运筹学图与网络分析胡运权

合集下载

复习2运筹学课件胡运权第四版复习要点

复习2运筹学课件胡运权第四版复习要点
动态规划的基本步骤包括:划分阶段、确定状态、状态转移方程、选择最 优解的策略。
动态规划的解法
01
02
03
04
逆推法
从问题的最后阶段开始, 逆向推导每个子问题的 最优解,直到达到初始 阶段。
递推法
从问题的初始阶段开始, 逐步计算每个子问题的 最优解,直到达到最后 阶段。
分治法
将原问题分解为若干个 子问题,先求解子问题, 再合并子问题的解得到 原问题的最优解。
非线性规划
研究非线性目标函数在一定约束条件下的 最优解问题。
02 线性规划
线性规划的基本概念
01
线性规划是运筹学的一个重要分支,主要研究在一定
约束条件下最大化或最小化线性目标函数的问题。
02
线性规划问题具有明确的目标函数、约束条件和决策
变量,且目标函数和约束条件都是线性函数。
03
线性规划问题可以通过几何意义、图解法和单纯形法
方法
概率加权和、敏感性分析等 。
不确定型决策分析
定义
在不确定型决策中,每个方案的结果是不确定的,无 法用概率来描述。
准则
最大可能准则、乐观准则、悲观准则、遗憾值准则等。
方法
后悔值分析、等概率转换等。
效用函数与决策分析
目的
反映决策者对风险的厌恶或偏好程度,帮助 决策者作出更符合其价值观的决策。
效用函数
等方法求解。
线性规划的解法
单纯形法
单纯形法是求解线性规划问题的最常用方法之一,其基 本思想是通过不断迭代寻找最优解。
迭代过程
在单纯形法中,每次迭代都包括两个步骤,即检验步骤 和修正步骤。
ABCD
初始解
在单纯形法中,需要选择一个初始解,然后通过迭代逐 步逼近最优解。

第六章 图与网络最小支撑树问题运筹学基础及其应用胡运权第五版

第六章 图与网络最小支撑树问题运筹学基础及其应用胡运权第五版
§6.2 最小支撑树问题 Ch6 Graph and Network
Minimum Spanning Tree Problem 2020年2月28日星期五 Page 1 of 5
树、支撑树:
无圈的连通图称为树; 若G1是G2的一个支撑子图并且是一棵树, 则称G1是G2的一棵支撑树。
图6-2(a)、6-2(b)都不是树。想一想,为什么?
求最小树是在一个赋权无向连通图G中求一棵最小支撑树。 求最小树问题的应用: • 电信网络(计算机网络、电话专用线网络、有线电视网络等等) 的设计 • 低负荷运输网络的设计,使得网络中提供链接的部分(如铁路、 公路等 等)的总成本最小 • 高压输电线路网络的设计 电器设备线路网络(如数字计算机系统)的设计,使得线路总长 度最短 • 连接多个场所的管道网络设计
2、树图也是最脆弱的连通图。
§6.2 最小支撑树问题 Ch6 Graph and Network
Minimum Spanning Tree Problem 2020年2月28日星期五 Page 3 of 5
2-2 图的最小支撑树
定义:设G=[V,E,W]是一个赋权无向图,对每一条边ei∈E有 一个权重W(ei) ≥0,G的任意支撑树T各条边的权重之和称为树 T的权重,记为W(T)。权重最小的支撑树称为最小树。
图6-3(a)是一棵树,图6-3(b)是图6-1的一棵支撑树。
v2
e1
e2 e4 v1 e3
e5
v3
e2 v1 v2
e3
e2
v3 v2
v1
v3
e6
e7
e8
e6
e7
e8
v4
v5
图6-1
v5 v4
v5

