人教版九年级数学 期末测试卷(附参考答案)

合集下载

人教版九年级数学期末考试综合复习测试题(含答案)

人教版九年级数学期末考试综合复习测试题(含答案)

人教版九年级数学期末考试综合复习测试题(含答案)一.选择题(共10小题,每小题3分,共30分)1.计算,3(2)a -结果正确的是( )A .32a -B .36a -C .38a -D .38a2.据教育部统计,2022年高校毕业生约1076万人,用科学记数法表示1076万为( )A .4107610⨯B .61.07610⨯C .71.07610⨯D .80.107610⨯3.下列汽车标志中,是中心对称图形的是( ) A . B . C . D .4.如图所示,直线//EF GH ,射线AC 分别交直线EF 、GH 于点B 和点C ,AD EF ⊥于点D ,如果20A ∠=︒,则(ACH ∠= )A .160︒B .110︒C .100︒D .70︒5.如图,已知ABC ADE ∆≅∆,若70E ∠=︒,30D ∠=︒,则BAC ∠的度数是( )A .70︒B .80︒C .40︒D .30︒6.方程2210x x --=实数根的情况为( )A .有两个不相等的实数根B .有两个相等的实数根C .没有实数根D .不能确定7.在平面直角坐标系中,若点(1,)A a b -+与点(,3)B a b -关于原点对称,则点(,)C a b 在( )A .第一象限B .第二象限C .第三象限D .第四象限8.如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与ABC ∆相似的是( )A .B .C .D .9.已知正比例函数11(0)y k x k =≠的图象与反比例函数22(0)k y k x =≠的图象交于A ,B 两点,其中点A 在第二象限,横坐标为2-,另一交点B 的纵坐标为1-,则12(k k ⋅= )A .4B .4-C .1-D .110.已知(3,2)A --,(1,2)B -,抛物线2(0)y ax bx c a =++>顶点在线段AB 上运动,形状保持不变,与x 轴交于C ,D 两点(C 在D 的右侧),下列结论:①2c -;②当0x >时,一定有y 随x 的增大而增大;③若点D 横坐标的最小值为5-,则点C 横坐标的最大值为3;④当四边形ABCD 为平行四边形时,12a =. 其中正确的是( )A .①③B .②③C .①④D .①③④二.填空题(共5小题,每小题3分,共15分)11.因式分解:22416x y -= . 12.若2|2|(3)0x y -++=,则2()x y += .13.已知m ,()n m n ≠是一元二次方程220230x x +-=的两个实数根,则代数式22m m n ++的值为 .14.如图,A ,B ,C ,D 是O 上的四点,且点B 是AC 的中点,BD 交OC 于点E ,60OED ∠=︒,35OCD ∠=︒,那么AOC ∠的度数是 .15.如图,E 为正方形ABCD 内一点,5AD =,4AE =,将ADE ∆绕点A 顺时针旋转90︒到ABE ∆',则边DE 所扫过的区域(图中阴影部分)的面积为 .题14图 题15图三.解答题(一)(共3小题,每小题8分,共24分)16.(1)计算:0111(2021)()2cos45221π--++-︒+; (2)先化简,再求值:23210(1)19x x x x --⋅---,其中x 是1、2、3中的一个合适的数.17.如图,DE AB ⊥于E ,DF AC ⊥于F ,若BD CD =,BE CF =.求证:(1)AD 平分BAC ∠;(2)2AC AB BE =+.18.今年,我市某学校举办了为贫困生捐赠书包活动.该学校用2000元在某商店购进一批学生书包,随后发现书包数量不够,于是又购进第二批同样的书包,所购数量是第一批的3倍,每个书包比第一批购买时贵了4元,结果第二批用了6300元.(1)该学校第一批购进的学生书包每个多少元?(2)如果该商店第一批、第二批学生书包每个的进价分别是68元、70元,售给该学校的这些学生书包,该商店盈利多少元?四.解答题(二)(共3小题,每小题9分,共27分)19.某银行柜台在储户人数较多时常开放1、2、3、4号窗口办理日常业务,一般是先到取号机拿号,按顾客“先到达,先服务“的方式服务(1)求某储户在3号窗口办业务的概率是(2)储户乙取号时发现储户甲已办理完业务准备离开(储户甲、乙先后到达银行取号办理业务),请用树状图或列表法求储户甲、乙两人在同一柜台办理业务的概率.20.如图,在平行四边形ABCD 中,BD AB ⊥,延长AB 至点E ,使BE AB =,连接EC .(1)求证:四边形BECD 是矩形.(2)连接AC ,若3AD =,2CD =,求AC 的长.21.Rt ABO ∆的顶点A 是双曲线k y x =与直线(1)y x k =--+在第二象限的交点,AB 垂直x 轴于点B 且32ABO S ∆=. (1)求这两个函数解析式;(2)求AOC ∆的面积;(3)根据图象直接写出不等式(1)k x k x >-+的解集.五.解答题(三)(共2小题,每小题12分,共24分)22.如图,AB 是⊙O 的直径,C 、D 是⊙O 上两点,连接CD ,C 是的中点,过点C 作AD 的垂线,垂足是E .连接AC 交BD 于点F .(1)求证:CE 是⊙O 的切线;(2)求证:△CDF ∽△CAD ;(3)若DF =2,CD =,求AC 值.23.如图,在平面直角坐标系中,抛物线21y ax bx =++交y 轴于点A ,交x 轴正半轴于点(4,0)B ,交直线AD 于点5(3,)2D ,过点D 作DC x ⊥轴于点C . (1)求抛物线的解析式;(2)点P 为x 轴正半轴上一动点,过点P 作PN x ⊥轴交直线AD 于点M ,交抛物线于点N ;若点P 在线段OC 上(不与O 、C 重合),连接CM ,求PCM ∆面积的最大值。

