雷达接收机
飞机气象雷达工作原理

飞机气象雷达的工作原理是利用雷达发射的电磁波照射到气象目标,然后接收回波,通过分析回波的强度、频率和波形等信息,确定气象目标的位置、形状、速度和性质等参数,从而为飞行员提供飞行中的气象状况信息,帮助其做出更好的飞行决策。
具体来说,飞机气象雷达通过天线发射出特定频率的电磁波,这些电磁波在遇到气象目标时会被反射回来,形成回波。
接收天线接收到回波后,将其传输到雷达接收机中。
在接收机中,通过对回波信号进行处理和分析,提取出关于气象目标的各种信息,如位置、速度、形状和性质等。
这些信息会以图像、数据等形式显示在雷达屏幕上,供飞行员参考。
根据处理回波信号的方式不同,雷达可以分为脉冲雷达和连续波雷达两种类型。
脉冲雷达通过发射一定脉冲宽度的电磁波来照射气象目标,并接收回波信号。
而连续波雷达则连续不断地发射和接收电磁波信号,通过分析回波信号的频率变化来获取气象目标的信息。
在飞机气象雷达中,雷达天线是关键部件之一。
它负责将电磁波发射出去并接收回波信号。
天线的形状和尺寸会直接影响雷达的扫描范围和分辨率等性能参数。
此外,雷达接收机也是非常重要的组成部分,它负责对回波信号进行处理和分析,提取出气象目标的信息。
总之,飞机气象雷达的工作原理是通过发射和接收电磁波信号来探测气象目标,并通过分析回波信号提取相关信息,为飞行员提供飞行决策依据。
sar雷达工作原理和过程

sar雷达工作原理和过程SAR雷达是一种先进的雷达成像技术,具有高分辨率和高灵敏度的特点,广泛应用于军事、遥感、环境监测等领域。
下面将详细介绍SAR雷达的工作原理和过程。
1.发射信号SAR雷达首先需要通过发射机发射射频信号。
这个信号通常是一个脉冲信号,具有特定的频率和波形。
这些信号在空间中传播,遇到目标物后会被反射回来。
2.接收信号当反射回来的信号到达雷达接收机时,会被转换为电信号并进行放大和滤波处理。
这个过程中,接收机需要确保对信号的准确接收和处理。
3.并行接收和存储为了实现高分辨率和高灵敏度,SAR雷达采用了并行接收和存储技术。
这意味着雷达在同一时间接收来自不同方向上的多个目标物的反射信号,并将它们分别存储在各自的存储单元中。
4.数据处理和图像生成当所有的反射信号都被接收和存储后,SAR雷达开始对这些数据进行处理。
处理过程中,通常会采用匹配滤波器、频域滤波器等算法来提取有用的信息,如目标物的距离、速度、方位角等。
随后,这些数据将被转换为图像形式,以方便后续的目标检测和识别。
这一步通常会采用基于像素或基于区域的图像处理算法来实现。
5.目标检测和识别最后,SAR雷达需要对生成的图像进行目标检测和识别。
这通常会采用基于图像处理的目标检测算法来实现,如边缘检测、形态学处理等。
通过这些处理,可以提取出目标物的轮廓和特征,从而实现对其的分类和识别。
总的来说,SAR雷达的工作原理和过程是一个复杂的过程,涉及到多个环节和技术。
但它的优点在于可以实现对目标的主动探测和高分辨率成像,为军事、遥感、环境监测等领域提供了强有力的技术支持。
一种雷达窄带数字接收机设计及关键技术研究

