运筹学图与网络分析
运筹学复习考点

整理课件
59
• (4)动态规划的基本方程是将一个多阶段的决策问题转化为一系列具 有递推关系的单阶段决策问题。
• 正确。 • (5)建立动态规划模型时,阶段的划分是最关键和最重要的一步。 • 错误。 • (6)动态规划是用于求解多阶段优化决策的模型和方法,这里多阶段
• 错误。
• 唯一最优解时,最优解是可行域顶点,对应基本可行解;无穷多最优 解时,除了其中的可行域顶点对应基本可行解外,其余最优解不是可 行域的顶点。
• (12)若线性规划问题具有可行解,且其可行域有界,则该线性规划 问题最多具有有限个数的最优解。
• 错误。
• 如果在不止一个可行解上达到最优,它们的凸组合仍然是最优解,
结束时间不允许有任何延迟。 • 正确。 • (10)网络关键路线上的所有作业,其总时差和自由时差均为零。 • 正确。 • (11)任何非关键路线上的作业,其总时差和自由时差均不为零。 • 错误。
整理课件
57
• (12)若一项作业的总时差为零,则其自由时差一定为零。 • 正确。 • (13)若一项作业的自由时差为零,则其总时差比为零。 • 错误。 • (14)当作业时间用a,m,b三点估计时,m等于完成该项作业的期
既可以是时间顺序的自然分段,也可以是根据问题性质人为地将决策 过程划分成先后顺序的阶段。
• 正确。
整理课件
60
•
整理课件
61
此课件下载可自行编辑修改,供参考! 感谢您的支持,我们努力做得更好!
整理课件
62
5 3 6 -6 0
0
801001
5
14 1 2 0 0 0
-6
4 0 1 -1 1 0
清华大学运筹学课件(完整课件)

05
图与网络分析
图与网络的基本概念
图与网络的定义
由节点和边构成的数学结构,表示对象及其之间 的关系。
连通性
在无向图中,任意两个节点之间都存在路径,则 称该图是连通的。
有向图与无向图
根据边的方向性分类的图。
强连通与弱连通
在有向图中,任意两个节点之间都存在有向路径 ,则称该图是强连通的;若将有向图的边忽略方 向后得到的无向图是连通的,则称该有向图是弱 连通的。
通过平衡订货成本和存储成本,确定 最佳订货批量,使得总成本最低。
经济生产批量模型
适用于生产型企业,通过平衡生产准 备成本和存储成本,确定最佳生产批
量。
不允许缺货模型
假设需求稳定且不允许缺货,通过计 算最佳订货点和最高库存水平,实现
最小化成本。
随机型存储模型
一次性订货模型
适用于需求不确定的情况,通过 计算安全库存和期望缺货量,确 定最佳订货量。
整数规划问题的分类
根据整数变量的取值范围,可分为纯整数规划、混 合整数规划和0-1整数规划。
整数规划问题的数学模型
整数规划问题的数学模型与线性规划问题类 似,但需要加入整数约束条件。
分枝定界法
分枝定界法的基本思想
将原问题分解为若干个子问题,每个子问题对应原问题的 一个子集,通过求解子问题的最优解来逼近原问题的最优 解。
最短路问题
Dijkstra算法
适用于没有负权边的有向图,通过不断更新距离标签来求解单源最 短路问题。
Floyd算法
适用于任意有向图,通过动态规划的思想求解多源最短路问题。
Bellman-Ford算法
适用于有负权边的有向图,通过不断松弛边来求解单源最短路问题 。
2024版清华大学出版《运筹学》第三版完整版课件

要点三
金融服务与投资管理
在金融服务和投资管理中,存储论可用 于优化资金配置和投资组合,降低风险 和提高收益。例如,通过定期订货模型 的运用,可以制定合理的投资策略和资 产配置方案,实现资产的保值增值和风 险控制。
2024/1/28
31
07
排队论
2024/1/28
32
排队论的基本概念
2024/1/28
清华大学出版《运筹 学》第三版完整版课
件
2024/1/28
1
目录
2024/1/28
• 绪论 • 线性规划 • 整数规划 • 动态规划 • 图与网络分析 • 存储论 • 排队论
2
01
绪论
2024/1/28
3
运筹学的定义与发展
运筹学的定义
运筹学是一门应用数学学科,主要研究如何在有限资源下做出最优决策,以最 大化效益或最小化成本。
目标函数
表示决策变量的线性函数,需要最大化或最 小化。
约束条件
表示决策变量需要满足的线性等式或不等式。
2024/1/28
决策变量
表示问题的未知数,需要在满足约束条件的 情况下求解目标函数的最优值。
8
线性规划问题的图解法
01
可行域
表示所有满足约束条件的决策变量构成的集合。
2024/1/28
02
目标函数等值线
2024/1/28
34
单服务台排队系统
M/M/1排队系统
到达间隔和服务时间均服从负指数分布的单服务台排队系 统。
M/D/1排பைடு நூலகம்系统
到达间隔服从负指数分布,服务时间服从确定型分布的单 服务台排队系统。
表格。
10
运筹学