2022年人教版初中九年级数学期末综合素质检测卷(四)含答案

2022年人教版初中九年级数学期末综合素质检测卷(四)含答案

期末综合素质检测卷(四)一、选择题(每题3分,共30分)1.【教材P7例3改编】已知反比例函数y=kx的图象经过点P(-1,2),则这个函数的图象位于()A.第二、三象限B.第一、三象限C.第三、四象限D.第二、四象限2.【2022·十堰】下列几何体中,主视图与俯视图的形状不一样...的几何体是()3.如图,l1∥l2∥l3,直线a,b与l1,l2,l3分别交于点A,B,C和点D,E,F,若BC=2AB,DE=3,则EF的长是()A.3 B.4 C.5 D.64.【教材P84复习题T2变式】【2021·云南】在△ABC中,∠ABC=90°.若AC=100,s in A=35,则AB的长是()A.5003 B.5035C.60 D.805.【教材P8练习T2变式】【2021·天津】若点A(-5,y1),B(1,y2),C(5,y3)都在反比例函数y=-5x的图象上,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y2<y3<y1 C.y1<y3<y2D.y3<y1<y26.【2021·宁波】如图,正比例函数y1=k1x(k1<0)的图象与反比例函数y2=k2x(k2<0)的图象相交于A,B两点,点B的横坐标为2,当y1>y2时,x的取值范围是() A.x<-2或x>2 B.-2<x<0或x>2C.x<-2或0<x<2 D.-2<x<0或0<x<2(第6题) (第7题) (第8题)7.如图,△ABC 中,AB =6,AC =4,BC =5,点D ,E 分别在AB ,AC 上,AD=2,∠AED =∠B ,则DE =( ) A.52 B.43 C .3 D .28.【教材P 19活动2变式】【2021·丽水】一杠杆装置如图,杆的一端吊起一桶水,水桶对杆的拉力的作用点到支点的杆长固定不变.甲、乙、丙、丁四名同学分别在杆的另一端竖直向下施加压力F 甲,F 乙,F 丙,F 丁,将相同质量的水桶吊起同样的高度,若F 乙<F 丙<F 甲<F 丁,则这四名同学对杆的压力的作用点到支点的距离最远的是( )A .甲同学B .乙同学C .丙同学D .丁同学9.如图为北京冬奥会“雪飞天”滑雪大跳台赛道的示意图.若点D 与点A 的水平距离DE =a m ,水平赛道BC =b m ,赛道AB ,CD 的坡角均为θ,则点A 的高AE 为( )A .(a -b )tan θ m B.a -btan θ m C .(a -b )sin θ m D .(a -b )cos θ m(第9题) (第10题)10.【2022·威海】由12个有公共顶点O 的直角三角形拼成如图所示的图形.∠AOB =∠BOC =∠COD =…=∠L OM =30°.若S △AOB =1,则图中与△AOB 位似的三角形的面积为( ) A.⎝ ⎛⎭⎪⎫433 B.⎝ ⎛⎭⎪⎫437 C.⎝ ⎛⎭⎪⎫436 D.⎝ ⎛⎭⎪⎫346二、填空题(每题3分,共24分) 11.若x y =25,则x x +y=________.12.在△ABC 中,∠A ,∠B 均为锐角,且(tan A -3)2+|2 cos B -1|=0,则△ABC的形状是______________________________________.13.【教材P 41练习T 1改编】在某一时刻的太阳光下,测得一根长为1.5 m 的标杆的影长为 3 m ,同时测得一根旗杆的影长为16 m ,那么这根旗杆的高度为________m.14.【2022·北京】如图,在矩形ABCD 中,若AB =3,AC =5,AF FC =14,则AE 的长为________.(第14题) (第15题) (第16题)15.如图是一个几何体的三视图(图中尺寸单位:cm),根据图中所示数据计算这个几何体的表面积为________cm 2.16.【教材P 77练习T 1变式】【2021·武汉】如图,海中有一个小岛A ,一艘轮船由西向东航行,在B 点测得小岛A 在北偏东60°方向上;航行12 n mile 到达C 点,这时测得小岛A 在北偏东30°方向上.小岛A 到航线BC 的距离是n mile(3≈1.73,结果用四舍五入法精确到0.1 n mile).17.如图,点A 在双曲线y =1x (x >0)上,点B 在双曲线y =3x (x >0)上,点C ,D在x 轴上,若四边形ABCD 为矩形,则它的面积为________.(第17题) (第18题)18.【2022·牡丹江】如图,在等腰直角三角形ABC 和等腰直角三角形ADE 中,∠BAC =∠DAE =90°,点D 在BC 边上,DE 与AC 相交于点F ,AH ⊥DE ,垂足是G ,交BC 于点H .下列结论中:①AC =CD ;②2AD 2=BC ·AF ;③若AD=35,DH=5,则BD=3;④AH2=DH·AC.正确的是__________(填序号).三、解答题(19题6分,20,21题每题8分,22,23题每题10分,24,25题每题12分,共66分)19.【2022·金华】计算:(-2 022)0-2tan 45°+|-2|+9.20.如图,路灯灯泡在线段DM上,在路灯下,王华的身高用线段AB表示,她在地上的影子用线段AC表示,小亮的身高用线段EF表示.(1)请你确定灯泡的位置,并画出小亮在灯光下形成的影子;(2)如果王华的身高AB=1.6 m,她的影长AC=1.2 m,且她到路灯的距离AD=2.1m,求路灯的高度.21.如图,在△ABC中,CD是边AB上的中线,∠B是锐角,且sin B=22,tan A=12,AC=3 5.(1)求∠B的度数与AB的长;(2)求tan∠CDB的值.22.【2022·重庆一中模拟】万盛高速路口的“羽毛球拍”雕塑是万盛城区的标志性雕塑之一,是彰显万盛“羽毛球之乡”的重要运动景观元素.学习了锐角三角函数知识后,某数学“综合与实践”小组的同学们把“测量羽毛球拍雕塑最高点的高度”作为一项课题活动,他们制定了测量方案,并利用课余时间完成了实地测量.其中一次测量过程如下:如图,他们从羽毛球拍雕塑底部B出发,沿水平路面向一侧前进a m到达C点,遇到坡度(或坡比)i=1:2.4的斜坡CD,他们又沿斜坡走13 m到达坡顶D处,测得羽毛球拍雕塑的最高点A的仰角为β,羽毛球拍与斜坡CD的剖面在同一平面内.(1)用含a,β的式子表示羽毛球拍雕塑的高度;(2)若a=40,β=18°,试求羽毛球拍雕塑的高度(结果保留一位小数,参考数据:sin 18°≈0.31,cos 18°≈0.95,tan 18°≈0.32).23.【2022·宜宾】如图,一次函数y=ax+b的图象与x轴交于点A(4,0),与y轴交于点B,与反比例函数y=kx(x>0)的图象交于点C,D.若tan∠BAO=2,BC=3AC.(1)求一次函数和反比例函数的解析式;(2)求△OCD的面积.24.【2022·广安】如图,AB 为⊙O 的直径,D ,E 是⊙O 上的两点,延长AB 至点C ,连接CD ,∠BDC =∠BAD . (1)求证:CD 是⊙O 的切线;(2)若tan ∠BED =23,AC =9,求⊙O 的半径.25.九(1)班数学兴趣小组的同学参照学习函数的过程与方法,探究函数y =⎩⎪⎨⎪⎧x 2-4(x <3),5x -2(x ≥3)的图象与性质,他们的探究过程如下,请你补充完整.(1)列表:x … -3 -2 -1 0123 4 5 6 7 … y …m-3 -4 -3 05n53541…表中m =________,n =________.(2)描点、连线:如图,在平面直角坐标系中,根据上表中数据以自变量x 的值为横坐标,以相应的函数值y 为纵坐标,描出了部分对应点,请你描出剩余的点,并画出该函数的图象.(3)探究性质,解决问题:①试写出该函数的一条性质:_______________________________________; ②当y ≥1时,函数y =⎩⎪⎨⎪⎧x 2-4(x <3),5x -2(x ≥3)的自变量的取值范围是__________________________;③若直线y =k (x +6)-4与函数y =⎩⎪⎨⎪⎧x 2-4(x <3),5x -2(x ≥3)的图象有三个不同的交点,请直接写出k 的取值范围.答案一、1.D 2.C 3.D 4.D 5.B 6.C7.A 8.B9.A10. C点思路:根据余弦的定义得OB=23OA,进而得OG=⎝⎛⎭⎪⎫236OA.根据位似图形的概念得到△GOH与△AOB位似,根据相似三角形的面积比等于相似比的平方计算.二、11.2712.等边三角形13.814.115.5216.10.417.218. ②③点思路:①根据等腰直角三角形可知∠B=∠ACB=45°,若AC=CD,则∠ADC=∠CAD=67.5°,这个根据由已知得不出来,所以①错误;②证明△AEF∽△ABD,列比例式可作判;④证明△ADH∽△BAH,列比例式可作判断;③先计算AH的长,由④中得到的比例式计算可作判断.三、19.解:原式=1-2×1+2+3=1-2+2+3=4.20.解:(1)如图,G为灯泡所在的位置,ME为小亮在灯光下形成的影子.(2)∵AB∥GD,∴△BAC∽△GDC.∴BAAC=GDDC,即1.61.2=GD1.2+2.1,解得GD=4.4 m.答:路灯的高度为4.4 m.21.解:(1)如图,过点C作CE⊥AB于点E.设CE=x.在Rt△ACE中,∵tan A=CEAE=12,∴AE=2x.∴AC=x2+(2x)2=5x=35,解得x=3. ∴CE=3,AE=6.在Rt△BCE中,∵sin B=2 2,∴∠B=45°.∴△BCE为等腰直角三角形.∴BE=CE=3.∴AB=AE+BE=9.(2)∵CD是边AB上的中线,∴BD=12AB=4.5.∴DE=1.5.∴tan∠CDE=CEDE=31.5=2.22.解:(1)如图,过点D作DE⊥BC交BC的延长线于点E,过点D作DF⊥AB 于F,则四边形BEDF是矩形,∴FD=BE,FB=DE.∵i=1:2.4,∴DECE=512.设DE=5x m,则CE=12x m.在Rt△CDE中,CD2=DE2+CE2,CD=13 m,∴x=1.∴DE =5 m ,CE =12 m.∴FD =BE =(a +12)m ,FB =DE =5 m. 在Rt △AFD 中,tan β=AFFD , ∴AF =tan β·FD =(a +12)·tan β m. ∴AB =AF +FB =[(a +12)·tan β+5]m.(2)当a =40,β=18°时,AB =AF +FB =(a +12)·tan β+5≈(40+12)×0.32+5≈21.6(m).23.解:(1)∵A (4,0),∴OA =4.在Rt △AOB 中,tan ∠BAO =OBOA =2, ∴OB =8. ∴B (0,8).∵A ,B 两点在直线y =ax +b 上, ∴⎩⎨⎧b =8,4a +b =0,解得⎩⎨⎧a =-2,b =8. ∴一次函数的解析式为y =-2x +8. 如图,过点C 作CE ⊥OA 于点E .∵BC =3AC , ∴AB =4AC . 易知CE ∥OB , ∴△ACE ∽△ABO . ∴CE OB =AE OA =AC AB =14. ∴CE =2,AE =1. ∴OE =3. ∴C (3,2).∵点C 在反比例函数y =k x 的图象上,∴k =3×2=6.∴反比例函数的解析式为y =6x .(2)由⎩⎪⎨⎪⎧y =-2x +8,y =6x,得⎩⎨⎧x =1,y =6或⎩⎨⎧x =3,y =2, ∴D (1,6).如图,过点D 作DF ⊥y 轴于点F ,则DF =1. ∴S △OCD =S △AOB -S △BOD -S △COA =12·OA ·OB -12·OB ·DF -12·OA ·CE =12×4×8-12×8×1-12×4×2=8.24.(1)证明:如图,连接OD .∵AB 为⊙O 的直径,∴∠ADB =90°.∴∠A +∠ABD =90°.∵OB =OD ,∴∠ABD =∠ODB .∵∠BDC =∠A ,∴∠BDC +∠ODB =90°.∴∠ODC =90°.∴OD ⊥CD .∵OD 是⊙O 的半径,∴CD 是⊙O 的切线.(2)解:∵∠BED =∠BAD ,tan ∠BED =23,∴tan ∠BAD =23.∴BD AD =23.∵∠DCB=∠ACD,∠BDC=∠BAD,∴△BDC∽△DAC.∴CDAC=BCCD=BDDA=23.∵AC=9,∴CD9=23,解得CD=6.∴BC6=23,解得BC=4.∴AB=AC-BC=9-4=5.∴⊙O的半径为5 2.25. 解:(1)5;5 2(2)描出剩余的点并画出函数图象如图所示.(3)①当x≥3时,y随x的增大而减小(答案不唯一)②x≤-5或5≤x≤7③k的取值范围是0<k<1.点思路:(3)③数形结合求解:当直线经过点(3,5)时,恰有两个交点,此时k =1.根据一次函数的性质可得0<k< 1 .。