摘
要
雷达接收机领域 的数字化技术在 日趋发展 , 如何借助数字化的软硬件技术设 计 出易实现 、 活, 灵 并功能稳定 、 性能 良好 的数字
接收机成为工程设计的重点 。文章研究 了一种被动雷达系统窄带数字接收机 , 阐述了该 接收机 的总体设计思想 、 系统组成 和工作流程 , 对设 计 中的关键技术和实现方法进行 了深入的研究 , 具有结构简便 、 系统先进的特点 , 有较好 的工程实用价值 。 关键词 数字接收机 ;多速率滤波;归一化处理 ; P F GA
窄带数字接收机采 用软件无 线 电思想_ , 4 将接 收到 的 ] 中频信号通过 A C采样后转化为数字信号 , D 然后进 行数字
下变频处理 , 包括混频 、 滤波 、 参数提取 , 得到所需的参数 。 系统框图如图 1 所示 , 主要包括以下几个 部分 :
1 据采样部分 )数
计数实现方位角求取等多项技术 , 以增强信 号的信 噪比 , 可
iso enar w- a d dgt e ev rfrt ep sie rd rif r to rc s ig s se e n ro b n iiar cie o h a sv a e n o main p o esn y tm. d s rbe h x ait d ao v r l d s e ciist ee p t eie fo eal e i a gn,t e h c mp st n a dwo k fo o hedg tl e ev r e p ysu ist ek ytc n lge n mp e n ain o o ii n r -lw ft iia c ie ,d e l t de h e e h oo isa di lme tto .Th y tm a i l tucu e o r es se h ssmp esr t r ,
LFMCW雷达中频接收机的设计与实现

中 图分 类 号 :T 5 . N9 75
文 献 标 识 码 :A
文 章 编 号 :1 7 — 2 6 2 1 )7 01 7 0 6 4 6 3 (0 10 — 4 — 3
De i n a m plm e f LFM CW a a F e ev r sg nd i e nto r d rI r c ie
te fe e y o a g tsg a ,whc o l r vde oi i ldaa frr d ri gng h rqu nc ftr e in l ih c ud p o i rgna t o a a ma i . Ke wo ds:LFMCW a r F sg lr c ie y r rda ;I ina e ev r;F PGA ;PCI
线 性 调 频 连 续 波 fF W) 达 具 有 体 积 小 、 量 轻 、 L MC 雷 重 结 构 简 单 、 辨 力 高 和无 距 离 盲 区 等 优 点 , 相 关 技 术 进 步 和 分 受
需 求的促 进 .近十 多年 来线 性 调频 连续 波雷 达逐 渐应 用 于 近距
离 高分辨 率多 目标 探测 与成 像 。本 文通 过对 一种 线性 调 频连 续
rc i i g rc s i g a d so a e o F s n l fL MC a a . h o g h e t h e e v rc n a c rt l a u e o t e e vn ,p o e s n tr g fI i a F n g o W r d r T r u h t e t s ,t e r c ie a c u aey me s r u
本 文 中 中 频 信 号 接 收 机 所 针 对 的 一 种 线 性 调 频 连 续 波
雷达组成及原理

雷达的组成及其原理课程名称:现代阵列并行信号处理技术姓名:杜凯洋教师:王文钦教授示器、(1(2(3(4(5雷达等。
(一)概述1、天线:辐射能量和接收回波(单基地脉冲雷达),(天线形状,波束形状,扫描方式)。
2、收发开关:收发隔离。
3、发射机:直接振荡式(如磁控管振荡器),功率放大式(如主振放大式),(稳定,产生复杂波形,可相参处理)。
4、接收机:超外差,高频放大,混频,中频放大,检波,视频放大等。
(接收机部分也进行一些信号处理,如匹配滤波等),接收机中的检波器通常是包络检波,对于多普勒处理则采用相位检波器。
5、信号处理:消除不需要的信号及干扰而通过或加强由目标产生的回波信号,通常在检测判决之前完成(MTI,多普勒滤波器组,脉冲压缩),许多现代雷达也在检测判决之后完成。
6、显示器(终端):原始视频,或经过处理的信息。
7、同步设备(视频综合器):是雷达机的频率和时间标准(只有功率放大式(主振放大式)才有)。
(二)雷达发射机1、单级振荡式:大功率电磁振荡产生与调制同时完成(一个器件)(1(2)(32(1(2(3(4(三)雷达接收机一、超外差雷达接收机的组成优点:灵敏度高、增益高、选择性好、适应性广。
图3-1 超外差式雷达接收机简化框图1、高频部分:(1)T/R 及保护器:发射机工作时,使接收机输入端短路,并对大信号限幅保护。
(2)低噪声高放:提高灵敏度,降低接收机噪声系数,热噪声增益。
(3)Mixer ,LD ,AFC :保证本振频率与发射频率差频为中频,实现变频。
2、中频部分及 AGC :(1)匹配滤波:max (/)o S N(2)AGC :auto gain control.3(1(21、灵敏度d P 时的输完成。
23。
4、中频的选择与滤波特性:02R f f ≥∆ ,中频选择通常选择 30M ~500M ,抑制镜频.实际与发射波形特性,接收机工作带宽有关。
5、工作稳定性和频率稳定度:指当环境变化时,接收机性能参数受到影响的程度,频率稳定度,信号处理,采取频率稳定度、相位稳定度提高的本振,“稳定本振” 。
雷达系统基础知识解析