运筹学教程》胡云权第五版第五章图与网络分析

运筹学教程》胡云权第五版第五章图与网络分析

1S
2
3
3K
B2
2 F 2 26 J
D
H
最小支撑树问题
[例]今有煤气站A,将给一居民区供应煤气,居民区各用 户所在位置如图所示,铺设各用户点的煤气管道所需的 费用(单位:万元)如图边上的数字所示。要求设计一 个最经济的煤气管道路线,并求所需的总费用。
A
E
I
2 C
2 G4
5
1S
2
3
3K
B2
2 2F2
图的基本概念
3、顶点的次
定义5:以点v为端点的边数叫点v的次 (degree),记作deg(v)或d(v)。
图5-1中,d(v1)=4,d(v3)=5,d(v5)=1。 次为奇数的点称作奇点,次为偶数的点称作偶点, 次为0的点称作孤立点。 次为1的点称作悬挂点,连接悬挂点的边为悬挂边。 图的次:各点的次之和。 有向图中顶点的次?
(G1)
(G) (G3)
(G2) (G4)
最小支撑树问题
图的支撑树的应用举例 【例】 某地新建5处居民点,拟修道 路连接5处,经勘测其道路可铺成如 图所示。为使5处居民点都有道路相 连,问至少要铺几条路?
【解】 该问题实为求图的支撑 树问题,共需铺4条路。 v2
v1
5
v2
3.5 4
5.5
3 v5
2
最小支撑树问题
案例分析:默登公司的联网问题
默登(Modern)公司的管理层决定铺设最先进的光纤 网络,为它的主要中心之间提供高速通信。图1中的节点显 示了该公司主要中心的分布图。虚线是铺设光缆可能的位置。 每条虚线旁边的数字表示成本(单位:百万美元)。
问:需要铺设哪些光缆使得总成本最低?
B

运筹学胡运权第五版课件第一章分析

运筹学胡运权第五版课件第一章分析

注意:基解最多
m
Cn
? x1 ? ?? ? x2 ?
??
?? X ? ? xm ?
?0 ? ??
??
? ?
0
? ?
个。
(6)基可行解(基本可行解):满足决策变量非负要求的基解。
(7)可行基:与基可行解对应的基。
(8)基最优解:使目标函数达到最大值的基可行解。
(9)最优基:与基最优解对应的基。
4、线性规划问题各种解之间的关系
单位产品消耗设 I II 设备工时限量
备工时
(小时)
设备A
22
12
设备B
40
16
设备C
05
15
单位利润(元) 2 3
如何安排生产才能使总的利润最大?
解:设计划期内两种产品的数量分别为x1,x2,则总利润为:
z=2 x1+3 x2 在满足限制条件下求z的最大值。
简记为:
max z=2 x1+3 x2
P1 P2 P5
4
304 (最优解)
200
0 是 15
(最优目标函数值)
5 是 14
P1 P3 P5
4
0
4
0 15 是 8
P1 P4 P5
6
0
0 -8 15 否 12
P2 P3 P4
0
3
6 16 0 是 9
P2 P4 P5
0
6
0 16 -15 否 18
P3 P4 P5
0
0 12 16 15 是 0
§1.2 图解法
四、运筹学研究的基本特点
? 系统的整体优化 ? 多学科的配合 ? 模型方法的应用
五、运筹学研究的基本步骤

运筹学(胡运权第四版及答案)

运筹学(胡运权第四版及答案)
管理运筹学
主讲:谢先达
2014.09
联系方式 办公室:QL643 87313663 手机: 13600512360 邮箱: xxdhz@


绪论
什么是运筹学?
运筹学发展历史 运筹学主要内容 运筹学的基本特征与基本方法
绪论
什么是运筹学?
定义:为决策机构在对其控制下业务活动进行决策 时,提供以数量化为基础的科学方法。
概念:可行解、最优解、最优值
第一章:线性规划及单纯形法
练习:靠近某河流有两个化工厂,流经第一化工厂的河流流量为每天 500万m3,在两个工厂之间有一条流量为每天200万m3支流,第一化工厂每 天排放含有某种有害物质的工业污水2万m3 ,第二化工厂每天排放这种 工业污水1.4万m3 。从第一化工厂排出的工业污水流到第二化工厂以前, 有20%可自净化。根据环保要求,河流中工业污水的含量应不大于0.2%, 这两个工厂都需各自处理一部分工业污水,第一化工厂处理工业污水的 成本是1000元/万m3 。第二化工厂处理污水的的成本是800元/万m3 。现 问在满足环保要求的条件下,每厂各应处理多少工业污水,使这两个工 厂总的处理工业污水费用最小。
-x1+x2+x3 = 4
-2x1+x2-x3 ≤ 6 x1 ≤ 0,x2 ≥ 0, x3取值无约束
第一章:线性规划及单纯形法
线性规划问题及其数学模型 线性规划图解法
单纯形法原理
单纯形法计算步骤
单纯形法的进一步讨论
第一章:线性规划及单纯形法
x2
目标函数: 约束条件: maxz=50x1+100x2 x1+x2≤300 2x1+x2≤400 x2≤250 x1≥0 ,x2≥0