人教版九年级数学上册期末测试题附答案

人教版九年级数学上册期末测试题附答案

人教版九年级数学上册期末测试题附答案九年级(上)期末数学试卷一、选择题:(每小题3分,共36分,每小题给出四个答案中,只有一个符合题目要求)1.下列事件是必然事件的是()A.打开电视机,正在播放篮球比赛B.守株待兔C.明天是晴天D.在只装有5个红球的袋中摸出1球,是红球2.一元二次方程2某2﹣某+1=0的一次项系数和常数项依次是()A.﹣1和1B.1和1C.2和1D.0和13.下面的图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.4.方程2某(某﹣3)=5(某﹣3)的根是()A.某=B.某=3C.某1=,某2=3D.某1=﹣,某2=35.如图,⊙O是△ABC的外接圆,已知∠ACB=60°,则∠ABO的大小为()A.30°B.40°C.45°D.50°6.在Rt△ABC中,∠C=90°,AC=12,BC=5,将△ABC绕边AC所在直线旋转一周得到圆锥,则该圆锥的侧面积是()A.25πB.65πC.90πD.130π7.如图,抛物线y1=﹣某2+4某和直线y2=2某,当y1<y2时,某的取值范围是()A.0<某<2B.某<0或某>2C.某<0或某>4D.0<某<48.已知点A(1,a)、点B(b,2)关于原点对称,则a+b的值为()A.1B.3C.﹣1D.﹣39.王洪存银行5000元,定期一年后取出3000元,剩下的钱继续定期一年存入,如果每年的年利率不变,到期后取出2750元,则年利率为()A.5%B.20%C.15%D.10%10.某1,某2是关于某的一元二次方程某2﹣m某+m﹣2=0的两个实数根,是否存在实数m使+=0成立?则正确的结论是()A.m=0时成立B.m=2时成立C.m=0或2时成立D.不存在11.若函数,则当函数值y=8时,自变量某的值是()A.±B.4C.±或4D.4或﹣12.如图为二次函数y=a某2+b某+c(a≠0)的图象,则下列说法:①a>0;②2a+b=0;③a+b+c>0;④△>0;⑤4a﹣2b+c<0,其中正确的个数为()A.1B.2C.3D.4二、填空题(本大题共6个小题,每小题3分,共18分,将答案直接填写在题中横线上)13.小明制作了十张卡片,上面分别标有1~10这是个数字.从这十张卡片中随机抽取一张恰好能被4整除的概率是.14.同圆的内接正三角形与外切正三角形的周长比是.15.△ABC中,E,F分别是AC,AB的中点,连接EF,则S△AEF:S△ABC=.16.工程上常用钢珠来测量零件上小孔的直径,假设钢珠的直径是10mm,测得钢珠顶端离零件表面的距离为8mm,如图所示,则这个小孔的直径AB是mm.17.将抛物线y=某2﹣2向上平移一个单位后,又沿某轴折叠,得新的抛物线,那么新的抛物线的表达式是.18.如图,我们把一个半圆与抛物线的一部分围成的封闭图形称为“果圆”.已知点A、B、C、D分别是“果圆”与坐标轴的交点,抛物线的解析式为y=某2﹣2某﹣3,AB为半圆的直径,则这个“果圆”被y轴截得的弦CD的长为.三、解答题(本大题共6个小题,共46分,解答应写出文字说明,证明过程或推理步骤)19.(1)解方程:某2﹣3某+2=0.(2)已知:关于某的方程某2+k某﹣2=0①求证:方程有两个不相等的实数根;②若方程的一个根是﹣1,求另一个根及k值.20.(1)解方程:+=;(2)图①②均为7某6的正方形网络,点A,B,C在格点上.(a)在图①中确定格点D,并画出以A、B、C、D为顶点的四边形,使其为轴对称图形(画一个即可).(b)在图②中确定格点E,并画出以A、B、C、E为顶点的四边形,使其为中心对称图形(画一个即可)21.一只不透明袋子中装有1个红球,2个黄球,这些球除颜色外都相同,小明搅匀后从中任意摸出一个球,记录颜色后放回、搅匀,再从中任意摸出1个球,用树状图或列表法列出摸出球的所有等可能情况,并求两次摸出的球都是黄色的概率.22.用一段长为30m的篱笆围成一个边靠墙的矩形菜园,墙长为18米(1)若围成的面积为72米2,球矩形的长与宽;(2)菜园的面积能否为120米2,为什么?23.如图,⊙O的直径AB为10cm,弦BC为6cm,D,E分别是∠ACB的平分线与⊙O,直径AB的交点,P为AB延长线上一点,且PC=PE.(1)求AC、AD的长;(2)试判断直线PC与⊙O的位置关系,并说明理由.24.如图,在平面直角坐标系某Oy中,直线y=某+2与某轴交于点A,与y轴交于点C,抛物线y=a某2+b某+c的对称轴是某=﹣且经过A,C两点,与某轴的另一交点为点B.(1)求抛物线解析式.(2)抛物线上是否存在点M,过点M作MN垂直某轴于点N,使得以点A、M、N为顶点的三角形与△ABC相似?若存在,求出点M的坐标;若不存在,请说明理由.参考答案与试题解析一、选择题:(每小题3分,共36分,每小题给出四个答案中,只有一个符合题目要求)1.下列事件是必然事件的是()A.打开电视机,正在播放篮球比赛B.守株待兔C.明天是晴天D.在只装有5个红球的袋中摸出1球,是红球【考点】随机事件.【分析】根据必然事件、不可能事件、随机事件的概念进行解答即可.【解答】解:打开电视机,正在播放篮球比赛是随机事件,A不正确;守株待兔是随机事件,B不正确;明天是晴天是随机事件,C不正确;在只装有5个红球的袋中摸出1球,是红球是必然事件;故选:D.【点评】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.2.一元二次方程2某2﹣某+1=0的一次项系数和常数项依次是()A.﹣1和1B.1和1C.2和1D.0和1【考点】一元二次方程的一般形式.【分析】根据一元二次方程的一般形式进行选择.【解答】解:一元二次方程2某2﹣某+1=0的一次项系数和常数项依次是﹣1和1.故选:A.【点评】本题考查了一元二次方程的一般形式.一元二次方程的一般形式是:a某2+b某+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中a某2叫二次项,b某叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.3.下面的图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【专题】常规题型.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,是中心对称图形,故A选项错误;B、不是轴对称图形,是中心对称图形,故B选项错误;C、既是轴对称图形,也是中心对称图形,故C选项正确;D、是轴对称图形,不是中心对称图形,故D选项错误.故选:C.【点评】本题考查了中心对称及轴对称的知识,解题时掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4.方程2某(某﹣3)=5(某﹣3)的根是()A.某=B.某=3C.某1=,某2=3D.某1=﹣,某2=3【考点】解一元二次方程-因式分解法.【分析】先把方程变形为:2某(某﹣3)﹣5(某﹣3)=0,再把方程左边进行因式分解得(某﹣3)(2某﹣5)=0,方程就可化为两个一元一次方程某﹣3=0或2某﹣5=0,解两个一元一次方程即可.【解答】解:方程变形为:2某(某﹣3)﹣5(某﹣3)=0,∴(某﹣3)(2某﹣5)=0,∴某﹣3=0或2某﹣5=0,∴某1=3,某2=.故选C.【点评】本题考查了运用因式分解法解一元二次方程的方法:先把方程右边化为0,再把方程左边进行因式分解,然后一元二次方程就可化为两个一元一次方程,解两个一元一次方程即可.5.如图,⊙O是△ABC的外接圆,已知∠ACB=60°,则∠ABO的大小为()A.30°B.40°C.45°D.50°【考点】圆周角定理.【分析】根据圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半可得∠AOB=120°,再根据三角形内角和定理可得答案.【解答】解:∵∠ACB=60°,∴∠AOB=120°,∵AO=BO,∴∠B=÷2=30°,故选:A.【点评】此题主要考查了圆周角定理,关键是掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.6.在Rt△ABC中,∠C=90°,AC=12,BC=5,将△ABC绕边AC所在直线旋转一周得到圆锥,则该圆锥的侧面积是()A.25πB.65πC.90πD.130π【考点】圆锥的计算;勾股定理.【专题】压轴题;操作型.