电子产品中,量子点敏化太阳能电池可以再次使用与紫外线下充电。
在农业领域,量子点敏化太阳能电池可以实现水稻光合途径的光谱优化,从而提高光合作用水平,增加作物产量。
量子点敏化太阳能电池

量子点敏化太阳能电池
量子点敏化太阳能电池是一种基于半导体量子点技术的新型太阳能电池。
量子点是尺寸在纳米级别的半导体颗粒,其具有很好的光物理和电子学性质。
通过将量子点吸附于钛某膜表面,可以提高太阳能电池的光吸收效率,从而提高电池的性能。
量子点敏化太阳能电池具有以下优点:
1. 光电转换效率高:量子点可以吸收半导体电池无法吸收的红外光谱,从而提高光电转换效率。
2. 光稳定性好:由于量子点具有很好的光物理性质,因此它们可以吸收和发射光子,从而提高电池的光稳定性。
3. 制备简单:与其他太阳能电池相比,量子点敏化太阳能电池的制备工艺相对简单,成本也较低。
4. 可控性强:通过控制量子点的尺寸和组成,可以调整太阳能电池的光学和电学性质,从而得到更好的性能。
尽管量子点敏化太阳能电池在实验中取得了良好的性能,但在实际应用中还需要克服许多挑战,如长期稳定性、成本、批量生产等问题。
因此,目前该技术仍处
于研究和发展阶段。
量子点敏化太阳电池Cu2S对电极研究进展

A b s t r a c t : C o u n t e r e l e c t r o d e w a s o n e o f t h e i m p o r t a n t p a t r s o f q u a n t u m d o t—s e n s i t i z e d s o l a r c e l l s( Q D S C s ) .
关键 词 :量子点敏化太阳电池 ( Q D S C s ) ;C u S 对电极 ; 稳定性;光电转换效率 中图分 类号 :T B 3 4 文 献标识 码 :B 文章编 号 :1 0 0 1 — 9 6 7 7 ( 2 0 1 3 ) 2 1 — 0 0 2 6 — 0 3
R e c e n t P r o g r e s s o f C u 2 S C o u n t e r E l e c t r o d e i n Qu a n t u m
Do t—s e n s i t i z e d So l a r Ce l l s
j l N B i n—b i n
( D e p a r t me n t o f C h e m i c a l E n g i n e e i r n g ,S h a a n x i G u o f a n g I n s t i t u t e o f T e c h n o l o g y , S h a a n x i X i ’ a D 7 1 0 3 0 2 ,b i l i t y o f Q D S C s .T h e p r e p a r a t i o n p r o c e s s a n d t h e a d v a n t a g e s a n d d i s a d v a n t a g e s o f t h e C u 2 S e l e c t r o d e s w e r e i n t r o d u c e d , a n d t h e s u p e i r o i r t y a n d e x i s t i n g p r o b l e m s o f Q D S C s b a s e d o n C u 2 S e l e c t r o d e s w e r e d i s c u s s e d , t h e C u 2 S c o u n t e r e l e c t r o d e s w e r e i m p o t r a n t w a y t o i m p r o v e t h e s t a b i l i t y a n d t h e p h o t o e l e c t i r c c o n v e r s i o n e ic f i e n c y o f Q D S C s . Ke y w o r d s :q u a n t u m d o t—s e n s i t i z e d s o l a r c e l l s( Q D S C s ) ;C u 2 S c o u n t e r e l e c t r o d e s ;s t a b i l i t y ;p h o t o e l e c t i r c
量子点敏化太阳能电池结构调控及光伏性能研究

量子点敏化太阳能电池结构调控及光伏性能研究量子点敏化太阳能电池结构调控及光伏性能研究摘要:随着能源需求的不断增长,太阳能作为一种可再生能源受到了广泛关注。
在太阳能电池研究中,量子点敏化太阳能电池因其高效率和低成本的特点而备受研究者的青睐。
本文通过研究量子点敏化太阳能电池的结构调控及光伏性能,探讨了提高其光电转换效率的方法,并对未来的发展进行了展望。
