运筹学图与网络(I)

合集下载

运筹学8图与网络分析

运筹学8图与网络分析

e3 。在剩下的图中,再取一个圈
定理8.7充分性的证明,提供了一个 寻找连通图支撑树的方法叫做“破圈法”。 就是从图中任取一个圈,去掉一条边。再 对剩下的图重复以上步骤,直到不含圈时 为止,这样就得到一个支撑树。
例8.4 用破圈法求出图8-11的一个支
撑树。
v2
e1
e7 e4
v1
e3 v4
e8
v5
e2
e5
v3
e6
图8-11
取一个圈(v1,v2,v3,v1),在一个圈中去掉边
3
4
初等链:链中所含的 点均不相同, 也称通 路;
5
6
为闭链或回路或圈;
简单圈:如果在一个圈中所含的边均不相同 初等圈:除起点和终点外链中所含的点 均
不相同的圈;
连通图:图中任意两点之间均
至少有一条通路,否则 v1
v4 v5 v8
称为不连通图。
v2
初等链: (v1 , v2 , v3 , v6 ,
图的连通性:
简单链:链中所含的 边均不相同;
圈:若 v0 ≠ vn 则称该链为开链,否 则称
1
2
链:由两两相邻的点及其相 关联的边构成的点边序列。 如:v0 ,e1 ,v1 ,e2 ,v2,e3 ,v3 ,…,vn1 , en , vn ; v0 ,vn 分别为链的起点和终点 。记 作( v0 ,v1 , v2, ,v3 , …, vn-1 , vn )
v5
v7
(v5
,v1v6),(v6
(v4 ,v6),(v5 ,v7)}
,v3),(v5
v6
,v4),
v2
v4
图8.5
下面介绍一些常用的名词:

运筹学(第6章 图与网络分析)

运筹学(第6章 图与网络分析)
a1 (v1) 赵
(v2)钱
a2 a3 a4 a14 a15
a8 a9
a7 (v4) 李
(v3)孙
a5 (v5) 周 a6 a10 (v6)吴
图6-3
a12 a11 a13
(v7)陈

定义: 图中的点用v表示,边用e表示。对每条边可用它
所连接的点表示,记作:e1=[v1,v1]; e2=[v1,v2];
树是图论中结构最简单但又十分重要的图。在自然和社会领 域应用极为广泛。 例6.2 乒乓求单打比赛抽签后,可用图来表示相遇情况,如 下图所示。
运动员 A
B C
D
E
F G
H

例6.3 某企业的组织机构图也可用树图表示。
厂长
人事科
财务科
总工 程师
生产副 厂长
经营副 厂长
开发科
技术科
生产科
设备科
供应科
动力科
e2
(v1) 赵
e1
e3
e4 孙(v3) 李(v4)
周(v5)
图6-2
e5 吴(v6) 陈(v7)
(v2)钱
如果我们把上面例子中的“相互认识”关系改为“认识” 的关系,那么只用两点之间的联线就很难刻画他们之间的关 系了,这是我们引入一个带箭头的联线,称为弧。图6-3就是 一个反映这七人“认识”关系的图。相互认识用两条反向的 弧表示。
端点,关联边,相邻 若有边e可表示为e=[vi,vj],称vi和
e2 v2 e6 e1 e4 v1 e3 v3 e8
vj是边e的端点,反之称边e为点vi
或vj的关联边。若点vi、vj与同一条 边关联,称点vi和vj相邻;若边ei和
e5
e7