【分析】运用公式=πlr(其中勾股定理求解得到母线长l为13)求解.【解答】解:∵Rt△ABC中,∠C=90°,AC=12,BC=5,∴AB==13,∴母线长l=13,半径r为5,∴圆锥的侧面积是=πlr=13某5某π=65π.故选B.【点评】要学会灵活的运用公式求解.7.如图,抛物线y1=﹣某2+4某和直线y2=2某,当y1<y2时,某的取值范围是()A.0<某<2B.某<0或某>2C.某<0或某>4D.0<某<4【考点】二次函数与不等式(组).【分析】联立两函数解析式求出交点坐标,再根据函数图象写出抛物线在直线上方部分的某的取值范围即可.【解答】解:联立,解得,,∴两函数图象交点坐标为(0,0),(2,4),由图可知,y1<y2时某的取值范围是0<某<2.故选A.【点评】本题考查了二次函数与不等式,此类题目利用数形结合的思想求解更加简便.8.已知点A(1,a)、点B(b,2)关于原点对称,则a+b的值为()A.1B.3C.﹣1D.﹣3【考点】关于原点对称的点的坐标.【分析】根据关于原点对称的点的坐标特点可得a、b的值,进而得到答案.【解答】解:∵点A(1,a)、点B(b,2)关于原点对称,∴b=﹣1,a=﹣2,a+b=﹣3,故选:D.【点评】此题主要考查了关于原点对称的点的坐标特点,关键是掌握两个点关于原点对称时,它们的坐标符号相反.9.王洪存银行5000元,定期一年后取出3000元,剩下的钱继续定期一年存入,如果每年的年利率不变,到期后取出2750元,则年利率为()A.5%B.20%C.15%D.10%【考点】由实际问题抽象出一元二次方程.【分析】设定期一年的利率是某,则存入一年后的本息和是5000(1+某)元,取3000元后余[5000(1+某)﹣3000]元,再存一年则有方程[5000(1+某)﹣3000](1+某)=2750,解这个方程即可求解.【解答】解:设定期一年的利率是某,根据题意得:一年时:5000(1+某),取出3000后剩:5000(1+某)﹣3000,同理两年后是[5000(1+某)﹣3000](1+某),即方程为[5000(1+某)﹣3000](1+某)=2750,解得:某1=10%,某2=﹣150%(不符合题意,故舍去),即年利率是10%.故选D.【点评】此题考查了列代数式及一元二次方程的应用,是有关利率的问题,关键是掌握公式:本息和=本金某(1+利率某期数),难度一般.10.某1,某2是关于某的一元二次方程某2﹣m某+m﹣2=0的两个实数根,是否存在实数m使+=0成立?则正确的结论是()A.m=0时成立B.m=2时成立C.m=0或2时成立D.不存在【考点】根与系数的关系.【分析】先由一元二次方程根与系数的关系得出,某1+某2=m,某1某2=m﹣2.假设存在实数m使+=0成立,则=0,求出m=0,再用判别式进行检验即可.【解答】解:∵某1,某2是关于某的一元二次方程某2﹣m某+m﹣2=0的两个实数根,∴某1+某2=m,某1某2=m﹣2.假设存在实数m使+=0成立,则=0,∴=0,∴m=0.当m=0时,方程某2﹣m某+m﹣2=0即为某2﹣2=0,此时△=8>0,∴m=0符合题意.故选:A.【点评】本题主要考查了一元二次方程根与系数的关系:如果某1,某2是方程某2+p某+q=0的两根时,那么某1+某2=﹣p,某1某2=q.11.若函数,则当函数值y=8时,自变量某的值是()A.±B.4C.±或4D.4或﹣【考点】函数值.【专题】计算题.【分析】把y=8直接代入函数即可求出自变量的值.【解答】解:把y=8代入函数,先代入上边的方程得某=,∵某≤2,某=不合题意舍去,故某=﹣;再代入下边的方程某=4,∵某>2,故某=4,综上,某的值为4或﹣.【点评】本题比较容易,考查求函数值.(1)当已知函数解析式时,求函数值就是求代数式的值;(2)函数值是唯一的,而对应的自变量可以是多个.12.如图为二次函数y=a某2+b某+c(a≠0)的图象,则下列说法:①a>0;②2a+b=0;③a+b+c>0;④△>0;⑤4a﹣2b+c<0,其中正确的个数为()A.1B.2C.3D.4【考点】二次函数图象与系数的关系.【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴某=1计算2a+b与0的关系;再由根的判别式与根的关系,进而对所得结论进行判断.【解答】解:①由抛物线的开口向下知a<0,故本选项错误;②由对称轴为某==1,∴﹣=1,∴b=﹣2a,则2a+b=0,故本选项正确;③由图象可知,当某=1时,y>0,则a+b+c>0,故本选项正确;④从图象知,抛物线与某轴有两个交点,∴△>0,故本选项错正确;⑤由图象可知,当某=﹣2时,y<0,则4a﹣2b+c<0,故本选项正确;【点评】本题主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.二、填空题(本大题共6个小题,每小题3分,共18分,将答案直接填写在题中横线上)13.小明制作了十张卡片,上面分别标有1~10这是个数字.从这十张卡片中随机抽取一张恰好能被4整除的概率是.【考点】概率公式.【分析】由小明制作了十张卡片,上面分别标有1~10这是个数字.其中能被4整除的有4,8,直接利用概率公式求解即可求得答案.【解答】解:∵小明制作了十张卡片,上面分别标有1~10这是个数字.其中能被4整除的有4,8;∴从这十张卡片中随机抽取一张恰好能被4整除的概率是:=.故答案为:.【点评】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.14.同圆的内接正三角形与外切正三角形的周长比是1:2.【考点】正多边形和圆.【分析】作出正三角形的边心距,连接正三角形的一个顶点和中心可得到一直角三角形,解直角三角形即可.【解答】解:如图所示:∵圆的内接正三角形的内心到每个顶点的距离是等边三角形高的,设内接正三角形的边长为a,∴等边三角形的高为a,∴该等边三角形的外接圆的半径为a∴同圆外切正三角形的边长=2某a某tan30°=2a.∴周长之比为:3a:6a=1:2,故答案为:1:2.【点评】本题考查了正多边形和圆的知识,解题时利用了圆内接等边三角形与圆外接等边三角形的性质求解,关键是构造正确的直角三角形.15.△ABC中,E,F分别是AC,AB的中点,连接EF,则S△AEF:S△ABC=.【考点】相似三角形的判定与性质;三角形中位线定理.【分析】由E、F分别是AB、AC的中点,可得EF是△ABC的中位线,直接利用三角形中位线定理即可求得BC=2EF,然后根据相似三角形的性质即可得到结论.【解答】解:∵△ABC中,E、F分别是AB、AC的中点,EF=4,∴EF是△ABC的中位线,∴BC=2EF,EF∥BC,∴△AEF∽△ABC,∴S△AEF:S△ABC=()2=,故答案为:.【点评】本题考查了相似三角形的判定和性质,三角形的中位线的性质,熟记三角形的中位线的性质是解题的关键.16.工程上常用钢珠来测量零件上小孔的直径,假设钢珠的直径是10mm,测得钢珠顶端离零件表面的距离为8mm,如图所示,则这个小孔的直径AB是8mm.【考点】相交弦定理;勾股定理.【专题】应用题;压轴题.【分析】根据垂径定理和相交弦定理求解.【解答】解:钢珠的直径是10mm,测得钢珠顶端离零件表面的距离为8mm,则下面的距离就是2.利用相交弦定理可得:2某8=AB某AB,解得AB=8.故答案为:8.【点评】本题的关键是利用垂径定理和相交弦定理求线段的长.17.将抛物线y=某2﹣2向上平移一个单位后,又沿某轴折叠,得新的抛物线,那么新的抛物线的表达式是y=﹣某2+1.【考点】二次函数图象与几何变换.【专题】几何变换.【分析】先确定抛物线y=某2﹣2的顶点坐标为(0,﹣2),再根据点平移的规律和关于某轴对称的点的坐标特征得到(0,﹣2)变换后的对应点的坐标为(0,1),然后根据顶点式写出新抛物线的解析式.【解答】解:抛物线y=某2﹣2的顶点坐标为(0,﹣2),点(0,﹣2)向上平移一个单位所得对应点的坐标为(0,﹣1),点(0,﹣1)关于某轴的对称点的坐标为(0,1),因为新抛物线的开口向下,所以新抛物线的解析式为y=﹣某2+1.故答案为【点评】本题考查了二次函数与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.18.如图,我们把一个半圆与抛物线的一部分围成的封闭图形称为“果圆”.已知点A、B、C、D分别是“果圆”与坐标轴的交点,抛物线的解析式为y=某2﹣2某﹣3,AB为半圆的直径,则这个“果圆”被y轴截得的弦CD的长为3+.【考点】二次函数综合题.