机器人技术 第四章 动力学分析和力

合集下载

智能机器人PPT教学课件 第4章 动力学分析和力

智能机器人PPT教学课件 第4章 动力学分析和力

0 1 1 0 A P 0 0 0 0
11
T2.19
T2 1
0.92 0 0.39 0
0 1 0 0
0.39 0 0.92 0
3.82 6 3.79 1
(公式:2.31)
12
F r
T1 y0 A x0 z0
I1 l 1, I2 l 2,
D m2
B
C
m1
1
若物体绕某轴的转动惯量为I,转 动的角速度为ω ,则转动动能
E 1 2 I 2
2自由度极坐标机械臂
解:注意,在本例中,机械臂可以做伸缩线运动。定义外机械臂中心到旋 转中心距离为r,它是系统的一个变量,机械臂总长度为r+( l2 /2)。利用和 前面相同的方法,推导拉格朗日函数并求取合适的导数,结果如下: K K1 K2 2 2 2 当回转轴过 1 11 1 2 2 K1 I1,A m1l1 m1l1 杆的端点并 2 23 6 垂直于杆时
1 2 1 2 K mv mx 和 P 1 kx 2 2 2 2
拉格朗日函数的导数是
1 1 L K P mx2 kx2 2 2
d L ( m x ) m x kx , 和 x dt x 于是求得小车的运动方程 F m x kx
mx
为用牛顿力学求解上述问题,首先画出小车的受力图,其受力方程如下:
mlml当回转轴过杆的端点并垂直于杆时d点伸缩d点旋转若物体绕某轴的转动惯量为i转动的角速度为则转动动能dtdtdtdt运动旋转44多自由度机器人的动力学方程动能
第四章 动力学分析和力
1
为了使物体加速,必须对它施加力。
为了使旋转物体产生角加速度,则必须对其施加力矩(如下图)。 所需的力及力矩为