1. 引言太阳能电池是一种将太阳能转化为电能的装置,广泛应用于户外供电、数字产品和航空航天等领域。
传统的太阳能电池主要由硅材料构成,但由于成本较高且生产过程对环境影响较大,研究者开始寻找替代材料。
量子点是一种具有特殊结构和优异性能的纳米材料,与传统的材料相比,量子点敏化太阳能电池具有优异的光电转换效率和较低的成本。
2. 量子点敏化太阳能电池的结构调控量子点敏化太阳能电池的结构调控是提高其光伏性能的关键。
在量子点敏化太阳能电池中,量子点被用作光吸收剂,并通过电子传输和多重荧光共振的方式将光能转化为电能。
通过调控量子点的大小、形状和组成,可以使其吸收更广泛的光谱范围,并提高光电转换效率。
此外,调控电解质和电容性电解质界面的性质也可以改善电荷传输效率,进一步提高光伏性能。
3. 光伏性能研究光伏性能是评价量子点敏化太阳能电池性能的重要指标之一。
研究表明,量子点敏化太阳能电池具有优异的光伏性能,其光电转换效率可达到较高水平。
在研究中,通过改变量子点的尺寸和组成,以及优化电解质和电容性电解质界面的性质,可以提高光伏性能。
此外,合适的材料组合和结构设计也可以改善电子传输和电荷分离效率,从而进一步提高光伏性能。
4. 发展展望量子点敏化太阳能电池由于其优异的光伏性能和低成本的特点已经成为太阳能电池研究的热点。
未来的发展可从以下几个方面展望:首先,进一步优化量子点的结构和组成,提高光电转换效率。
其次,研究新型电解质和电容性电解质以实现更高的电荷传输效率。
此外,结合其他纳米材料,如石墨烯等,可以进一步改善光伏性能。
《CuInS2基量子点敏化太阳电池的掺杂特性、核壳结构及其吸附技术研究》范文

《CuInS2基量子点敏化太阳电池的掺杂特性、核壳结构及其吸附技术研究》篇一摘要随着太阳电池技术的不断进步,CuInS2基量子点敏化太阳电池因其高光电转换效率和低成本优势,逐渐成为研究热点。
本文重点研究了CuInS2基量子点的掺杂特性、核壳结构及其在太阳电池中的吸附技术。
通过实验和理论分析,探讨了不同掺杂元素对量子点性能的影响,核壳结构对光吸收和电子传输的优化作用,以及吸附技术对量子点敏化太阳电池性能的提升。
一、引言太阳电池作为将太阳能转换为电能的装置,其效率和稳定性对实际应用具有重要意义。
CuInS2基量子点敏化太阳电池凭借其高光吸收系数和良好的光电转换效率,成为当前研究的重点。
本文将从掺杂特性、核壳结构以及吸附技术三个方面,探讨CuInS2基量子点敏化太阳电池的研究进展。
二、CuInS2基量子点的掺杂特性1. 掺杂元素的选择CuInS2基量子点的掺杂是提高其光电性能的重要手段。
通过选择合适的掺杂元素,可以调整量子点的能级结构、提高光吸收效率、改善电子传输性能。
常见的掺杂元素包括金属元素和非金属元素。
2. 掺杂对量子点性能的影响不同元素的掺杂会对CuInS2基量子点的能带结构、光学性质和电学性质产生不同影响。
实验结果表明,适量掺杂可以显著提高量子点的光吸收能力和光电转换效率。
三、核壳结构的优化作用1. 核壳结构的构建核壳结构是通过在CuInS2量子点外包裹一层或多层其他材料(如硫化锌、硫化镉等)形成的。
这种结构可以保护量子点免受外界环境的影响,提高其稳定性。
2. 核壳结构对光吸收和电子传输的优化核壳结构能够有效地延长光生载流子的寿命,提高光吸收效率。
同时,核壳界面的能级匹配可以改善电子的传输性能,降低电子与空穴的复合几率。
四、吸附技术研究1. 吸附技术的原理吸附技术是通过化学或物理手段将量子点与太阳电池的光阳极紧密结合的技术。
通过适当的吸附层处理,可以提高量子点在光阳极上的附着力和稳定性。
2. 吸附技术对太阳电池性能的提升实验结果表明,采用适当的吸附技术可以显著提高CuInS2基量子点敏化太阳电池的光电转换效率和稳定性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
量子点敏化太阳能电池研究进展摘要:量子点敏化太阳能电池(QDSCs)因其制备成本低、工艺简单及量子点(QDs)本身的优异性能(如尺寸效应、多激子效应)等优点,近年来受到广泛关注。
在此类电池中,无机半导体量子点敏化剂作为吸光材料,其自身的光电性质、制备方法、表面缺陷、化学稳定性及其在TiO2光阳极上的敏化方法等是影响电池性能的关键。
本文综述了无机半导体量子点敏化剂(包括窄带隙二元量子点、多元合金量子点及Type-II核壳量子点)的最新研究进展,重点介绍了胶体量子点的制备方法;分类阐释了量子点在TiO2光阳极表面的沉积与敏化方法,特别是双官能团辅助自组装吸附法;总结了针对提高电子注入效率和减少复合的量子点表面修饰方法;最后简要介绍了QDSCs的电解质和对电极的研究进展。