雷达系统基础知识解析雷达系统是一种以电磁波为载体,利用接收机接收反射回来的信号,获得目标的位置、速度、形状、运动状态等信息的远程探测手段。
在现代军事、民用、科研等领域中,雷达系统得到了广泛应用。
本文将从雷达的原理、分类、应用等方面进行分析,对雷达系统进行基础知识解析。
一、原理雷达系统的探测原理基于电磁波的回波信号。
雷达系统通过向目标发送一个连续波或者脉冲波,这些波被目标反射后返回到雷达接收机。
接收机接收到的信号被处理后,可以提供目标的位置、速度、方向、距离等信息。
雷达系统的原理主要包括两个方面:1. 电磁波的传输和反射雷达系统中常用的电磁波包括微波、毫米波、红外线等,其中微波是最为常用的。
雷达发射的微波成为发射波,这些波穿过空气,到达目标后会被目标吸收或反射。
被反射回来的波成为回波,这些回波被接收机接收并处理,从而得到目标的信息。
2. 接收和处理雷达系统中的接收机可以接收发射的信号,并进行处理。
接收机的处理可以包括信号的放大、滤波、检波等,从而得到有效的目标信息。
接收机通常还会通过多普勒现象对目标的速度进行测量。
二、分类按照不同的特征,雷达系统可以分为多种不同类型:1. 脉冲雷达脉冲雷达通常使用的是短脉冲信号来探测目标。
这种雷达系统能够测量目标的距离和位置,但对于目标的速度探测能力较弱。
2. 连续波雷达连续波雷达通常使用连续发射的信号来探测目标。
这种雷达系统能够测量目标的速度和方向,但对于目标的距离探测能力较弱。
3. 相控阵雷达相控阵雷达使用多个发射天线和接收天线,这些天线可以通过计算机进行编程,从而形成一个具有指向性的波束。
相控阵雷达能够非常精确地探测目标的位置和速度。
4. 毫米波雷达毫米波雷达使用的电磁波在波长上较短,因此具有很强的穿透能力和抗干扰能力。
毫米波雷达通常被用于捕捉小物体的距离信息。
三、应用雷达系统的应用主要包括以下几个方面:1. 军事领域在军事领域中,雷达系统可以作为一种重要的侦察装备,能够探测敌方的目标信息,从而进行有效的作战指挥。
雷达技术原理