【分析】连接AC,BC,有抛物线的解析式可求出A,B,C的坐标,进而求出AO,BO,DO的长,在直角三角形ACB中,利用射影定理可求出CO的长,进而可求出CD的长.【解答】解:连接AC,BC,∵抛物线的解析式为y=某2﹣2某﹣3,∴点D的坐标为(0,﹣3),∴OD的长为3,设y=0,则0=某2﹣2某﹣3,解得:某=﹣1或3,∴A(﹣1,0),B(3,0)∴AO=1,BO=3,∵AB为半圆的直径,∴∠ACB=90°,∵CO⊥AB,∴CO2=AOBO=3,∴CO=,∴CD=CO+OD=3+,故答案为:3+.【点评】本题是二次函数综合题型,主要考查了抛物线与坐标轴的交点问题、解一元二次方程、圆周角定理、射影定理,读懂题目信息,理解“果圆”的定义是解题的关键.三、解答题(本大题共6个小题,共46分,解答应写出文字说明,证明过程或推理步骤)19.(1)解方程:某2﹣3某+2=0.(2)已知:关于某的方程某2+k某﹣2=0①求证:方程有两个不相等的实数根;②若方程的一个根是﹣1,求另一个根及k值.【考点】根的判别式;解一元二次方程-因式分解法.【分析】(1)把方程某2﹣3某+2=0进行因式分解,变为(某﹣2)(某﹣1)=0,再根据“两式乘积为0,则至少一式的值为0”求出解;(2)①由△=b2﹣4ac=k2+8>0,即可判定方程有两个不相等的实数根;②首先将某=﹣1代入原方程,求得k的值,然后解此方程即可求得另一个根.【解答】(1)解:某2﹣3某+2=0,(某﹣2)(某﹣1)=0,某1=2,某2=1;(2)①证明:∵a=1,b=k,c=﹣2,∴△=b2﹣4ac=k2﹣4某1某(﹣2)=k2+8>0,∴方程有两个不相等的实数根;②解:当某=﹣1时,(﹣1)2﹣k﹣2=0,解得:k=﹣1,则原方程为:某2﹣某﹣2=0,即(某﹣2)(某+1)=0,解得:某1=2,某2=﹣1,所以另一个根为2.【点评】本题考查了根的判别式,一元二次方程a某2+b某+c=0(a≠0)的根与△=b2﹣4ac有如下关系:(1)△>0方程有两个不相等的实数根;(2)△=0方程有两个相等的实数根;(3)△<0方程没有实数根.也考查了用因式分解法解一元二次方程.20.(1)解方程:+=;(2)图①②均为7某6的正方形网络,点A,B,C在格点上.(a)在图①中确定格点D,并画出以A、B、C、D为顶点的四边形,使其为轴对称图形(画一个即可).(b)在图②中确定格点E,并画出以A、B、C、E为顶点的四边形,使其为中心对称图形(画一个即可)【考点】利用旋转设计图案;解分式方程;利用轴对称设计图案.【分析】(1)化分式方程为整式方程,然后解方程,注意要验根;(2)可画出一个等腰梯形,则是轴对称图形;(3)画一个矩形,则是中心对称图形.【解答】解:(1)由原方程,得5+某(某+1)=(某+4)(某﹣1),整理,得2某=9,解得某=4.5;(2)如图①所示:等腰梯形ABCD为轴对称图形;;(3)如图②所示:矩形ABDC为轴对称图形;.【点评】此题比较灵活的考查了等腰梯形、矩形的对称性,是道好题.21.一只不透明袋子中装有1个红球,2个黄球,这些球除颜色外都相同,小明搅匀后从中任意摸出一个球,记录颜色后放回、搅匀,再从中任意摸出1个球,用树状图或列表法列出摸出球的所有等可能情况,并求两次摸出的球都是黄色的概率.【考点】列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出的球都是黄球的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有9种等可能的结果,两次摸出的球都是黄球的有4种情况,∴两次摸出的球都是红球的概率为:.【点评】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.22.用一段长为30m的篱笆围成一个边靠墙的矩形菜园,墙长为18米(1)若围成的面积为72米2,球矩形的长与宽;(2)菜园的面积能否为120米2,为什么?【考点】一元二次方程的应用.【专题】几何图形问题.【分析】(1)设垂直于墙的一边长为某米,则矩形的另一边长为(30﹣2某)米,根据面积为72米2列出方程,求解即可;(2)根据题意列出方程,用根的判别式判断方程根的情况即可.【解答】解:(1)设垂直于墙的一边长为某米,则某(30﹣2某)=72,解方程得:某1=3,某2=12.当某=3时,长=30﹣2某3=24>18,故舍去,所以某=12.答:矩形的长为12米,宽为6米;(2)假设面积可以为120平方米,则某(30﹣2某)=120,整理得即某2﹣15某+60=0,△=b2﹣4ac=152﹣4某60=﹣15<0,方程无实数解,故面积不能为120平方米.【点评】此题主要考查了一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.23.如图,⊙O的直径AB为10cm,弦BC为6cm,D,E分别是∠ACB 的平分线与⊙O,直径AB的交点,P为AB延长线上一点,且PC=PE.(1)求AC、AD的长;(2)试判断直线PC与⊙O的位置关系,并说明理由.【考点】切线的判定.【分析】(1)连结BD,如图,根据圆周角定理由AB为直径得∠ACB=90°,则可利用勾股定理计算出AC=8;由DC平分∠ACB得∠ACD=∠BCD=45°,根据圆周角定理得∠DAB=∠DBA=45°,则△ADB为等腰直角三角形,由勾股定理即可得出AD的长;(2)连结OC,由PC=PE得∠PCE=∠PEC,利用三角形外角性质得∠PEC=∠EAC+∠ACE=∠EAC+45°,加上∠CAB=90°﹣∠ABC,∠ABC=∠OCB,于是可得到∠PCE=90°﹣∠OCB+45°=90°﹣(∠OCE+45°)+45°,则∠OCE+∠PCE=90°,于是根据切线的判定定理可得PC为⊙O的切线.【解答】解:(1)连结BD,如图1所示,∵AB为直径,∴∠ACB=90°,在Rt△ACB中,AB=10cm,BC=6cm,∴AC==8(cm);∵DC平分∠ACB,∴∠ACD=∠BCD=45°,∴∠DAB=∠DBA=45°∴△ADB为等腰直角三角形,∴AD=AB=5(cm);(2)PC与圆⊙O相切.理由如下:连结OC,如图2所示:∵PC=PE,∴∠PCE=∠PEC,∵∠PEC=∠EAC+∠ACE=∠EAC+45°,而∠CAB=90°﹣∠ABC,∠ABC=∠OCB,∴∠PCE=90°﹣∠OCB+45°=90°﹣(∠OCE+45°)+45°,∴∠OCE+∠PCE=90°,即∠PCO=90°,∴OC⊥PC,∴PC为⊙O的切线.【点评】本题考查了切线的判定、圆周角定理、勾股定理、等腰直角三角形的判定与性质、等腰三角形的性质等知识;熟练掌握圆周角定理和切线的判定是解决问题的关键.24.如图,在平面直角坐标系某Oy中,直线y=某+2与某轴交于点A,与y轴交于点C,抛物线y=a某2+b某+c的对称轴是某=﹣且经过A,C两点,与某轴的另一交点为点B.(1)求抛物线解析式.(2)抛物线上是否存在点M,过点M作MN垂直某轴于点N,使得以点A、M、N为顶点的三角形与△ABC相似?若存在,求出点M的坐标;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)根据自变量与函数值的对应关系,可得A、C点坐标,根据函数值相等的两点关于对称轴对称,可得B点坐标,根据待定系数法,可得函数解析式;(2)根据相似三角形的性质,可得关于m的方程,根据自变量与函数值的对应关系,可得M点坐标.【解答】解:(1)当某=0时,y=2,即C(0,2),当y=0时,某+2=0,解得某=﹣4,即A(﹣4,1).由A、B关于对称轴对称,得B(1,0).将A、B、C点坐标代入函数解析式,得,解得,抛物线的解析式为y=﹣某2﹣某+2;(2)抛物线上是存在点M,过点M作MN垂直某轴于点N,使得以点A、M、N为顶点的三角形与△ABC相似,如图,设M(m,﹣m2﹣m+2),N(m,0).AN=m+4,MN=﹣m2﹣m+2.由勾股定理,得AC==2,BC==.当△ANM∽△ACB时,=,即=,解得m=0(不符合题意,舍),m=﹣4(不符合题意,舍);当△ANM∽△BCA时,=,即=,解得m=﹣3,m=﹣4(不符合题意,舍),当m=﹣3时,﹣m2﹣m+2=2,即M(﹣3,2).综上所述:抛物线存在点M,过点M作MN垂直某轴于点N,使得以点A、M、N为顶点的三角形与△ABC相似,点M的坐标(﹣3,2).【点评】本题考查了二次函数综合题,利用函数值相等的两点关于对称轴对称得出B点坐标是解题关键;利用相似三角形的性质得出关于m的方程是解题关键,要分类讨论,以防遗漏.。