关键词:量子点敏化太阳能电池;无机半导体量子点;胶体量子点;双官能团辅助自组装;表面修饰Progress in Quantum Dot-Sensitized Solar Cells Abstrac t:Quantum dot-sensitized solar cells (QDSCs) have attracted much attention in the past few yearsbecause of the advantages of quantum dots (QDs), including low cost, easy fabrication, size-dependence bandgap, and multiple exciton generation (MEG). The properties of QD sensitizers influence the performanceof QDSCs, such as their photoelectric characteristics, preparation methods, surface defects, chemical stability,and their sensitization towards TiO2 photoanodes. This review demonstrates the development of QD sensitizers, including narrow bandgap binary QDs, ternary or quaternary alloyed QDs, and Type-II core-shellQDs, especially the preparation methods of colloidal QDs. Furthermore, the deposition and sensitization methods of QDs are introduced in detail, particularly bifunctional-assisted self-assembly deposition.Meanwhile, methods to improve electron injection efficiency and reduce charge recombination are also summarized. Finally, a brief introduction is provided to the development of electrolytes and counter electrodes in QDSCs.Key Words:Quantum dot-sensitized solar cell;Inorganic semiconductor quantum dot;Colloidalquantum dot; Bifunctional-assisted self assembly; Surface treatment1 引言太阳能电池是一种利用光伏效应或光化学效应将太阳能转化为电能的能量转换形式。
按照其发展历程,太阳能电池可以分为三类:以单晶硅太阳能电池为代表的第一代太阳能电池,这类电池发展最为成熟,最高光电转换效率已达25%,且稳定性好,在市场上占据着主导地位,但是高纯度的单晶硅价格昂贵,较高的生产成本使其目前仍难以和传统能源相竞争;以铜铟镓硒(CIGS)和碲化镉(CdTe)薄膜太阳能电池等为代表的第二代太阳能电池,采用高消光系数、直接带隙吸光材料可以有效降低电池的制造成本,光电转换效率可达20%以上,但受到环境污染和稀有元素In储量低的限制;此外,以铜锌锡硫(CZTS)太阳能电池、染料敏化太阳能电池、钙钛矿型太阳能电池和量子点太阳能电池等低成本、高效率新型太阳能电池为代表的第三代太阳能电池正在快速发展。
无机半导体量子点消光系数高、合成过程简单,并且其独特的量子限域效应、热电子抽取以及多激子效应(MEG)等优点使得基于量子点的光伏器件(即量子点太阳能电池)理论光电转化效率高达44%,突破Shockley-Queisser极限(31%)[1-3]。
量子点太阳能电池主要包括肖特基量子点太阳能电池、耗尽异质结太阳能电池、有机-无机杂化太阳能电池以及量子点敏化太阳能电池(QDSCs)[4-8],本文主要介绍量子点敏化太阳能电池方面的工作。
QDSCs是在染料敏化太阳能电池(DSCs)的基础上发展而来的,它采用无机窄带隙的半导体量子点(QDs)作为敏化剂,克服了传统的钌-联吡啶染料和有机染料吸光范围较窄的缺点,并且电池的制备成本更低。
事实上,在上世纪80年代初,人们就提出了量子点敏化宽禁带半导体的概念。
1994年,Weller等[9]以PbS、CdS量子点等敏化TiO2多孔膜为工作电极,建立了三电极电池体系,并研究了其电流–电压特性。
但是,这种量子点敏化电池的研究在相当长一段时间内发展缓慢,光电转化效率低。
近几年,随着量子点材料制备方法和薄膜沉积工艺的不断改进,人们对电池内部机理研究的不断深入,QDSCs效率有了大幅提升,成为新型太阳能电池领域一个新研究热点。