第六章-运筹学图与网络优化

第六章-运筹学图与网络优化

9
6 3
3
4
7
2
53
4 31
5
1
7
4
4
第3节 最短路问题
一、最短路的含义
赋权有向图D (V,A),图中各弧(vi,v j )有权wij, vs,vt为图D中任意两点,求一条路P, 使它是从vs到vt的所有路中总权最小的路,
即w(
P
)
min
wij 。
(vi,vj )P
定义:路P的权是P中所有弧的权之和,记为w(P)
习题6-3:用Dijkstra方法求解下图从v1到v9的 最短‘路’。
v2
11
v7
3 6
2
5
5
v5
8
v1
v3
v9
2 4
4
3
7
v4
4
v6
6
v8
第3节 最短路问题
三、最短路问题的应用 ✓ 设备更新问题
第3节 最短路问题
例10:某工厂使用一台设备,每年年初工厂都要作出决定, 如果继续使用旧的,要付维修费;若购买一台新设备, 要付购买费。试制定一个5年的更新计划,使总支出最 少。已知设备在各年的购买费,及不同机器役龄时的 维修费如下表所示:
5
2
5 v6
v4
v7 8
习题6-2
2、
v2
2
v5
5
1
5
1
8
v1
7
5 v4 9
v6
6
v7
2
1
12
v3
第3节 最短路问题
(二)赋权无向图的最短‘路’问题的求解方 法
赋权无向图G=(V,E),边[vi,vj]表示既可以 从vi到达vj,也可以从vj到达vi,所以边[vi, vj]可以看作是两条弧(vi,vj)和(vj,vi),且 它们具有相同的权ωij。

运筹学第八章--图与网络分析-胡运权

运筹学第八章--图与网络分析-胡运权
运筹学
赵明霞山西大学经济与管理学院
2
第八章 图与网络分析
图与网络的基本概念 树 最短路问题 最大流问题 最小费用最大流问题
3
柯尼斯堡七桥问题
欧拉回路:经过每边且仅一次 厄尼斯堡七桥问题、邮路问题哈密尔顿回路:经过每点且仅一次 货郎担问题、快递送货问题
例8-9
28
基本步骤标号T(j)→P(j)

29
2017/10/26
30
最长路问题例8-10(7-9)设某台新设备的年效益及年均维修费、更新净费用如表。试确定今后5年内的更新策略,使总收益最大。
役龄项目
0
1
2
3
4
5
效益vk(t)
5
4.5
4
3.75
3
2.5
14
15
柯尼斯堡七桥问题
欧拉回路:经过每边且仅一次 厄尼斯堡七桥问题、邮路问题 充要条件:无向图中无奇点,有向图每个顶点出次等于入次
16
第二节 树
树是图论中的重要概念,所谓树就是一个无圈的连通图。
图8-4中,(a)就是一个树,而(b)因为图中有圈所以就不是树, (c)因为不连通所以也不是树。
7
G=(V,E)关联边(m):ei端(顶)点(n):vi, vj点相邻(同一条边): v1, v3边相邻(同一个端点):e2, e3环:e1多重边: e4, e5
8
简单图:无环无多重边
多重图:多重边
9
完全图:每一对顶点间都有边(弧)相连的简单图
10
次(d):结点的关联边数目d(v3)=4,偶点d(v2)=3,奇点d(v1)=4d(v4)=1,悬挂点e6, 悬挂边d(v5)=0,孤立点
(一)线性(整数)规划法

运筹学图与网络分析-最短路

运筹学图与网络分析-最短路

(P0
)
min P
(P)
路P0的权称为从vs到vt的距离,记为d(vs,vt)。
求网络上的一点到其它点 的最短路
Dinkstra标号法
这是解决网络中某一点到其它点的最 短路问题时目前认为的最好方法。
适用于有向图权值非负的情况
有向图权值非负---- Dijkstra算法
Dijkstra算法的基本步骤(权值非负) 1、给顶点v1标号(0),v1称为已标号点,记标号点集为
(1,2)
2
2
0
1
2
5
7
(2,4)
3 5 55
7
3
1 (4,4) 3 1
4
6
7
(1,3)
5
④重复上述步骤,直至全部的
点都标完。
(1,2)
2
2
0
1
2
5
7
(2,4)
3 5 55
7
1
3
3
1
4
6
7
(1,3)
5
7
(1,2)
2
2
0
2
7
1
5
(2,4)
35
55
7
1
3
3
1
4
6
7
(1,3)
5
(3,7)
(1,2)
2
2
0
2
7
1
5 3 5 55 7
3
1
3 1
34 5 6
7
④重复上述步骤,直至全部的
(1,2)
点都标完。
2
2
0
2
7
1
5 3 5 55 7