《运筹学》胡运权清华版-8-04最大流

《运筹学》胡运权清华版-8-04最大流
交通规划
在城市交通规划中,最大流问题可以用于解决道路流量分配问题, 优化交通流以减少拥堵和提高通行效率。
电力网络
在电力网络中,最大流问题可以用于确定电力的最优传输方案,以 满足不同地区的需求并降低传输损耗。
05
总与展望
最大流问题的重要性和意义
实际应用
最大流问题在现实世界中具有广 泛的应用,如物流网络、交通调 度和电力传输等领域,解决最大 流问题有助于提高这些系统的效 率和可靠性。
03
最大流问题的求解算法分 析
Ford-Fulkerson算法的时间复杂度分析
算法时间复杂度
Ford-Fulkerson算法的时间复杂度为O(VE^2),其中V是顶点的数量,E是边 的数量。
原因分析
该算法通过不断寻找增广路径并更新残量值来求解最大流,每次找到增广路径 都需要遍历所有边,而增广路径的数量最多为E,因此总的时间复杂度为 O(VE^2)。
THANKS
感谢观看
流量
在有向图中,每条边都有一个非 负数表示其流量,表示该边实际 传递的流量。
增广路径与Ford-Fulkerson算法
增广路径
在有向图中,从源点出发,经过若干条边和顶点,最后回到源点的路径。
Ford-Fulkerson算法
通过不断寻找增广路径并更新流量值,最终找到最大流的算法。
预流推进算法(Push-Relabel)
理论价值
最大流问题作为运筹学中的经典 问题,具有重要的理论价值,其 研究有助于推动运筹学和组合优 化理论的深入发展。
挑战性
最大流问题是一个NP难问题,具 有很高的计算复杂度,解决该问 题需要设计高效的算法和优化技 术,具有很大的挑战性。
未来研究方向和展望

运筹学第八章--图与网络分析-胡运权

运筹学第八章--图与网络分析-胡运权
运筹学
赵明霞山西大学经济与管理学院
2
第八章 图与网络分析
图与网络的基本概念 树 最短路问题 最大流问题 最小费用最大流问题
3
柯尼斯堡七桥问题
欧拉回路:经过每边且仅一次 厄尼斯堡七桥问题、邮路问题哈密尔顿回路:经过每点且仅一次 货郎担问题、快递送货问题
例8-9
28
基本步骤标号T(j)→P(j)

29
2017/10/26
30
最长路问题例8-10(7-9)设某台新设备的年效益及年均维修费、更新净费用如表。试确定今后5年内的更新策略,使总收益最大。
役龄项目
0
1
2
3
4
5
效益vk(t)
5
4.5
4
3.75
3
2.5
14
15
柯尼斯堡七桥问题
欧拉回路:经过每边且仅一次 厄尼斯堡七桥问题、邮路问题 充要条件:无向图中无奇点,有向图每个顶点出次等于入次
16
第二节 树
树是图论中的重要概念,所谓树就是一个无圈的连通图。
图8-4中,(a)就是一个树,而(b)因为图中有圈所以就不是树, (c)因为不连通所以也不是树。
7
G=(V,E)关联边(m):ei端(顶)点(n):vi, vj点相邻(同一条边): v1, v3边相邻(同一个端点):e2, e3环:e1多重边: e4, e5
8
简单图:无环无多重边
多重图:多重边
9
完全图:每一对顶点间都有边(弧)相连的简单图
10
次(d):结点的关联边数目d(v3)=4,偶点d(v2)=3,奇点d(v1)=4d(v4)=1,悬挂点e6, 悬挂边d(v5)=0,孤立点
(一)线性(整数)规划法