尽管QDSCs理论效率高,但目前其光电转换效率只有约8%左右[10-12],远低于DSCs(约13%)[13],因此,进一步提高QDSCs性能仍需面临很多挑战。
影响电池性能的主要因素包括:QDs本身的光电特性、金属氧化物光阳极的结构和形貌、电解质中氧化还原电对的氧化还原电位及载流子迁移率、对电极的催化性能及电池结构等,其中量子点及其在光阳极表面的敏化是影响整个电池性能的关键。
本文主要综述了量子点敏化剂(包括窄带隙二元量子点、多元合金量子点以及Type-II核壳量子点)最新研究进展,重点介绍了胶体量子点的合成方法;分类阐释了量子点在TiO2光阳极表面的沉积与敏化方法,特别是双官能团辅助自组装吸附方法;总结了针对有效提高电子注入效率和减少复合的量子点表面修饰方法;最后简要介绍了QDSCs其他组成部分(金属氧化物光阳极、电解质和对电极)的研究进展。
2 QDSCs的组成及工作原理QDSCs由沉积了量子点的光阳极、电解质和对电极三部分组成,其工作原理与DSCs相似。
如图1所示,光照下,量子点吸收光子后被激发,产生电子-空穴对并发生分离,电子快速注入到TiO2导带并经TiO2被外电路收集,量子点的空穴被电解质还原回到基态,电解质在对电极处接收外电路流入的电子完成再生,从而完成一个循环。
光电转换主要通过三个界面完成:(1)量子点与金属氧化物半导体界面;(2)量子点和电解质界面和;(3)电解质与对电极界面。
具体而言,光阳极是由具有介孔结构的宽禁带半导体氧化物(TiO2,SnO2,ZnO)薄膜及沉积在薄膜上的量子点构成;电解质主要是用来还原、再生量子点,目前最常用的电解质为含有多硫氧化还原电对(S2–/ )的水溶液,也有少量报道采用I–/ 、Co2+/Co3+等非硫氧化还原电对;对电极主要起到还原电解质中氧化型物种的作用,对电极材料目前主要包括贵金属、碳材料和金属硫化物三类。
3 光阳极的研究进展QDSCs的光阳极是指经量子点敏化的具有多孔结构的宽禁带半导体氧化物薄膜。
对QDSCs来讲,电池性能与量子点对光阳极的敏化方法密切相关。
人们发展了多种量子点敏化TiO2或其它宽禁带半导体薄膜的方法,主要包括三大类:(1)原位化学沉积法,包括化学浴沉积法(CBD)和连续离子层吸附与反应法(SILAR);(2)先合成量子点胶体,再直接或借助带有双官能基团的有机小分子将量子点锚定在电极表面;(3)其它的沉积方法,如电化学沉积法、化学气相沉积法(CVD)等,我们将结合不同量子点的合成方法及量子点在光阳极的沉积方法一并介绍。
3.1 量子点敏化剂量子点敏化剂是QDSCs光吸收的核心,电池的光捕获、电荷分离及传输过程都与量子点自身的性质相关,是决定电池性能的关键材料之一。
理想的量子点敏化剂应该具有光吸收范围宽、合适的导带位置以及表面缺陷少等特点。
对于整个电池体系而言,能级匹配非常重要,量子点的导带必须高于半导体氧化物的导带,这样才能实现电子的快速抽取。
目前,常用的量子点包括CdS、CdSe、PbS、CdTe、Sb2S3、CuInS2等。
3.1.1 CdS/CdSe量子点共敏化CdS、CdSe量子点与TiO2能级匹配,在电解质中有很好的稳定性,且沉积工艺成熟,因而被广泛用于QDSCs中。
由于CdS的带隙较宽(2.4eV),吸光范围窄,而CdSe的吸收带边虽然可以拓展到700nm,但电子注入效率较低,因此,通常采用CdS/CdSe量子点共敏化的方式,不仅能提高光的捕获效率,同时也提高了电子的注入效率。
CdS/CdSe量子点对TiO2多孔膜的敏化主要采取原位沉积方法。
Toyoda等[14-17]研究了TiO2光阳极形貌对QDSCs性能的影响,他们在具有三维有序反蛋白石结构的TiO2光阳极上原位沉积了CdS/CdSe量子点,获得了3.5%的转换效率。
孟庆波等[18]通过优化多孔光阳极的结构及量子点沉积条件,CdS/CdSe QDSCs效率达到4.92%。
Lee等[19]系统研究了CdS和CdSe的沉积顺序对共敏化QDSCs性能的影响。
随着电池结构和制备工艺的不断改进,基于CdS/CdSe的QDSCs研究取得了很大进展,电池效率也不断提高。
Kuang等[20]发展了一种新的TiO2光阳极结构,有效改善了量子点的负载和电子的传输,使CdS/CdSe QDSCs的转换效率突破6%。
Wang等[21]将Cu2–xSe对电极用于CdS/CdSe QDSCs,通过电化学阻抗谱分析得到Cu2–xSe对电极的载流子转移阻抗(0.58Ω)远小于常用的Cu2S对电极(1.48Ω),说明Cu2–xSe在还原Sn2–的过程中展现出更高的催化活性,从而使电池获得更高的短路电流和开路电压;此外,他们用TiO2纳米片和纳米颗粒混合物取代商品WER2-ODyesol浆料(颗粒尺寸约150–250nm)来制备光阳极的散射层,其更大的比表面积增加了量子点的负载量,使电池获得高达20.83mA cm–2的电流和7.11%的高效率,这也是目前液结CdS/CdSe QDSCs的最高效率。