机器人运动学与动力学分析

机器人运动学与动力学分析

机器人运动学与动力学分析引言:机器人技术是当今世界的热门话题之一。

从生产领域到服务领域,机器人的应用越来越广泛。

而要实现机器人的精确控制和高效运动,机器人运动学与动力学分析是必不可少的基础工作。

本文将介绍机器人运动学与动力学分析的概念、方法和应用,并探讨其在现代机器人技术中的重要性。

一、机器人运动学分析机器人运动学分析是研究机器人运动的位置、速度和加速度等基本特性的过程。

运动学分析主要考虑的是机器人的几何特征和相对运动关系,旨在通过建立数学模型来描述机器人的运动路径和姿态。

运动学分析通常可以分为正逆解两个方面。

1. 正解正解是指根据机器人关节位置和机构参数等已知信息,计算出机器人末端执行器的位置和姿态。

正解问题可以通过利用坐标变换和关节运动学链式法则来求解。

一般而言,机器人的正解问题是一个多解问题,因为机器人通常有多个位置和姿态可以实现。

2. 逆解逆解是指根据机器人末端执行器的位置和姿态,计算出机器人关节位置和机构参数等未知信息。

逆解问题通常比正解问题更为复杂,因为存在多个解或者无解的情况。

解决逆解问题可以采用迭代法、几何法或者数值优化方法。

二、机器人动力学分析机器人动力学分析是研究机器人运动的力学特性和运动控制的基本原理的过程。

动力学分析主要考虑机器人的力学平衡、力学约束和运动方程等问题,旨在实现机器人的动态建模和控制。

1. 动态建模动态建模是研究机器人在外力作用下的力学平衡和运动约束的数学描述。

通过建立机器人的运动方程,可以分析机器人的惯性特性、静力学特性和动力学特性。

机器人的动态建模是复杂的,需要考虑关节惯性、关节力矩、摩擦因素等多个因素。

2. 控制策略机器人动力学分析的另一个重要应用是运动控制。

根据机器人的动态模型,可以设计控制策略来实现机器人的精确运动。

常见的控制方法包括PID控制、模糊控制、自适应控制等。

通过合理选择控制策略和调节参数,可以实现机器人的平滑运动和高精度定位。

三、机器人运动学与动力学分析的应用机器人运动学与动力学分析在现代机器人技术中具有重要的应用价值。

机器人静力分析与动力学课件

机器人静力分析与动力学课件

平衡状态
机器人在静力分析中处于静止或匀速 运动状态,此时力和力矩的平衡使得 机器人的位置和姿态保持不变。
机器人在工作过程中需要承受的外部 负载,包括重力、外部作用力等。
机器人静力分析方法
有限元分析(FEA)
边界元分析(BEM)
刚体动力学
静力分析在机器人设计中的应用
01
02
03
结构优化
负载能力评估
正运动学模型
根据机器人关节参数,计算机器人末端执行器的位置和姿态。
逆运动学模型
已知机器人末端执行器的位置和姿态,反求机器人关节参数。
雅可比矩阵
描述机器人末端执行器速度与关节速度之间的映射关系。
运动学在机器人设计中的应用
机器人的工作空间分析
1
机器人的运动规划
2
机器人的控制策略
3
04
机器人轨迹规划
CHAPTER
机器人静力分析与 动 力学课件
contents
目录
• 机器人静力分析 • 机器人动力学 • 机器人运动学 • 机器人轨迹规划 • 机器人传感器与感知
01
机器人静力分析
CHAPTER
静力分析基本概念
静力分析
在机器人设计中,静力分析是评估机 器人在静态负载下的性能,主要关注 力和力矩的平衡。
静态负载
轨迹规划基本概念
轨迹
轨迹规划
根据任务需求和机器人运动学、动力 学等约束条件,规划出机器人从起始 点到目标点的最优或次优运动轨迹。
机器人轨迹规划方法
基于运动学的方法 基于动力学的方法 基于人工智能的方法
轨迹规划在机器人控制中的应用
工业机器人
01
服务机器人
02