图与网络分析 胡运权 第四版 运筹学PPT课件

图与网络分析 胡运权 第四版 运筹学PPT课件
4
3.关联与相邻
❖关联(边与点的关系):若e是v1、v2两点间
的边,记e=[v1,v2 ],称v1、v2 与e关联。
v1
e
v2
❖相邻(有公共边,称点v1与v2相邻;
边e1与e2 有公共点,称边e1与e2相邻。
e1
V2
V1
e2
V3
5
4. 链、圈与连通图
■链:由图G中的某些点与边相间构成的序列 {V1,e1,V2,e2, ……,Vk,ek},若满足 ei=[Vi, Vi ],则称此
(4)A={v1,v2,v4}
[0,v1]
[2,v1]
2
6
v1
v2
v3
1 [1,v1]10
5
9
3
v4
7
v5
6
5
2
3
4
v6
v7
4
[3,v1]
v8 8
考虑边(v1,v6),(v2,v3),(v2,v5),(v4,v7)
计算min { 0+3, 2+6, 2+5, 1+2}=min {3,8,7,3}=3
70
费用、容量等),则称这样 1
4
的图为网络图。
20
45
3
4.2 最小支撑树问题
C1 根
C2
C3
C4

❖树:无圈的连通图,记为T。
8
❖树的性质
■ 树中任意两个节点间有 且只有一条链。
2
3
1
5
4
■ 在树中任意去掉一条边, 1
则不连通。
2
3
5
4
■如果树T有m个结点,则 边的个数为m-1。

运筹学第六章图与网络分析

运筹学第六章图与网络分析

S
2
4
7
2 A
0 5
S
5 45 B
98
14
5
13
D
T
C
E
4
4
4
7
最短路线:S AB E D T
最短距离:Lmin=13
2.求任意两点间最短距离的矩阵算法
⑴ 构造任意两点间直接到达的最短距离矩阵D(0)= dij(0)
S A B D(0)= C D E T
SABCDET 0 25 4 2 02 7 5 20 1 5 3 4 1 0 4 75 0 15 3 41 0 7 5 7 0
e1 v1
e5
v0 e2
e3
v2
e4
e6 e7
v3
v4
(4)简单图:无环、无多重边的图称为简单图。
(5)链:点和边的交替序列,其中点可重复,但边不能 重复。
(6)路:点和边的交替序列,但点和边均不能重复。
(7)圈:始点和终点重合的链。
(8)回路:始点和终点重合的路。
(9)连通图:若一个图中,任意两点之间至少存在一条 链,称这样的图为连通图。 (10)子图,部分图:设图G1={V1,E1}, G2={V2,E2}, 如果有V1V2,E1E2,则称G1是G2的一个子图;若 V1=V2,E1E2,则称G1是G2的一个部分图。 (11)次:某点的关联边的个数称为该点的次,以d(vi)表示。
步骤:
1. 两两连接所有的奇点,使之均成为偶点;
2. 检查重复走的路线长度,是否不超过其所在 回路总长的一半,若超过,则调整连线,改 走另一半。
v1
4
v4
4
1
4
v2
v5
5

运筹学第6章 图与网络

运筹学第6章 图与网络

也就是说| V1 |必为偶数。
定理6.2有学者也称作定理6.1的推论。根据定理6.2,握手定理也可以 表述为,在任何集体聚会中,握过奇次手的人数一定是偶数个。
12 该课件的所有权属于熊义杰
另外,现实中不存在面数为奇数且每个面的边数也是奇数的多面 体,如表面为正三角形的多面体有4个面,表面为正五边形的多面体有 12个面等等,也可以用这一定理予以证明。因为在任意的一个多面体 中, 当且仅当两个面有公共边时,相应的两顶点间才会有一条边,即 任意多面体中的一个边总关联着两个面。所以,以多面体的面数为顶
v j V2
(m为G中的边数)
因式中 2m 是偶数, d (v j ) 是偶数,所以 d (vi ) 也必为偶数
v j V2
vi V1
( 两个同奇同偶数的和差必为偶数 ), 同时,由于 d (vi ) 中的每个加数 d (vi )
均为奇数,因而 d (vi ) 为偶数就表明, d (vi ) 必然是偶数个加数的和 ,
图论、算法图论、极值图论、网络图论、代数图论、随机图论、 模糊图论、超图论等等。由于现代科技尤其是大型计算机的迅 猛发展,使图论的用武之地大大拓展,无论是数学、物理、化 学、天文、地理、生物等基础科学,还是信息、交通、战争、 经济乃至社会科学的众多问题.都可以应用图论方法子以解决。
1976年,世界上发生了不少大事,其中一件是美国数学家 Appel和Haken在Koch的协作之下,用计算机证明了图论难题— —四色猜想(4CC):任何地图,用四种颜色,可以把每国领土染 上一种颜色,并使相邻国家异色。4CC的提法和内容十分简朴, 以至于可以随便向一个人(哪怕他目不识丁)在几分钟之内讲清 楚。1852年英国的一个大学生格思里(Guthrie)向他的老师德·摩 根(De Morgan)请教这个问题,德·摩根是当时十分有名的数学家, 他不能判断这个猜想是否成立,于是这个问题很快有数学界流 传开来。1879年伦敦数学会会员Kemple声称,证明了4CC成立, 且发表了论文。10年后,Heawood指出了Kemple的证明中
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二节欧拉图和哈密尔顿回路
一、欧拉图
欧拉(Euler)在1736年发表的关于图论方面的第一篇论文,解决了一个著名问题,称为哥尼斯堡七桥问题,从而使他成为图论的创始人。

