运筹学图与网络分析-最短路
合集下载
运筹学(第6章 图与网络分析)

a1 (v1) 赵
(v2)钱
a2 a3 a4 a14 a15
a8 a9
a7 (v4) 李
(v3)孙
a5 (v5) 周 a6 a10 (v6)吴
图6-3
a12 a11 a13
(v7)陈
定义: 图中的点用v表示,边用e表示。对每条边可用它
所连接的点表示,记作:e1=[v1,v1]; e2=[v1,v2];
树是图论中结构最简单但又十分重要的图。在自然和社会领 域应用极为广泛。 例6.2 乒乓求单打比赛抽签后,可用图来表示相遇情况,如 下图所示。
运动员 A
B C
D
E
F G
H
例6.3 某企业的组织机构图也可用树图表示。
厂长
人事科
财务科
总工 程师
生产副 厂长
经营副 厂长
开发科
技术科
生产科
设备科
供应科
动力科
e2
(v1) 赵
e1
e3
e4 孙(v3) 李(v4)
周(v5)
图6-2
e5 吴(v6) 陈(v7)
(v2)钱
如果我们把上面例子中的“相互认识”关系改为“认识” 的关系,那么只用两点之间的联线就很难刻画他们之间的关 系了,这是我们引入一个带箭头的联线,称为弧。图6-3就是 一个反映这七人“认识”关系的图。相互认识用两条反向的 弧表示。
端点,关联边,相邻 若有边e可表示为e=[vi,vj],称vi和
e2 v2 e6 e1 e4 v1 e3 v3 e8
vj是边e的端点,反之称边e为点vi
或vj的关联边。若点vi、vj与同一条 边关联,称点vi和vj相邻;若边ei和
e5
e7
(v2)钱
a2 a3 a4 a14 a15
a8 a9
a7 (v4) 李
(v3)孙
a5 (v5) 周 a6 a10 (v6)吴
图6-3
a12 a11 a13
(v7)陈
定义: 图中的点用v表示,边用e表示。对每条边可用它
所连接的点表示,记作:e1=[v1,v1]; e2=[v1,v2];
树是图论中结构最简单但又十分重要的图。在自然和社会领 域应用极为广泛。 例6.2 乒乓求单打比赛抽签后,可用图来表示相遇情况,如 下图所示。
运动员 A
B C
D
E
F G
H
例6.3 某企业的组织机构图也可用树图表示。
厂长
人事科
财务科
总工 程师
生产副 厂长
经营副 厂长
开发科
技术科
生产科
设备科
供应科
动力科
e2
(v1) 赵
e1
e3
e4 孙(v3) 李(v4)
周(v5)
图6-2
e5 吴(v6) 陈(v7)
(v2)钱
如果我们把上面例子中的“相互认识”关系改为“认识” 的关系,那么只用两点之间的联线就很难刻画他们之间的关 系了,这是我们引入一个带箭头的联线,称为弧。图6-3就是 一个反映这七人“认识”关系的图。相互认识用两条反向的 弧表示。
端点,关联边,相邻 若有边e可表示为e=[vi,vj],称vi和
e2 v2 e6 e1 e4 v1 e3 v3 e8
vj是边e的端点,反之称边e为点vi
或vj的关联边。若点vi、vj与同一条 边关联,称点vi和vj相邻;若边ei和
e5
e7
运筹学-图论