机器人控制中的力学和动力学分析

机器人控制中的力学和动力学分析

机器人控制中的力学和动力学分析随着科技的不断发展和进步,机器人控制已经成为了现代工业生产和科学研究领域中非常重要的一部分。

机器人的控制需要进行力学和动力学的分析,而这也是机器人控制中最为关键的一步。

在本文中,我们将会探究机器人控制中的力学和动力学分析,以及它对机器人控制的重要性。

一、机器人控制中的力学分析在机器人控制中,力学分析是非常关键的一个步骤。

它主要研究机器人在运动过程中所产生的力的大小、方向、作用点以及分布情况等。

力学分析还可以用来确定机器人的轨迹、加速度、速度和位移等物理量。

力学分析是机器人控制中最为基础的一部分。

在力学分析中,我们需要对机器人的各个零部件进行研究和分析,例如机械臂、传感器和执行机构等。

在这个过程中,我们需要研究机器人所受到的各种力和力矩,以及机器人运动所产生的各种力学变量。

通过这些分析,我们可以得出机器人的工作状态、工作可靠性和工作效率等方面的数据。

二、机器人控制中的动力学分析与力学分析相比,机器人控制中的动力学分析则更加复杂和深奥。

动力学分析主要研究机器人在运动过程中所产生的力和加速度,以及机器人的动态特性和运动规律等。

动力学分析不仅需要考虑机器人的运动学特性,还需要考虑机器人的惯性和运动引起的所产生的力。

在动力学分析中,我们需要对机器人的所有零部件进行力学分析,包括驱动器、电机、传动系统和机械臂等。

我们还需要对机器人的动态特性进行研究,例如机器人的惯性、转动惯量和质心位置等。

通过这些分析,我们可以得出机器人的动态方程,进而预测机器人的运动规律和运动速度等信息。

三、机器人控制中力学和动力学分析的重要性在机器人控制中,力学和动力学分析是非常重要的一部分。

通过力学和动力学分析,我们可以了解机器人的工作状态、工作可靠性和工作效率等方面的数据。

同时,力学和动力学分析可以帮助我们预测机器人的运动规律和运动速度等信息,从而优化机器人的运动控制。

在机器人的工作过程中,由于机器人所受到的各种力和力矩的不同,机器人的零部件和传动系统也会出现不同程度的磨损和老化。

《机器人技术基础》第四章 机器人动力学

《机器人技术基础》第四章 机器人动力学


4.2 机械手动力学方程



4.1.1 拉格朗日方法
机器人是一个具有多输入和多输出的复杂的 运动学系统,存在严重的非线性,需要非常复杂 的方法来处理。
动力学处理方法: Lagrange , Newton-Euler, Gauss,Kane, Screw, Roberson-Wittenburg
2 )
d
dt
L
1
(m1 m2 )l12
m2l22
2m2l1l2
cos
2
1
(
m2
l
2 2
m2l1l2 cos 2 )2
2m2l1l2 si n212 m2l1l2 si n22L1Fra bibliotek(m1
m2 )gl1
s i n1
m2 gl2
s i n (1
2)
4.1.2 拉格朗日方程
⑤求出机器人动力学方程:
)
然后求微分,则其速度就为:
x2 y 2
l1 l1
co s11 sin 11
l2 l2
cos(1 2 )(1 2 ) sin(1 2 )(1 2 )
θ1
关节2
m1
(x1, y1)
l2
θ2 m2
(x2, y2 )
由此可得连杆的速度平方值为:
v22 x22 y22 l1212 l22(12 212 22 ) 2l1l2 cos2(12 12 )
m2 gl2 sin(1 2 )
T2 (m2l22 m2l1l2 cos2 )1 m2l222 m2l1l2 sin 21
m2 gl2 sin(1 2 )
4.1.2 拉格朗日方程
将得到的机器人动力学方程简写为如下形式:

工业机器人课件第四章 机器人动力学

工业机器人课件第四章  机器人动力学

(4.2-2) Dii I ai I ai 为传动装置的等效转动惯量
Dij Dijk
p maxi , j

n
I ai
Trace(
Tp q j
Ip
TpT qi Ip
) TpT qi
(4.n T T p T

n
Trace(
2Tp q j qk rp
把相应的偏导和导数代入拉格朗日方程,可求得力矩T1和T2的动力学表达式 d L L T1 dt 1 1 (m d 2 m d d cos ) [(m m )d 2 m d 2 2m d d cos ]
1 2 1 2 2 2 1 2 2 1 2 2 2 1 2 2 2
(4.1-9)
(4.1-10)
将在关节i上产生 D 的惯性力; Dii—关节i的有效惯量:关节i的加速度 i ii i 将在关节j和i上分别产 和 Dij—关节i和j的耦合惯量:关节i和j的加速度 j i 生一个等于 Diji 和 Dij j 的惯性力;
2 D22 m2 d 2
耦合惯量 向心加速度 系数
2 D12 m2 d2 m2 d1d2 cos2
D111 0 D122 m2 d1d 2 sin 2 D211 m2 d1d 2 sin 2 D222 0
哥氏加速度 系数
重力项
D112 D121 m2 d1d 2 sin 2 D212 D221 0
) (4.2-4)
(4.2-5)
Di m p g
p i
p
qi
惯量项和重力项在机器人的控制中特别重要,它们影响到系统的稳定 性和定位精度。向心力和哥氏力仅当机器人高速运动时才有意义。

机器人技术 第四章 动力学分析和力

机器人技术 第四章  动力学分析和力

拉格朗日动力学方程实例
分别用拉格朗日动力学和牛顿力学方法推导如图所示的动力学方程。
1、拉格朗日法
1 1 1 E p kx 2 2 E k mv 2 mx 2 2 2 1 1 2 kx 2 L E k E p mx 2 2
2、牛顿法
F kx ma F ma kx
Pi R Ti ri
多自由度机器人的动力学方程

涉及运动学方程对时间t求导
i ( 0Ti ) dq j d 0 连杆某点速度:Vi ( Ti ri ) ( )ri dt q j dt j 1
其中: 0Ti A1 A2 Ai
Ai Qi Ai d i
Ai Qi Ai i
, ) i f ( j , j j
1 j n
拉格朗日方程

拉格朗日函数 拉格朗日函数L的定义是一个机械系统的动能 Ek 和 势能 E P 之差,即
L Ek E p
式中 Ek 为系统动能总和;
E P 为系统势能总和。
动能和势能怎样计算?
拉格朗日方程
拉格朗日方程:
含有 D212 的项表示哥氏力对关节2的耦合力矩项。
拉格朗日动力学方程分析
只含关节变量 1和 2的项表示重力引起的关节力矩项。其中: 含有 D1 的项表示连杆1、连杆2的质量对关节1引起的重力矩 项; 含有 D2的项表示连杆2的质量对关节2引起的重力矩项。

从上面推导可以看出,很简单的二自由度平面关节机 器人其动力学方程已经很复杂了,很多因素都在影响 机器人的动力学特性。
机器人静力平衡

坐标系间力和力矩的变换
虚功原理:
微分运动: 力:

第4章 机器人的动力学初步

第4章 机器人的动力学初步

图4-4 质点平移运动 作为回转运动的解析
机器人的静力学
如果I =mr2,则式(4-14) 就改写为
式(4-15)是 质 点 绕 固 定 轴 进 行 回 转 运 动 时 的 运 动 方 程 式 。 与 式 (4⁃ 11)比较,I相当于平移运动时的质量,在旋转运动中称为惯性矩。
机器人的静力学
对于质量连续分布的物体, 求解其惯性矩, 可以将其分割成假想的微小 物体, 然后再把每个微小物体的惯性矩加在一起。这时, 微小物体的质量d m 及其微小体积dV 的关系, 可用密度ρ 表示为 所以, 微小物体的惯性矩dI, 依据I =mr2, 可以写成
行器在笛卡尔空间的轨迹已确定(轨迹已被规划),求解机器人各执行器的驱
动力或力矩,这称为机器人动力学方程的反面求解,简称为逆动力学问题。
概述
不管是哪一种动力学问题都要研究机器人动力学的数学模型,区别在于问
题的解法。人们研究动力学的重要目的之一是对机器人的运动进行有效控制,
以实现预期的运动轨迹。 常用的方法有牛顿.欧拉法、拉格朗日法、凯恩动力学法等。牛顿·欧拉动
原理。
机器人的静力学
如图4⁃1所示,已知作用在杠杆一端的力FA,试用虚功原理求作用于另 一端的力FB。假设杠杆长度LA和LB已知。 按照虚功原理,杠杆两端受力所做的虚功应该是
式中,δ xA 、δ xB是杠杆两端的虚位移。而就虚位移来讲,下式成立
式中, δθ 是绕杠杆支点的虚位移。 把式(4⁃2)代入式(4⁃1)消 δ xA 、δ xB,可得到下式 图4-1 杠杆及作用在两端上的力
机器人动力学方程式
式中, n 为机器人的关节总数。其次我们来考虑把K 作为机器人各关节 速度的函数。这里vCi与ω i 分别表示为
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

L qi
d L L
Fi
dt
( ) xi
xi
Ti
d dt
(
L
i )
L
i
求力 求力矩

式中 qi (i 1,2, , n) 机器人关节变量。


公式的合理性解释!