问题是这样的:十八世纪的德国有座哥尼斯堡城,在流贯全城的普格尔河两岩和河中两个岛之间架设了七座桥,如图6.10(a)所示。

当时那里的居民热衷于这样一个游戏,即一个散步者能否从任一陆地出发,走过每座桥一次且仅走过一次,最后回到原地。

问题乍看起来很简单,但当时谁也不明白为什么没有人能够成功。

为了弄清这个问题,欧拉将每一块陆地用一顶点表示,每一座桥用连接相应的两个顶点的连线(即边)来代替,从而得到一个“图”(图 6.10(b))。

这个“图”使问题变得简洁明了。

直观上不难发现,为了能回到原来的陆地,要求与每个顶点(陆地)相关联的边数是偶数,这样才能保证从一条边出去,从另一条边回来。

由于在图6.10(b)中,与四个顶点相连的边数都是奇数,因而不可能
自任一顶点出发过每条边一次且仅一次而回到原地。

(a)图6.10(b)欧拉并不限于处理这个特殊事例,他推广了这个问题,提出并证明了下述定理。

定义1 在连通无向图G中,若存在经过每条边恰好一次的一个圈或一条链,就称此圈或链为欧拉圈或欧拉链。

或图G含一条欧拉圈,则称它为欧拉图。

显然,欧拉圈或欧拉链都可“一笔画出”;反之,若一个图能一笔画出,则它必然是欧拉圈或欧拉链。

定理1连通无向图G为欧拉图的充要条件是它的全部顶点都是偶次顶点。

事实上,若G是欧拉图,C是其欧拉圈,则由定义,C包含G的所有边,由于图连通,故亦包含所有顶点。

C是任一中间顶点每出现一次,必与两条不同的边相关联,另因C的起点也是终点,故所有顶点都是偶次顶点。

定理2 连通无向图G为欧拉链的充要条件是它恰含两个奇次顶点。

上述定理提供了判断一笔画问题的准则:若连通无向图G无奇次顶点,则可由任一点起一笔画成并回到起点;若有两个奇次顶点,则由一奇次顶点起到另一奇次顶点终可一笔画成。

为能将一个图一笔画下去,当去掉已画出部分时,乘下的部分不应成为不连通图。

二、哈密尔顿回路
1859年英国数学家哈密尔顿(Hamilton)提出了一种名为周游世界的游戏。

他用一个正十二面体的二十个顶点(参见图6.11),代表二十个大城市,要求沿着棱,从一个城市出发,经过每个城市恰好一次,然后回到出发点。

为了解答这个问题,现绘制一个如图6.12所示的平面图,它与图6.11所示的十二面体图同构。

由图6.12中粗线边组成的圈,符合哈密尔顿提出的要求,所以它是这个问题的一个解,需指出的是这个问题的解还不止一个。

如果不要求最后回到出发点,那么,解就更多了。

在一个图中,如果有一条链(圈)经过每个顶点恰好一次,那么这条链(圈)就称为哈密尔顿链(圈)。

表面上,哈密尔顿问题与欧拉问题很相似,但实际上,两者迥不同。

前者指的是过每个顶点恰好一次的回路,而后者说的是过每边恰好一次的圈。

用定理1很容易判断一个图是否为欧拉图,而求解哈密尔顿回路,迄今还没有比较简单的通用方法。

图6.11 图6.12
哈密尔顿回路是图论的重要课题之一,它具有重要的实际意义。

著名的旅行推销员问题(或称货郎担问题),就是要求出总路程最短的哈密尔顿回路。

三、中国邮路问题
某邮递员从邮局出发,走过每条街道至少一次去投递邮件,最后回到邮局,他应走什么样的路线才能使所走的总路程最短?这个问题是我国管梅谷教授于1962年首先研究的,国际上通称为中国邮路问题。