以可允许的10个状态向量作为顶点,将可能互相转移的状态用线段连接起 来构成一个图。
根据此图便可找到渡河方法。
(1,1,1,1) (1,1,1,0) (1,1,0,1) (1,0,1,1) (1,0,1,0) (0,0,0,0) (0,0,0,1) (0,0,1,0) (0,1,0,0) (0,1,0,1)
简单链:(v1 , v2 , v3 , v4 ,v5 , v3 )
v2
简单圈: (v4 , v1 , v2 , v3 , v5 , v7 , v6 ,v3 , v4 )
v6
v4
v5
v3
v7
连通图:图中任意两点之间均至少有一条通路,否则称为不连通 图。
v1 v5
v1
v6
v2
v2
v4
v3
v5
v4
v3
连通图
以后除特别声明,均指初等链和初等圈。
不连通图
有向图:关联边有方向 弧:有向图的边 a=(u ,v),起点u ,终点v; 路:若有从 u 到 v 不考虑方向的链,且 各方向一致,则称之为从u到v 的 路; 初等路: 各顶点都不相同的路; 初等回路:u = v 的初等路; 连通图: 若不考虑方向是
无向连通图; 强连通图:任两点有路;
端点的度 d(v):点 v 作为端点的边的个数 奇点:d(v)=奇数;
偶点:d(v) = 偶数; 悬挂点:d(v)=1; 悬挂边:与悬挂点连接的边; 孤立点:d(v)=0; 空图:E = ,无边图
v1
v3
v5 v6
v2
v4
图 5.7
v5
v4
V={v1 , v2 , v3 , v4 , v5 ,v6 , v7 }
圈:若 v0 ≠ vn 则称该链为开链,否则称为闭链或 回路或圈;
根据此图便可找到渡河方法。
(1,1,1,1) (1,1,1,0) (1,1,0,1) (1,0,1,1) (1,0,1,0) (0,0,0,0) (0,0,0,1) (0,0,1,0) (0,1,0,0) (0,1,0,1)
简单链:(v1 , v2 , v3 , v4 ,v5 , v3 )
v2
简单圈: (v4 , v1 , v2 , v3 , v5 , v7 , v6 ,v3 , v4 )
v6
v4
v5
v3
v7
连通图:图中任意两点之间均至少有一条通路,否则称为不连通 图。
v1 v5
v1
v6
v2
v2
v4
v3
v5
v4
v3
连通图
以后除特别声明,均指初等链和初等圈。
不连通图
有向图:关联边有方向 弧:有向图的边 a=(u ,v),起点u ,终点v; 路:若有从 u 到 v 不考虑方向的链,且 各方向一致,则称之为从u到v 的 路; 初等路: 各顶点都不相同的路; 初等回路:u = v 的初等路; 连通图: 若不考虑方向是
无向连通图; 强连通图:任两点有路;
端点的度 d(v):点 v 作为端点的边的个数 奇点:d(v)=奇数;
偶点:d(v) = 偶数; 悬挂点:d(v)=1; 悬挂边:与悬挂点连接的边; 孤立点:d(v)=0; 空图:E = ,无边图
v1
v3
v5 v6
v2
v4
图 5.7
v5
v4
V={v1 , v2 , v3 , v4 , v5 ,v6 , v7 }
圈:若 v0 ≠ vn 则称该链为开链,否则称为闭链或 回路或圈;
运筹学第八章--图与网络分析-胡运权