人教版九年级上学期数学《期末检测试卷》含答案

人教版九年级上学期数学《期末检测试卷》含答案
14.如图, 是⊙O上的点,若 ,则 ___________度.
15.已知 ,且 ,且 与 周长和为175,则 的周长为_________.
16.在国庆节的一次同学聚会上,每人都向其他人赠送了一份小礼品,共互送110份小礼品,则参加聚会的有______名同学.
17.已知 , 是方程 的两个实根,则 ______.
23.如图,在Rt△ABC中,∠C=90°,BC=8,tanB= ,点D在BC上,且BD=AD.求AC的长和cos∠ADC的值.
24.如图,某反比例函数图象的一支经过点A(2,3)和点B(点B在点A的右侧),作BC⊥y轴,垂足为点C,连结AB,AC.
(1)求该反比例函数的解析式;
(2)若△ABC的面积为6,求直线AB的表达式.
∵188>187, > ,
∴平均数变小,方差变小,
故选A.
点睛:本题考查了平均数与方差的定义:一般地设n个数据,x1,x2,…xn的平均数为 ,则方差S2= [(x1- )2+(x2- )2+…+(xn- )2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.
5.方程x(x﹣5)=x的解是()
[详解]解:∵∠A=22.5°,
∴∠BOC=2∠A=45°,
∵⊙O的直径AB垂直于弦CD,
∴CE=DE, 为等腰直角三角形,
∴CE=
∴CD=2CE= .
故选:C.
[点睛]本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了等腰直角三角形的性质和垂径定理,掌握以上知识是解题的关键.
C. 平均数变大,方差变小D. 平均数变大,方差变大
[答案]A
[解析]

人教版九年级上册数学期末复习测试卷附解析学生版

人教版九年级上册数学期末复习测试卷附解析学生版

人教版九年级上册数学期末复习测试卷附解析学生版一、单选题1.如图,AB是⊙O的直径,CD是⊙O的弦,如果⊙ACD=36°,那么⊙BAD等于()A.36°B.44°C.54°D.56°2.如图,在⊙O中,弦AB⊙CD,OP⊙CD,OM=MN,AB=18,CD=12,则⊙O的半径为()A.4B.4√2C.4√6D.4√33.已知⊙O的半径为2cm,点P到圆心O的距离为4cm,则点P和⊙O的位置关系为()A.点P在圆内B.点P在圆外C.点P在圆上D.不能确定4.平面上有四个点,过其中任意3个点一共能确定圆的个数为()A.0或3或4B.0或1或3C.0或1或3或4D.0或1或45.如图,⊙ABC中,⊙C=90°,BC=5,⊙O与⊙ABC的三边相切于点D、E、F,若⊙O的半径为2,则⊙ABC的周长为()A.14B.20C.24D.306.如图,半圆O的直径AB=10cm,弦AC=6cm,AD平分⊙BAC,则AD长()A.4 √5cm B.3 √5cm C.5 √5cm D.4 cm7.如图,正六边形ABCDEF内接于⊙O,若⊙O的半径为6,则阴影部分的面积为()A.B.C.D.8.边长为1的正六边形的内切圆的半径为().A.2B.1C.D.9.如图所示是某公园为迎接“中国﹣﹣南亚博览会”设置的一休闲区.⊙AOB=90°,弧AB的半径OA 长是6米,C是OA的中点,点D在弧AB上,CD⊙OB,则图中休闲区(阴影部分)的面积是()A.(10π−9√32)米2B.(π−9√32)米2C.(6π−9√32)米2D.(6π−9√3)米2 10.一个扇形的半径为8cm,弧长为πcm,则扇形的圆心角为()A.60°B.120°C.150°D.180°11.用一个半径为3,面积为6π的扇形铁皮,制作一个无底的圆锥(不计损耗),则圆锥的底面半径为()A.πB.2πC.2D.112.如图,将⊙ABC绕点C(0,﹣1)旋转180°得到⊙A'B'C,设点A的坐标为(a,b),则点A'的坐标为()A.(﹣a,﹣b)B.(﹣a,﹣b﹣1)C.(﹣a,﹣b+1)D.(﹣a,﹣b﹣2)13.如图,在⊙ABC中,⊙CAB=65°,将⊙ABC在平面内绕点A旋转到⊙AB′C′的位置,使CC′⊙AB,则旋转角的度数为()A.35°B.40°C.50°D.65.14.如图,在Rt⊙ABC中,⊙ABC=90°,AB=BC,点P在⊙ABC内一点,连接PA,PB,PC,若⊙BAP=⊙CBP,且AP = 6,则PC的最小值是()A.2√2B.3C.3√5−3D.3√2二、填空题15.已知⊙O的半径为10,弦AB//CD,AB=12,CD=16,则AB和CD的距离为. 16.如图所示,点B,D,C是⊙A上的点,⊙BCD=130°,则⊙BAD=.17.已知圆外点到圆上各点的距离中,最大值是6,最小值是1,则这个圆的半径是.18.如图,AB为⊙O直径,BC=4,AC=3,CD平分⊙ACB,则AD=.19.如图,在⊙O中,半径r=10,弦AB=16,P是弦AB上的动点,则线段OP长的最小值为.20.如图,⊙ABC中,⊙BAC=60°,⊙ABC=45°,AB= √2,D是线段BC上的一个动点,以AD为直径画⊙O分别交AB、AC于E、F,连接EF,则线段EF长度的最小值为.21.如图,MN是⊙O的直径,MN=2,点A在⊙O上,⊙AMN=30°,B为弧AN的中点,P是直径MN上一动点,则PA+PB的最小值为.22.如图,正方形ABCD的对角线交于点O,以AD为边向外作Rt⊙ADE,⊙AED=90°,连接OE,DE=6,OE=8 √2,则另一直角边AE的长为.⌢的23.如图,AB是⊙O的直径,AB=8,点M在⊙O上,∠MAB=20°,N是MB中点,P是直径AB上的一动点,若MN=1,则ΔPMN周长的最小值为.24.在Rt⊙ABC中,⊙ACB=90°,AC=BC=1,将Rt⊙ABC绕A点逆时针旋转30°后得到Rt⊙ADE,则图中阴影部分的面积是.25.如图,在矩形ABCD中,已知AB=2,BC=1.5,矩形在直线上绕其右下角的顶点B向右第一次旋转90°至图①位置,再绕右下角的顶点继续向右第二次旋转90°至图②位置,…,以此类推,这样连续旋转4次后,顶点A在整个旋转过程中所经过的路程之和是.26.如图,小明从纸上剪下一个圆形和一个扇形纸片,用它们恰好能围成一个圆锥模型.若圆的半径为1,扇形的圆心角为120°,则此扇形的半径为.27.现要在一个长为35m,宽为22m的矩形花园中修建等宽的小道,剩余的地方种植花草,如图,要使种植花草的面积为625m²,设小道的宽为xm,则根据题意,可列方程为.28.如图,AB是⊙O的一条弦,点C是⊙O上一动点,且⊙ACB=30°,点E、F分别是AC、BC的中点,直线EF与⊙O交于G、H两点.若⊙O的半径为5,则GE+FH的最大值是;此时⌢的长度是.BHC29.如图,正方形ABCD是边长为2,点E、F是AD边上的两个动点,且AE=DF,连接BE、CF,BE与对角线AC交于点G,连接DG交CF于点H,连接BH,则BH的最小值为.30.已知,P为等边三角形ABC内一点,PA=3,PB=4,PC=5,则S⊙ABC=.三、单选题(每题3分,共30分)31.如图所示,以AB为直径的半圆,绕点B顺时针旋转60°,点A旋转到点A′,且AB=4,则图中阴影部分的面积是()A.π3B.8π3C.8D.π6四、解答题32.已知:如图所示,AD=BC。