在邮递员服务范围的街道图上标明各条街的路长,就构成了一连通赋权图G。

若G无奇次顶点,根据定理1,G就是欧拉图,因每边仅过一次,故总权是最小的。

若G有奇次顶点,则它就不是欧拉图,然而题设条件是要求过每边至少一次,并未限制只许一次,故总可以在这些奇次顶点上添加一些与原图的边相重复的边,使这些奇次顶点成为偶次顶点,从而得到一个将重复边看成是另一条新边的欧拉图。

现在的问题是这些重复边如何添加,才能得到一个总权(总路长)最小的欧拉图。

定理3使图G成为总权最小的欧拉图的充要条件是:
(1)在有奇次顶点的图G中,通过加重复边的方法使图不再包含奇次顶点,但原图的每条边最多只能加一条重复边。

(2)在图G 的每个回路上,重复边之总权不超过该回路非重复边之总权。

根据以前的分析,本定理是显然的。

例1 试为图6.13(a )构成总权最小的欧拉图,图中线旁的数字为相应边的权。

(a ) (b )
图6.13
解 因顶点①和③为奇次,要使成欧拉图,需用加重复边的方法使这两个顶点变为偶次。

最易想到的作法是在边)3,1(e (即在顶点①与③之间)上加重复边,将其变为欧拉图。

但由于在回路(1,3,4)中)3,1(e 的权大于该回路总权(等于
7)的一半,故这样得到的欧拉图不是总权最小的欧拉图。

如在边)4,1(e 和)4,3(e 上加重复边(图6.13(b )),则可满足定理3的要求,从而得总权最小的欧拉图(总权等于15)。

通过难于一次找到总权最小的欧拉图,这时可通过对欧拉图的逐步调整达到总权极小化,即对每一回路进行检查,不满足定理3时就调整重复边,但在该过程中始终保持各顶点的次数为偶数。

例2 试为图6.14(a )所示的街道规划最优投递路线。

解 可按以上所述步骤进行,最终结果示于图6.14(b ),总权等于52,重复边的长度等于10。

(a ) (b )
图6.14
四、旅行售货员问题
一个旅行售货员想去某些城镇售货,然后再回到他的出发地。

各城镇之间的路程是已知的,问应如何安排他的旅行路线,才能使他经过每个城镇恰好一次,且总路程最短。

用图论的术语来说,就是在一个加权图中,找出一条总权最小的哈密尔顿回路。

到目前为止,旅行售货员问题还没有有效的通用算法。

假如采用枚举法,售货员从城市i v 出发,去1v ,2v ,…,n v 城市售货,则有)!1(-n 种可能方案。

随着n 的增加,)!1(-n 的值迅速增加,例如当n =20时,)!1(-n =1.216×1710。

对这么多个方案逐个计算并比较,显然是不可能的。

下面介绍一种近似解法。

首先任取一条哈密尔顿回路,不失一般性,它经过的顶点序列为1v ,2v ,…,i v ,1+i v …,j v ,1+j v ,…,n v ,若对某一对顶点i v 和j v ,相应边权有如下关系:
),(),(11+++j i j i v v w v v w <),(),(11+++j j i i v v w v v w 则用边),(j i v v 和边),(11++j i v v
替换边),(1+i i v v 和边),(1+j j v v (参见图6.15),可
得另一哈密尔顿回路,其权更小。

用这种方法对
哈密尔顿回路进行若干次改进,即可获得比较好
的回路。

例3 用上述近似法对图6.16(a )中的回 图6.15
路(1v ,2v ,3v ,4v ,5v ,6v ,1v )进行改进。

图6.16
解 其各次改进方案示于图6.16(b )、6.16(c )和图6.16(d )中。

图中各边旁的数字为该边的权,双线表示相应方案的哈密尔顿回路,图右下角括号内的数字为该回路的总权。

相关文档
最新文档