雷达技术原理本文将介绍雷达技术的工作原理。
雷达是一种主动式无线电测距测速系统,可以探测和跟踪远距离目标,并提供其位置、速度、大小等基本信息。
雷达技术在天文学、气象学、军事、民用航空等领域都有广泛的应用。
雷达的基本原理是利用电磁波在目标与雷达之间的传输、散射或反射,从而实现距离、方位和速度测量的目的。
雷达技术的工作原理雷达技术的工作原理涉及到电磁波的产生、传输、接收和处理等多个环节。
下面将分别介绍雷达系统中各部分的工作原理。
电磁波的产生雷达系统需要产生电磁波,以便进行测量。
为了产生电磁波,可以使用不同类型的电源,例如发电机、电池或光纤。
一般情况下,雷达系统会使用一台特殊的能够产生高频电磁波的设备,称为雷达发射机。
雷达发射机可以接收电源的电能,并将其转换成高频电磁波,然后将其输出到天线。
电磁波的传输电磁波在传输过程中会受到各种环境因素的干扰,例如气候、大气层、障碍物等。
电磁波的传播距离也会受到其频率和波长的影响。
雷达系统中常用的电磁波频率范围是从1 GHz到100 GHz,对应波长从30厘米到3毫米。
雷达系统一般会使用天线将产生的电磁波传输到目标,并接收其反射或散射回来的信号。
天线可以将电磁波转换为电流信号,并将其发送到雷达接收器进行处理。
电磁波的接收雷达系统的接收器需要能够接收反射或散射回来的电磁波信号,并将其转换为电流信号。
一般情况下,雷达系统会使用一台特殊的接收器,称为雷达接收机。
雷达接收机可以将接收到的电流信号转换为数字信号,并通过信号处理算法来提取目标的距离、方位和速度等信息。
电磁波的处理通过信号处理算法,雷达系统可以对接收到的电磁波信号进行分析,并提取出目标的距离、方位和速度等信息。
雷达系统会将上述信息通过显示屏、电子设备或计算机等方式传送给用户或操作员。
根据用户或操作员的需要,雷达系统可以实现不同的功能,例如探测、识别、追踪、导航或通信等。
雷达技术的应用雷达技术在天文学、气象学、军事和民用航空等领域都有广泛的应用。
雷达原理知识点

雷达的(radar)概念:无线电探测和测距。
雷达的原理:利用目标对电磁波的反射现象来发现目标并测定其位置的。
雷达的组成:天线:向确定的方向发射和接收特定频段的电磁波1.收发开关:发射状态将发射机输出功率接到天线,保护接收机输入端接受状态将天线接收信号接到接收机,防止发射机旁路信号2.发射机:在特定的时间、以特定的频率和相位产生大功率电磁波3.接收机:放大微弱的回波信号,解调目标信息4.激励器/同步器:产生和供给收发信号共同的时间、频率、天线指向基准5.显示器/操作员:显示目标信息和雷达的工作状态,配合人工操作。
单级震荡发射机的特点:优点:简单,低廉,高效;缺点:频率不稳,相位随机,不能复杂调制主震放大式发射机组成及特点:1.基准振荡器:保证频率、重频、脉宽,2.锁相振荡器:提供相位(稳定性、一致性很高) 3.放大链:固态+行波管放大链,固态+行波管+速调管(前向波管)放大链等优点:频率稳定、准确,相位稳定,能够复杂调制缺点:复杂,昂贵,效率较低脉冲调制器的组成:1.直流电源:提供充足、稳定的直流能量,满足工作要求;2.充电元件:将直流能量及时传递给储能元件3.储能元件:在开关截止时保存充电能量,在开关导通时释放保存的能量4.调制开关:刚性在输入脉冲的作用下,脉冲期间导通,间歇期间截止软性在输入触发的作用下,导通释放能量,放尽后自然截止5.耦合元件:将高压、大电流脉冲作用到射频负载上(原理图另附)噪声系数定义:接收机输入端信号噪声功率比与输出端信号噪声功率比的比值及:雷达终端显示器根据完成的任务可分为: 距离显示器、平面显示器、高度显示器、情况显示器和综合显示器、光栅扫描显示器等。
检测性能由发现概率和虚警概率描述:发现概率越大说明发现目标的可能性越大;虚警概率越小说明错误目标的可能性越大;在虚警概率不超过某个允许值的条件下,发现概率越大越好虚警:没有信号时,输出的电平超过门限被认为是信号的事件。
波导损耗:波导损耗与波导制造的材料、工艺、传输系统工作状态以及工作波长等因素有关, 通常情况下, 工作波长越短, 损耗越大。