运筹学
赵明霞山西大学经济与管理学院
2
第八章 图与网络分析
图与网络的基本概念 树 最短路问题 最大流问题 最小费用最大流问题
3
柯尼斯堡七桥问题
欧拉回路:经过每边且仅一次 厄尼斯堡七桥问题、邮路问题哈密尔顿回路:经过每点且仅一次 货郎担问题、快递送货问题
例8-9
28
基本步骤标号T(j)→P(j)
29
2017/10/26
30
最长路问题例8-10(7-9)设某台新设备的年效益及年均维修费、更新净费用如表。试确定今后5年内的更新策略,使总收益最大。
役龄项目
0
1
2
3
4
5
效益vk(t)
5
4.5
4
3.75
3
2.5
14
15
柯尼斯堡七桥问题
欧拉回路:经过每边且仅一次 厄尼斯堡七桥问题、邮路问题 充要条件:无向图中无奇点,有向图每个顶点出次等于入次
16
第二节 树
树是图论中的重要概念,所谓树就是一个无圈的连通图。
图8-4中,(a)就是一个树,而(b)因为图中有圈所以就不是树, (c)因为不连通所以也不是树。
7
G=(V,E)关联边(m):ei端(顶)点(n):vi, vj点相邻(同一条边): v1, v3边相邻(同一个端点):e2, e3环:e1多重边: e4, e5
8
简单图:无环无多重边
多重图:多重边
9
完全图:每一对顶点间都有边(弧)相连的简单图
10
次(d):结点的关联边数目d(v3)=4,偶点d(v2)=3,奇点d(v1)=4d(v4)=1,悬挂点e6, 悬挂边d(v5)=0,孤立点
(一)线性(整数)规划法
赵明霞山西大学经济与管理学院
2
第八章 图与网络分析
图与网络的基本概念 树 最短路问题 最大流问题 最小费用最大流问题
3
柯尼斯堡七桥问题
欧拉回路:经过每边且仅一次 厄尼斯堡七桥问题、邮路问题哈密尔顿回路:经过每点且仅一次 货郎担问题、快递送货问题
例8-9
28
基本步骤标号T(j)→P(j)
29
2017/10/26
30
最长路问题例8-10(7-9)设某台新设备的年效益及年均维修费、更新净费用如表。试确定今后5年内的更新策略,使总收益最大。
役龄项目
0
1
2
3
4
5
效益vk(t)
5
4.5
4
3.75
3
2.5
14
15
柯尼斯堡七桥问题
欧拉回路:经过每边且仅一次 厄尼斯堡七桥问题、邮路问题 充要条件:无向图中无奇点,有向图每个顶点出次等于入次
16
第二节 树
树是图论中的重要概念,所谓树就是一个无圈的连通图。
图8-4中,(a)就是一个树,而(b)因为图中有圈所以就不是树, (c)因为不连通所以也不是树。
7
G=(V,E)关联边(m):ei端(顶)点(n):vi, vj点相邻(同一条边): v1, v3边相邻(同一个端点):e2, e3环:e1多重边: e4, e5
8
简单图:无环无多重边
多重图:多重边
9
完全图:每一对顶点间都有边(弧)相连的简单图
10
次(d):结点的关联边数目d(v3)=4,偶点d(v2)=3,奇点d(v1)=4d(v4)=1,悬挂点e6, 悬挂边d(v5)=0,孤立点
(一)线性(整数)规划法
运筹学-图与网络模型以及最小费用最大流(高级课堂)

v4
v5
高等课堂 7
图与网络的基本概念与模型
环, 多重边, 简单图
e1
如果边e的两个端点相重,称该边为 环。如右图中边e1为环。如果两个点 v2
e2
e4 v1e3
v3
之间多于一条,称为多重边,如右图
e5
中的e4和e5,对无环、无多重边的图
e6
e7
e8
称作简单图。
v4
v5
高等课堂 8
图与网络的基本概念与模型
的长度(单位:公里)。
17
v2
5
6
15
6 v4
V1
(甲地)
43
10
4
4
2
v5
v6
解:这是一个求v3无向图的最短路的问题。可以把无向图的每一边
(vi,vj)都用方向相反的两条弧(vi,vj)和(vj,vi)代替,就化为有向图,
即可用Dijkstra算法来求解。也可直接在无向图中用Dijkstra算法来求解。
最短路问题
最短路问题:对一个赋权的有向图D中的指定的两个点Vs和Vt找 到一条从 Vs 到 Vt 的路,使得这条路上所有弧的权数的总和最小, 这条路被称之为从Vs到Vt的最短路。这条路上所有弧的权数的总 和被称为从Vs到Vt的距离。
• 求最短路有两种算法:
狄克斯屈拉(Dijkstra)(双标号)算法 逐次逼近算法
• 图论中图是由点和边构成,可以反映一些对象之间的关系。 • 一般情况下图中点的相对位置如何、点与点之间联线的长短曲
直,对于反映对象之间的关系并不是重要的。
图的定义(P230)
若用点表示研究的对象,用边表示这些对象之间的联系,则图 G可以定义为点和边的集合,记作:
运筹学:第2章 图与网络分析 第3节 最短路