运筹学基础及应用第五版 胡运权34015电子教案

运筹学基础及应用第五版 胡运权34015电子教案

例:要离最小的方案。
A
5 S
5 B
5
D
T
C
E
4
即求图中的最小部分树
2、求法
方法一: 避圈法 将图中所有的点分V为V两部分, V——最小部分树中的点的集合 V——非最小部分树中的点的集合
⑴ 任取一点vi,令vi∈V,其他点在V中 ⑵ 在V与V相连的边中取一条最短的边(vi,vj), 加粗(vi,vj),令vj∈V ,并在V中去掉vj ⑶ 重复⑵ ,至所有的点均在V之内。

ABCDE F






















解:构造一个六阶图如下: 点:表示运动项目。
边:若两个项目之间有同一名运动员报名参加, 则对应的两个点之间连一条边。
A
F
B
E
C
D
为满足题目要求,应 该选择不相邻的点来 安排比赛的顺序:
A—C—B—F—E—D
或D—E—F—B—C—A
§6.2 树图和图的最小部分树
e4
e5
e6 e7
v3
v4
例如:e6= [v2,v3]
特别的,若边e的两个端点重合,则称e为环。
若两个端点之间多于一条边,则称为多重边。 简单图:无环、无多重边的图。
e7 v4
e3
v1 e8
v5
e5
e6 e2
e1
v3
e4
v2
4、点v的次(或度,degree)
与点v关联的边的条数,记为dG(v)或d(v)。 • 悬挂点 次为1的点,如 v5
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