拉格朗日方程
用拉格朗日法建立机器人动力学方程的步骤: (1) 选取坐标系,选定完全而且独立的广义关节变量 (2) 选定相应的关节上的广义力Fi:当qi是位移变量时,则Fi为力,当qi正 是角度变量时,则Fi为力矩。 (3) 求出机器人各构件的动能和势能,构造拉格朗日函数。 (4) 代入拉格朗日方程求得机器人系统的动力学方程。
杆1质心k1速度平方为
杆2质心k2速度平方为
拉格朗日动力学方程分析
含有1 或 2 的项表示由于加速度引起的关节力矩项,其中: 含有 D11和 D22 的项分别表示由于关节1加速度和关节2加速度引起的
惯性力矩项; 含有 D12 的项表示关节2的加速度对关节1的耦合惯性力矩项: 含有 D21的项表示关节1的加速度对关节2的耦合惯性力矩项。
拉格朗日动力学方程分析
只含关节变量 1和 2的项表示重力引起的关节力矩项。其中:
含有 D1 的项表示连杆1、连杆2的质量对关节1引起的重力矩 项;
含有 D2的项表示连杆2的质量对关节2引起的重力矩项。
从上面推导可以看出,很简单的二自由度平面关节机 器人其动力学方程已经很复杂了,很多因素都在影响 机器人的动力学特性。
第四章 动力学分析和力
主要内容:
机器人静力平衡 拉格朗日动力学方程
机器人静力平衡
机器人与环境之间存在相互作用力和力矩; 机器人各关节的驱动力通过连杆传递到机器人
手; 在静止状态下,机器人各关节传递到机器人手
的力和力矩与外界作用在机器人手上的力和力 矩构成平衡关系。 因此,关节力和力矩与机器人手受到外界力和 力矩所作的功相等。
i f ( j , j , j ) 1 j n
拉格朗日方程
拉格朗日函数 拉格朗日函数L的定义是一个机械系统的动能 Ek 和
势能 EP 之差,即
L Ek Ep
式中 Ek 为系统动能总和;
EP 为系统势能总和。
动能和势能怎样计算?
拉格朗日方程
▪ 拉格朗日方程:
滑动关 节
Fi
d dt
L qi
微分运动: H D JD
结 论: T J T H F
机器人静力平衡
对上式变换:
H F (J T )1 T
这就是关节空间与直角坐标空间之间力的相互变换!
机器人静力平衡
例题
如图所示,一个二自由度平面关节机械手,已知手 部端点力 F [Fx , Fy ]T ,求相应的关节力矩。
机器人静力平衡
机器人静力平衡
机器人手空间
H D dx dy dz x y zT
H F f x f y f z mx my mz T
关节空间
D d1 d2 d3 d4
T T1 T2 T3 T4 T5
d5 d5 T
T6 T
机器人静力平衡
根据虚功原理求关节力与机器人手受力之间的关系
虚功原理: W H F T H D T T D
归结为两个问题
给出已知的轨迹点上的 、 、 ,即机器人关节
位置、速度和加速度,求相应的关节力矩向量τ 。这
可用于驱动器选型。 已知关节驱动力矩,求机器人系统相应的各瞬时的运
动。也就是说,给出关节力矩向量τ, 求机器人所产
生的运动 、 及 。 这对模拟和优化机器人 的运动是非常有用的。
动力学分析方法
动力学分析方法有多种,如: ✓ 拉格朗日(Lagrange)方法, ✓ 牛顿-欧拉(Newton·Euler)方法, ✓ 高斯(Gauss)方法, ✓ 凯恩(Kane)方法等。
拉格朗日方法不仅能以最简单的形式求得非常复杂的 系统动力学方程,而且具有显式结构,物理意义比较 明确,对理解机器人动力学比较方便。
拉格朗日动力学方程实例
分别用拉格朗日动力学和牛顿力学方法推导如图所示的动力学方程。
1、拉格朗日法
Ek
1 mv2 2
1 mx2 2
Ep
1 kx2 2
L
Ek
Ep
1 2
mx2
1 kx2 2
L mx x
d (mx) mx dt
L kx x
拉格朗日方程 F mx kx
2、牛顿法
F ma
F kx ma F ma kx
K
m
x
自己看懂P109的例2!
如相 和图应m所2的,示关杆,节长选1和分取关别坐节为标2l1系的和。力l连2矩,杆是质1心和1和分连别杆2在2。的k连关1和杆节k12变处和量,连分离杆别关2为的节转质中角量心分的1别和距是离 2m分,1
别为 p1 和 p2 。 因此,杆1质心 k1 的位置坐标为:
坐标系间力和力矩的变换
虚功原理: W F T DBF T B D
微分运动: B DBJ D
力: F BJ T B F
B F ( BJ T )1 F
Z
f m a
n
X
Y
机器人静力平衡
当其中一个坐标系为参考坐标系时:
当已知机器人手在参考坐标系 中施加的力和力矩转换为相对 于手自身坐标系的力和力矩!
拉格朗日动力学方程分析
含有12 和22的项表示由于向心力引起的关节力矩项,其中: 含有 D122的项表示关节2速度引起的向心力对关节l的耦合力矩项; 含有 D211的项表示关节1速度引起的向心力对关节2的耦合力矩项。
拉格朗日动力学方程分析
含有 12 的项表示由于哥氏力引起的关节力矩项,其中: 含有 D112 的项表示哥氏力对关节1的耦合力短项; 含有 D212 的项表示哥氏力对关节2的耦合力矩项。
B fz a f
B fy o f
B fx n f
B mz a ( f p) m
Bmy o ( f p) m
B mx n ( f p) m
机器人静力平衡
例题P128
为什么要使用动力学分析
位置运动学解决的主要问题; 微分运动学解决的主要问题; 静力学分析解决的主要问题;
可是,在考虑加、减速过程、摩擦 等情况下,前面所学知识并不能解 决关节力与关节运动之间的关系!
汽车加速过程是怎样的?
Байду номын сангаас
机器人动力学分析的作用
用于机器人机械结构、驱动器、减速机构等的 选型和设计;
对于给定的机器人系统,用于校核机器人运动 目标是否能实现;
其它分析,如不同关节之间运动和力的相互影 响等。
相关文档
最新文档