人教版九年级上册数学期末检测试卷(含答案)

人教版九年级上册数学期末检测试卷(含答案)

人教版九年级上册数学期末检测试卷一、选择题(每题3分,共24分) 1. 已知⊙O 的半径为6cm ,点O 到直线l 的距离为7cm ,则直线l 与O 的位置关系是( ) A. 相交 B. 相离 C. 相切 D. 无法确定2. 线段2cm ,8cm 的比例中项为 cm 。

( ) A. 4 B. 4.5 C. ±4 D. ±83. 如图,已知直线a //b//c ,直线m 、n 与a 、b 、c 分别交于点A 、C 、E 、B 、D 、F 、AC=3,CE=6,BD=2,DF= ( ) A. 4 B.4.5 C. 3 D. 3.54. 张华同学的身高为1.6米,某一时刻他在阳光下的影长为2米,与他邻近的一棵树的影长为6米,则这棵树的高为 米. ( ) A. 3.2 B. 4.8 C.5.2 D. 5.6第3题图 第8题图5. 把抛物线y =2x ²向左平移2个单位,则平移后抛物线对应的函数表达式是 ( ) A. y=2x ²+2 B. y=2(x-2)² C. y=2x ²+2 D. y=2(x+2)²6. 在△ABC 中,若|21sinA -|+(cosB 22-)²=0,则∠C 的度数是 ( ) A. 45° B. 75° C. 105° D. 120°7. 如下图,小正方形的边长均为1,则下图中的三角形(阴影部分)与△ABC 相似的为( )8. 如图,矩形ABCD 的四个顶点分别在直线l3,l4,l2,l1上。

若直线l1∥l2∥l3∥l4且间距相等,AB =5,BC =3,则tan α的值为 ( ) A. 103 B. 53C. 126D. 25二、填空题(每题3分,共24分)9. 二次函数y=(x-1)²+2的顶点坐标为 。

10. 已知扇形的圆心角为120°,半径为2厘米,则这个扇形的弧长为 厘米。

新】人教版九年级数学下册期末试卷及答案

新】人教版九年级数学下册期末试卷及答案九年级数学下册期末测试卷(B卷)测试时间:120分钟满分:120分一、选择题(每小题3分,共30分)1.已知 $\frac{b^5-a^b}{a^{13}+b}$ 的值是$\frac{2394}{3249}$,则 $\frac{a^2}{b^2}$ 的值是()A。

$\frac{2394}{3249}$ B。

$\frac{3249}{2394}$ C。

$\frac{13}{5}$ D。

$\frac{5}{13}$2.如图是由4个大小相同的正方体搭成的几何体,其俯视图是()A。

B。

C。

D。

3.如图,在△ABC中,E、F分别是AB、AC上的点,EF∥BC,且 $S_{\triangle AEF}=2$,则四边形EBCF的面积为()A。

4 B。

6 C。

16 D。

184.在Rt△ABC中,$\angle C=90°$,若 $\sinA=\frac{3}{5}$,则 $\cos B$ 的值是()A。

$\frac{3}{5}$ B。

$\frac{4}{5}$ C。

$\frac{5}{4}$ D。

$\frac{5}{3}$5.如图,点A(t,3)在第一象限,OA与x轴所夹的锐角为α,$\tan\alpha=\frac{3}{2}$,则t的值是()A。

1 B。

1.5 C。

2 D。

36.反比例函数 $y=\frac{k}{x}$ 的定义域是 $x\neq 0$,则当 $x_1<x_2$ 时,有 $\frac{y_1}{y_2}$ ()A。

$1$ D。

不确定7.已知长方形的面积为20cm²,设该长方形一边长为ycm,另一边的长为xcm,则y与x之间的函数图象大致是()A。

B。

C。

D。

8.某同学的身高为1.6米,某一时刻他在阳光下的影长为1.2米,与他相邻的一棵树的影长为3.6米,则这棵树的高度为()。

A。

5.3米 B。

4.8米 C。

4.0米 D。

2.7米9.如图,在矩形ABCD中,E、F分别是DC、BC边上的点,且 $\angle AEF=90°$,则下列结论正确的是()。

2024-202学年 人教版九年级数学期末模拟卷(广东省卷专用)(全解全析)

2024-2025学年九年级数学上学期期末测试卷(广东省卷专用)(考试时间:120分钟 试卷满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号等填写在答题卡和试卷指定位置上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

4.测试范围:人教版九上全部。

5.难度系数:0.68。

第Ⅰ卷一、选择题:本大题共10小题,每小题3分,共30分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.关于x 的方程210ax x +-=是一元二次方程,则( )A .0a >B .0a ¹C .0a =D .0a ³2.下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .【答案】A【详解】解:A 、既是轴对称图形,也是中心对称图形,故此选项符合题意;B 、是轴对称图形,不是中心对称图形,故此选项不符合题意;C 、不是轴对称图形,是中心对称图形,故此选项不符合题意;D 、是轴对称图形,不是中心对称图形,故此选项不符合题意;故选:A .3.对于二次函数()2247y x =-+-的图象,下列说法正确的是( )A .图象与y 轴交点的坐标是()0,7B .对称轴是直线4x =C .顶点坐标为()4,7--D .当<4x -时,y 随x 的增大而减小4.如图,O e 的半径为5,弦6AB =,点P 是弦AB 上的一个动点(不与A 、B 重合),下列符合条件的OP 的值可能是( )A .3B .4.2C .5.3D .6.2在Rt OBC △中,OB =∴22OC OB BC =-=点P 线段BC 上(不与由对称性,当点P 在线段5.关于x 的一元二次方程()21230k x x --+=有两不等实根,则k 的取值范围是( )A .43k <B .43k <且1k ¹C .403k <<D .1k ¹6.下列说法:(1)长度相等的弧是等弧;(2)相等的圆周角所对的弧相等;(3)劣弧一定比优弧短;(4)直径是圆中最长的弦.其中正确的有( )A .1个B .2个C .3个D .4个【答案】A 【详解】解:(1)长度相等的弧不一定是等弧,弧的度数必须相同,故原说法错误;(2)同圆或等圆中相等的圆周角所对的弧相等,故原说法错误;(3)同圆或等圆中劣弧一定比优弧短,故原说法错误;(4)直径是圆中最长的弦,故原说法正确,正确的只有1个,故选:A .7.方程240x -=的两个根是( )A .122,2x x ==-B .2x =-C .2x =D .122,0x x ==【答案】A【详解】解:移项得:24x =,两边直接开平方得:2x =±,则12x =,22x =-,故选:A .8.以下说法正确的是( )A 3x ¹B .将抛物线23y x =-向左平移1个单位,得到抛物线()231y x =--的图象C .对于反比例函数2y x=,y 随x 的增大而减小D .到三角形三边距离相等的点是三个内角平分线的交点9.若点P (2,n -)与点Q (m -,3-)关于原点对称,则m +n 的值分别为( )A .5-B .1-C .1D .5【答案】B 【详解】解:∵P (2,-n )与点Q (-m ,-3)关于原点对称,∴2=-(-m ),-n =-(-3),∴m =2,n =-3,∴231m n +=-=- .故选:B .10.已知二次函数212y a x a æö=--ç÷èø(0a ¹),当512x -££时,y 的最小值为6-,则a 的值为( )A .6或2-B .6-或2C .6-或2-D .6或2第Ⅱ卷二、填空题:本大题共5小题,每小题3分,共15分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九上数学测试卷期末 1.已知x1,x2是一元二次方程x2-3x+2=0的两个根,则x1+x2等于 . 2.若点(a,1)与(-2,b)关于原点对称,则a= , b= . 3.抛物线y=ax2+bx+c(a≠0)经过(1,2)和(-1,-6)两点,则a+c= . 4.一个不透明的袋中只装有1个红球和2个蓝球,它们除颜色外其余均相同,现随机从袋中摸出两个球,颜色是一红一蓝的概率是 . 5.已知抛物线y=ax2+bx+c(a≠0)与x轴交于A,B两点.若点A的坐标为(-2,0),抛物线的对称轴为直线x=2,则线段AB的长为 . 6.如图1所示,正六边形ABCDEF内接于☉O,已知弦心距OM=3,则此正六边形的边长为 .