v5
v6
(b)
v8 v7
图8-4
v1
v2
v8
v3
v4
v9
v5
v7
v6
(c)
图8-4中,(a)就是一个树,而(b)因为图中有圈所以就不是 树, (c)因为不连通所以也不是树。
16
树的基本性质 1. 任意两点间有且仅有一条链 2. 不相邻两点间添加一条边,有且仅有一个圈 3. 任意去掉一条边,得不连通图. 4. 存在悬挂点 5. m=n-1
图是由点和边构成,可以反映一些对象之间的关系。
例如:在一个人群中,对相互认识这个关系我们可以用图 来表示,图8.1就是一个表示这种关系的图。
(赵v1)
e2
(v3)孙
e1
e3
(v2)钱 (v5) 周
e4 (v4) 李
e5 (v6)吴
(v7)陈
图8.1
4
描述对象之间关系, 研究特定关系之间的内在规律, 图中点的相对位置如何、点与点之间联线的长短曲直,对于
定理1 顶点次数总和等于边数的两倍。n d(vi) 2m i 1
定理2 次为奇数的顶点必为偶数个。
2020/6/7
运筹学--线性规划
10
G (V , E), G' (V ', E' )
◦ 若 V ' V , E' E ,则G’是G的子图,G是G’的母图 G' G ◦ 若 V ' V , E' E ,则G’是G的真子图,G' G ◦ 若 V ' V , E' E ,则G’是G的支撑(生成)图。
12
路:有向图:弧的方向与链的方向一致 ◦ 开路:v1v2v4v5 ◦ 回路:第一个点和最后一个点相同。v1v2v4v5v1
13
连通图:若任何两个不同的点之间,至少存在一条链,则 G为连通图。
赋权图:对一个图的每一条边(弧)(vi,vj),相应地有一 个数wij,则称图G为赋权图,wij称为边(vi,vj)上的权。 网络:赋权连通图 ➢无向图:开链即开路,闭链即回路 ➢有向图:弧的方向与链的方向一致。
2020/6/7
运筹学--线性规划
23
m叉树:每个顶点的出次小于等于m 完全m叉树:每个顶点的出次等于m或0
2020/6/7
运筹学--线性规划
24
霍夫曼树:最优二叉树
s
m(T ) min pili i1
2020/6/7
运筹学--线性规划
25
第三节 最短路问题
最短路问题: 对一个赋权的有向图D中的指定的两个点Vs(起点)和Vt (终点)找到一条从 Vs 到 Vt 的路,使得这条路上所有 弧的权数的总和最小,这条路被称之为从Vs到Vt的最短路。 这条路上所有弧的权数的总和被称为从Vs到Vt的距离。
19
例8.1
20
2、避圈算法 步骤:
(1)任找一个点S,其余各点就是 S 。
(2)在连接S与 S 的所有边中,选择权数最小的边(i, k); (3)将最小边(i, k)的另一个端点移入S; (4)若 S 则停止,否则返回(2)。
21
例8.1
22
有向树:不考虑方向时是树
根树(外向树):只有一个顶点入次为0,其余顶点入次为1 ◦ 根:入次为0的顶点 ◦ 叶:出次为0的顶点 ◦ 分支点 ◦ 层次:根到顶点的长度
2020/6/7
运筹学--线性规划
14
柯尼斯堡七桥问题
欧拉回路:经过每边且仅一次 厄尼斯堡七桥问题、邮路问题
充要条件:无向图中无奇点,有向图每个顶点出次等于入次
2020/6/7
15
第二节 树
树是图论中的重要概念,所谓树就是一个无圈的连通图。
v1
v2
v3
v6
v5
v4
v7
v8
v9
(a)
v1
v2
v3
v4
11
链:点边交替序列 ◦ vi0 vik 闭链:v1 v2 v3 v4 v1 ◦ vi0 vik 开链:v1 v2 v3 边不同,简单链:v3 v4 v5v1v6v5 边不同且结点不同,初等链:v1 v2 v3 v4 v5v6 圈:闭链,且至少有3个不同结点,v2 v3 v4 v2 初等圈:初等闭链,v1 v2 v3 v4 v1
2020/6/7
运筹学--线性规划
9
次(d):结点的关联边数目
◦ d(v3)=4,偶点
◦ d(v2)=3,奇点
◦ d(v1)=4 ◦ d(v4)=1,悬挂点 ◦ e6, 悬挂边 ◦ d(v5)=0,孤立点
出次:d+(vi) 入次:d-(vi)
d (vi ) d (vi )
d (vi) = d+(vi) + d-(vi)
2020/6/7
运筹学--线性规划
7
G=(V,E) •关联边(m):ei •端(顶)点(n):vi, vj •点相邻(同一条边): v1, v3 •边相邻(同一个端点):e2, e3
环:e1 多重边: e4, e5
8
ቤተ መጻሕፍቲ ባይዱ
简单图:无环无多重边 多重图:多重边
完全图:每一对顶点间都有边(弧)相连的简单图
运筹学
赵明霞 山西大学经济与管理学院
第八章 图与网络分析
图与网络的基本概念 树 最短路问题 最大流问题 最小费用最大流问题
2
柯尼斯堡七桥问题
欧拉回路:经过每边且仅一次 厄尼斯堡七桥问题、邮路问题
哈密尔顿回路:经过每点且仅一次 货郎担问题、快递送货问题
2020/6/7
3
第一节 图与网络的基本概念
17
生成(支撑)树 若 V ' V , E' E ,则G’是G的支撑(生成)树。
(a)
(b)
(c)
18
最小生成树问题就是指在一个赋权的连通的无向图G中找出一 个生成树,并使得这个生成树的所有边的权数之和为最小。
1、破圈算法 步骤: (1)在给定的赋权的连通图上任找一个圈。 (2)在所找的圈中去掉一个权数最大的边(如果有两条或两 条以上的边都是权数最大的边,则任意去掉其中一条)。 (3)如果所余下的图已不包含圈,则计算结束,所余下的图 即为最小树,否则返回第1步。
(v2)钱
a7
a2
a8
(赵v1)
a14 a15 a3
(v4) 李
a4
a9
(v3)孙
a5
a6
a12
a11
(v5) 周
a10
(v6)吴 a13
(v7)陈
图8.3
6
无向图:由点和边构成的图,记作G =(V,E)。 有向图:由点和弧构成的图,记作D =(V,A)。
◦ 无向图是有向图的基础图G(D)
有限图 无限图
反映对象之间的关系并不是重要的。
e2
(v1) 赵
e1 e3
e4
(v2)钱 孙(v3) 李(v4)
周(v5)
图8.2
e5 吴(v6) 陈(v7)
5
如果我们把上面例子中的“相互认识”关系改为“认识” 的关系,那么只用两点之间的联线就很难刻画他们之间的关 系了,这是我们引入一个带箭头的联线,称为弧。
a1
相关文档
最新文档