目标规划
( Goal programming )
本章主要内容:
目标规划问题及其数学模型
目标规划问题及其数学模型
Page 28
问题的提出:
目标规划是在线性规划的基础上,为适应经济管理多目 标决策的需要而由线性规划逐步发展起来的一个分支。
由于现代化企业内专业分工越来越细,组织机构日益复 杂,为了统一协调企业各部门围绕一个整体的目标工作,产 生了目标管理这种先进的管理技术。目标规划是实行目标管 理的有效工具,它根据企业制定的经营目标以及这些目标的 轻重缓急次序,考虑现有资源情况,分析如何达到规定目标 或从总体上离规定目标的差距为最小。
含量 食物
甲
乙
成分
A1 A2 A3 原料单价
0.1
0.15
1.7
0.75
1.10 1.30
2
1.5
最低 需要量
1.00 7.50 10.00
线性规划在管理中的应用
解:设Xj 表示Bj 种食物用量
min Z 2 x1 1.5 x2
0.10x1 0.15x2 1.00
1.7 1.1
艇攻击时损失最少; 3. 在各种情况下如何调整反潜深水炸弹的爆炸深
度,才能增加对德国潜艇的杀伤力等。
Page 5
运筹学简述
Page 6
运筹学(Operations Research) 运筹学所研究的问题,可简单地归结为一句话:
“依照给定条件和目标,从众多方案中选择最佳方案” 故有人称之为最优化技术。
x5 x6 30
x1 , x2 , x3 , x4 , x5 , x6 0
此问题最优解:x1=50, x2=20, x3=50, x4=0, x5=20, x6=10,一共需要司机和乘务员150人。
运筹学-PERT网络图

工序数(包括虚工序)W
(五)编制步骤
(1)确定目标与分工 在编制网络图之前,首先要确定计划 的最终目标和中间目标。为此,需要制定 一张构成网络的系统图。 系统图自上而下把目标分解为更详细的基层 计划。层次越低,项目就越具体,至于层次的多 少,则取决于各个建设项目的特点。在系统 图 的基础上,需要进一步明确分工,确定各级机构 负责哪些工序,然后着手编制总的网 络图和综 合网络图。
二网络计划的优化通过画pert网络图并计算时间参数已得到一个初步的网络计划而网络计划技术的核心却在于综合评价它的技术经济指标从工期成本资源等方面对这个初步方案作进一步的改善和调整以求得最佳效果这一过程就是网络计划的优化
PERT网络图
一、PERT网络图
PERT (Program Evaluation and Review Technique),即计划评审技术。
(2)综合网络图编制步骤
①绘制基层网络图
绘制网络图之前,首先收集原始资 料,填写工序及资源一览表,再把所有 工序根据施工顺序和相互关系按前述方 法从左到右绘制网络图。
②基层网络图的合并与简化
若干基层网络图组成局部网络图,若 干局部网络图组成综合网络图。不同网 络图对于工序粗细的划分和程度差别很 大,需要对网络进行简化和合并处理。
PERT网络是一种类似流程图的箭线 图。它描绘出项目包含的各种活动的先 后次序,标明每项活动的时间或相关的 成本。 对于PERT网络,项目管理者必须考 虑要做哪些工作,确定时间之间的依赖 关系,辨认出潜在的可能出问题的环节, 借助PERT还可以方便地比较不同行动方 案在进度和成本方面的效果。
构造PERT图,需要明确三个概念: 活动、事件和关键路线。 1.活动(Activities):有时又被称为 作业、工序、工作等。
运筹学(重点)