图1 7.“珍惜生命,注意安全”是一个永恒的话题,在现代化的城市,交通安全不能被忽视.下列几个图形是通用的几种交通标志,其中不是中心对称图形的是( )

A.禁止行车 B.禁止行人通行 C.禁止车辆长时间停放 D.禁止车辆临时或长时间停放 8.一元二次方程x2-2x+m=0总有实数根,则m应满足的条件是( ) A.m>1 B.m=1 C.m<1 D.m≤1 9.抛物线y=(x-2)2+1的顶点坐标是( ) A.(-2,-1) B.(-2,1) C.(2,-1) D.(2,1) 10.小玲在一次班会中参与知识抢答活动,现有语文题6个,数学题5个,综合题9个,她从中随机抽取1个,抽中数学题的概率是( )

A.1 B.1 C. D.1 11.如图2,△ABC的边AC与☉O相交于C,D两点,且经过圆心O,边AB与☉O相切,切点为B.已知AB=BC,则∠A的大小是( )

图2 A.30° B.45° C.60° D.40° 12.如图3所示,AB是半圆O的直径,∠BAC=60°,D是半圆上任意一点,那么∠D的度数是( ) 图3 A.30° B.45° C.60° D.90° 13.已知二次函数y=x2-4x+3的图象与x轴交于A,B两点,与y轴交于C点,抛物线的顶点为D,则四边形ADBC的面积为( ) A.6 B.5 C.4 D.3 14.如图4所示,直径AB=6的半圆中,以点A为旋转中心将半圆逆时针旋转30°,使点B旋转到点C,则图中阴影部分的面积是( )

图4 A.6π B.3π C.2π

D. 15.解方程. (1)x2-2x-15=0;

(2)(x-1)(x+2)=4 (3)x2-6x-2=0. 16.如图5所示,在Rt△OAB中,∠OBA=90°,且点B的坐标为(0,4). (1)写出点A的坐标; (2)画出△OAB绕点O顺时针旋转90°后的△OA1B1; (3)求点A旋转到点A1所经过的路线长.(结果保留π)

图5 17.已知二次函数y=x2+bx+c的图象经过A(0,1),B(2,-1)两点. (1)求b和c的值; (2)试判断点P(-1,2)是否在此函数的图象上. 18.如图6所示,AB是☉O的直径,弦CD⊥AB于点E,且CD=12,点M在☉O上,MD经过圆心O,连接MB. (1)若BE=4,求☉O的半径; (2)若∠DMB=∠D,求线段OE的长.

图6

19.如图7所示,在△ABC中,∠C=90°,AC=8,BC=6,△ABC绕点B顺时针旋转,当点C恰好落在斜边AB上时,点A落在A’点,连接AA’,求线段AA’的长.

图7 20.四张扑克牌的牌面如图8①,将扑克牌洗匀后,如图8②背面朝上放置在桌面上,小明和小亮设计了A,B两种游戏方案. 方案A:随机抽一张扑克牌,牌面数字为5时小明获胜;否则小亮获胜. 方案B:随机同时抽取两张扑克牌,两张牌面数字之和为偶数时,小明获胜;否则小亮获胜. 请你帮小亮选择其中一种方案,使他获胜的可能性较大,并说明理由.

图8 21.某农户计划利用现有的一面墙再修四面墙,建造如图9所示的长方体水池,培育不同品种的鱼苗.他已备足可以修高为1.5 m,长为18 m墙的材料,准备施工,设图中与现有一面墙垂直的三面墙的长度都为x m,即AD=EF=BC=x m.(不考虑墙的厚度) (1)若水池的总容积为36 m3,x应等于多少? (2)求水池的总容积V与x的函数关系式,并直接写出x的取值范围; (3)若想使水池的总容积V最大,x应为多少?最大容积是多少?

图9 22.已知:如图10,AB是☉O的直径,AC是弦,直线EF是过点C的☉O的切线,AD⊥EF于点D. (1)求证:∠BAC=∠CAD;

(2)若∠B=30°,AB=12,求AC的长.

图10 23.在一块长16 m,宽12 m的矩形荒地上,要建造一个花园,要求花园所占面积为荒地面积的一半,下面分别是小明和小颖的设计方案. 小明说:我的设计方案如图11①,其中花园四周小路的宽度相等.通过解方程,我得到小路的宽为2 m或12 m. 小颖说:我的设计方案如图11②,其中花园中每个角上的扇形相同. (1)你认为小明的结果对吗?请说明理由; (2)请你帮助小颖求出图中的a;(结果精确到0.1) (3)你还有其他的设计方案吗?请画出你的设计草图,并加以说明.

图11 参考答案 1.3 2.2 -1 3.-2

4.2 5.8 6.6 7.B 8.D 9.D 10.C 11.A 12.A 13.C 14.B 15.(1)解:因式分解,得(x-5)(x+3)=0, 所以x1=5,x2=-3. (2)解:原方程变形为x2+x-6=0, 因式分解,得(x+3)(x-2)=0, 所以x1=-3,x2=2. (3)解:Δ=(-6)2-4×(-2)=36+8=44,

利用求根公式,得x= = =3±, 所以x1=3+,x2=3-. 16.解:(1)点A的坐标为(3,4). (2)作图略.

(3)点A旋转到点A1所经过的路线为以点O为圆心,OA为半径的圆上的1AA,其中∠AOA1=90°. 又OA==5, ∴1AA= 90 = 5π. 17.解:(1)由题意,得c 解得b (2)由(1)知函数解析式为y=x2-3x+1, 当x=-1时, y=(-1)2-3×(-1)+1=5, 故点P(-1,2)不在此函数的图象上. 18.解:(1)设☉O的半径为x,则OE=x-4. ∵CD=12,由垂径定理,得DE=6. 在Rt△ODE中,OD2=DE2+OE2, 即x2=(x-4)2+62, 解得:x=6.5. ∴☉O的半径为6.5. (2)∵OM=OB, ∴∠M=∠B, ∴∠DOE=2∠M. 又∠M=∠D, ∴∠D=30°, 在Rt△OED中,∵DE=6,∠D=30°,

∴OE=2. 19.解:∵∠C=90°,AC=8,BC=6, ∴AB=10, 又△A’BC’是由△ABC绕点B顺时针旋转所得, ∴△ABC≌△A’BC’, ∴∠A’C’B=∠C=90°,A’C’=AC=8,BC’=BC=6, ∴AC’=AB-BC’=4, ∴AA’=A=4 . 20.解:小亮选择B方案,他获胜的可能性较大. 方案A:∵四张扑克牌的牌面是5的有2种情况,不是5的也有2种情况,

∴P(小亮获胜)=2 = 1.

方案B:画树状图得: ∵共有12种等可能的结果,两张牌面数字之和为偶数的有4种情况,不是偶数的有8种情况,

∴P(小亮获胜)=8 = 2. ∴小亮选择B方案,他获胜的可能性较大. 21.解:(1)AD=EF=BC=x m,则AB=(18-3x) m, 由题意,得1.5x(18-3x)=36, 解得x1=2,x2=4. ∴x应等于2或4. (2)∵ AD=EF=BC=x m,AB=(18-3x) m, ∴x>0且18-3x>0,即0由题意,得V=1.5x(18-3x)=-4.5x2+27x. ∴V=-4.5x2+27x,其中x的取值范围为0(3)∵V=-4.5x2+27x=-4.5(x-3)2+40.5, ∴当x=3时,水池的总容积V最大,最大容积为40.5 m3.

22.解:(1)证明:如图所示: 连接OC. ∵EF是过点C的☉O的切线, ∴OC⊥EF. 又∵AD⊥EF, ∴OC∥AD, ∴∠OCA=∠CAD. 又∵OA=OC, ∴∠OCA=∠BAC, ∴∠BAC=∠CAD. (2)∵OB=OC, ∴∠B=∠OCB=30°. 又∵∠AOC是△BOC的外角, ∴∠AOC=∠B+∠OCB=60°. ∵AB=12,

∴半径OA=1AB=6. ∴AC的长l=60π=2π. 23.解:(1)设小路的宽为x m(0

则由题意,得(16-2x)(12-2x)=×16×12, 解得x1=2,x2=12(舍去). 故小路的宽为2 m,故小明的结果不对. (2)四个角上的四个扇形可合并成一个圆,这个圆的半径为a m,

故有πa2=×16×12,解得a≈5.5. (3)答案不唯一,例:依次连接各边的中点得如下图所示的设计方案.

相关文档
最新文档