两个约束条件
(1/3)x1+(1/3)x2=1
及非负条件x1,x2 0所代表的公共部分
--图中阴影区, 就是满足所有约束条件和非负
条件的点的集合, 即可行域。在这个区域中的每
一个点都对应着一个可行的生产方案。
22
5–
最优点
4–
l1 3B E
2D
(1/3)x1+(4/3)x2=3
l2 1–
0 1〡 2〡 3A 4〡 5〡 6〡 7〡 8〡 9〡C
运筹学 Operational Research
运筹帷幄,决胜千里
史记《张良传》
1
目录
绪论 第一章 线性规划 第二章 运输问题 第三章 整数规划 第四章 动态规划 第五章 目标规划 第六章 图与网络分析
2
运筹学的分支 数学规划: 线性规划、非线性规划、整数规划、 动态规划、目标规划、多目标规划 图论与网络理论 随机服务理论: 排队论 存储理论 决策理论 对策论 系统仿真: 随机模拟技术、系统动力学 可靠性理论
32
西北角
(一)西北角法
销地
产地
B1
0.3
A1
300
0.1 A2
0.7 A3
销量 300
B2
1.1
400
0.9
200
0.4
600
B3
0.3
0.2
200
1.0
300 500
B4
产量
1.0
700 ②
0.8
400 ④
0.5
600
900 ⑥
600
2000
①
③
⑤
⑥
34
Z
cij xij 0.3 300 1.1 400 0.9 200
《运筹学》全套课件清华大学

运输问题
通过线性规划求解运输问题中 的最优运输方案,使得总运费 最小化。
投资组合
通过线性规划确定最优的投资 组合,使得风险最小化或收益
最大化。
03
整数规划
整数规划问题的数学模型
整数规划问题的定义和分类
介绍整数规划问题的基本概念、分类以及与其 他优化问题的关系。
03
Bellman-Ford算法
适用于存在负权边的图,通过不断松弛边的方式求解最短路。
网络最大流问题
网络最大流问题的定义
给定一个有向带权图,找到从源点到汇点的最大流 量。
增广路算法
通过不断寻找增广路来增加流量,直到没有增广路 为止。
Edmonds-Karp算法
对增广路算法进行优化,使用广度优先搜索寻找增 广路。
整数规划问题的应用
生产计划问题
阐述整数规划在生产计划问题中的应用,如 生产批量计划、生产排程等。
金融投资问题
分析整数规划在金融投资问题中的应用,如 投资组合优化、风险管理等。
物流配送问题
探讨整数规划在物流配送问题中的应用,如 车辆路径问题、设施选址问题等。
其他应用领域
介绍整数规划在其他领域的应用,如计算机 科学、生物医学工程等。
运筹学的应用领域
工业工程
在生产计划、物流管理、设施规划等领域 ,运筹学可以帮助企业提高生产效率、降 低成本、优化资源配置。
其他领域
如金融工程、医疗健康、环境保护等领域 ,运筹学也发挥着重要作用,为各种实际 问题提供有效的解决方法。
交通运输
在交通规划、交通控制、航空运输等领域 ,运筹学可以优化交通网络设计、提高运 输效率、减少交通拥堵等问题。
运筹学知识点

运筹学知识点运筹学是一门应用广泛的学科,旨在通过科学的方法和技术来解决各种决策和优化问题。
它综合运用数学、统计学、计算机科学等多学科知识,为管理和决策提供有力的支持。
下面让我们来了解一些运筹学的重要知识点。
一、线性规划线性规划是运筹学中最基本也是最重要的内容之一。
它研究的是在一组线性约束条件下,如何找到目标函数的最优解。
例如,一家工厂生产两种产品 A 和 B,生产单位 A 产品需要消耗 2 单位的原材料和 1 单位的劳动力,生产单位 B 产品需要消耗 3 单位的原材料和 2 单位的劳动力。
工厂现有 100 单位的原材料和 80 单位的劳动力,A 产品的单位利润是 5 元,B 产品的单位利润是 8 元。
那么,如何安排生产才能使工厂的利润最大化?解决这个问题,首先要建立线性规划模型。
设生产 A 产品 x 件,生产 B 产品 y 件,目标函数就是利润最大化:Z = 5x + 8y。
约束条件包括原材料限制:2x +3y ≤ 100;劳动力限制:x +2y ≤ 80;以及非负限制:x ≥ 0,y ≥ 0。
通过求解这个线性规划模型,可以得到最优的生产方案,即生产多少 A 产品和多少 B 产品能够使利润达到最大值。
二、整数规划整数规划是在线性规划的基础上,要求决策变量必须取整数的规划问题。
比如,一个项目需要选择一些地点建设仓库,每个地点的建设成本和运营效益不同。
由于仓库的数量必须是整数,这就构成了一个整数规划问题。
整数规划的求解比线性规划更加复杂,常用的方法有分支定界法、割平面法等。
三、动态规划动态规划是解决多阶段决策过程最优化的一种方法。
以资源分配问题为例,假设一家公司有一定数量的资金要在多个项目中进行分配,每个项目在不同的投资水平下有不同的收益。
要在有限的资金条件下,使总收益最大。
这个问题就可以用动态规划来解决。
动态规划的核心思想是将一个复杂的多阶段决策问题分解为一系列相互关联的子问题,通过求解子问题的最优解来逐步得到原问题的最优解。