年份 购置费 使用年数 维修费
1
2
3
4
5
18 20 21 23 24
0~1 1~2 2~3 3~4 4~5
5
7 12 18 25
方法:将此问题用一个赋权有向图来描述,然后求这个赋权有向图 的最短路。
求解步骤:
1)画赋权有向图:
设 vi 表示第i年初, (vi ,vj )表示第i 年初购买新设备用到第j年初(j-1年底), 而wi j 表示相应费用, 则5年的一个更新计划相当于从v1 到v6的一条路。 2)求解 (标号法)
v5 29
45
v6
62
算法步骤:
1.给始点v1标号[0,v1] 。
2. :把顶点集V分成VA :已标号点集 VB :未标号点集
3.考虑所有这样的边[vi ,vj] :其中vi VA ,v j VB ,挑选
其与起点v1距离最短(mindi cij )的vj,对vj进行标号
4.重复步骤2、3,直至终点vn标上号[dn ,vj],则dn 即为vs到
第三节 最短路问题
例:求网络图中,起点v1到终点v8之间的一条最短
路线。
v2
1
v5
6
2
3
6
v1
v3
2
v9
6 3
10 3
1
2
v8
4
2 v7
v4
10
v6
(一)、 狄克斯拉(Dijkstra)标号算法
Байду номын сангаас
基本思想:从起点vs 开始,逐步给每个结点vj标号[dj ,vi],其
中dj为起点vs到vj的最短距离, vi为该最短路线上的前一结点。
vj的最短距离,反向追踪可求出最短路。
运筹学6(图与网络分析)

定义7:子图、生成子图(支撑子图)
图G1={V1、E1}和图G2={V2,E2}如果 V1 V2和E1 E2 称G1是G2的一个子图。
若有 V1=V2,E1 E2 则称 G1是G2的一 个支撑子图(部分图)。
图8-2(a)是图 6-1的一个子图,图8-2 (b)是图 8-1的支撑子图,注意支撑子图 也是子图,子图不一定是支撑子图。 e1
v2 ▲如果链中所有的顶点v0,v1,…,vk也不相
e1 e2 e4 v1 e3
v3 e5
同,这样的链称初等链(或路)。
e6
▲如果链中各边e1,e2…,ek互不相同称为简单链。
e7
e8
▲当v0与vk重合时称为回路(或圈),如果边不 v4
v5
重复称为简单回路,如果边不重复点也不重复
则称为初等回路。
图8-1中, μ1={v5,e8,v3,e3,v1,e2,v2,e4,v3,e7,v5}是一条链,μ1中因顶 点v3重复出现,不能称作路。
e1
e2 e4 v1 e3
v2
v3
e5
e6
e7
e8
v4
v5
定理1 任何图中,顶点次数的总和等于边数的2倍。
v1
v3
v2
定理2 任何图中,次为奇数的顶点必为偶数个。
e1
e2 e4 v1 e3
v2
v3
e5
e6
e7
e8
v4
v5
定义4 有向图: 如果图的每条边都有一个方向则称为有向图
定义5 混合图: 如何图G中部分边有方向则称为混合图 ② ⑤ ④
定理4 有向连通图G是欧拉图,当且仅当G中每个顶点的出 次等于入次。
② 15
9 10
运筹学第6章 图与网络

也就是说| V1 |必为偶数。
定理6.2有学者也称作定理6.1的推论。根据定理6.2,握手定理也可以 表述为,在任何集体聚会中,握过奇次手的人数一定是偶数个。
12 该课件的所有权属于熊义杰
另外,现实中不存在面数为奇数且每个面的边数也是奇数的多面 体,如表面为正三角形的多面体有4个面,表面为正五边形的多面体有 12个面等等,也可以用这一定理予以证明。因为在任意的一个多面体 中, 当且仅当两个面有公共边时,相应的两顶点间才会有一条边,即 任意多面体中的一个边总关联着两个面。所以,以多面体的面数为顶
v j V2
(m为G中的边数)
因式中 2m 是偶数, d (v j ) 是偶数,所以 d (vi ) 也必为偶数
v j V2
vi V1
( 两个同奇同偶数的和差必为偶数 ), 同时,由于 d (vi ) 中的每个加数 d (vi )
均为奇数,因而 d (vi ) 为偶数就表明, d (vi ) 必然是偶数个加数的和 ,
图论、算法图论、极值图论、网络图论、代数图论、随机图论、 模糊图论、超图论等等。由于现代科技尤其是大型计算机的迅 猛发展,使图论的用武之地大大拓展,无论是数学、物理、化 学、天文、地理、生物等基础科学,还是信息、交通、战争、 经济乃至社会科学的众多问题.都可以应用图论方法子以解决。
1976年,世界上发生了不少大事,其中一件是美国数学家 Appel和Haken在Koch的协作之下,用计算机证明了图论难题— —四色猜想(4CC):任何地图,用四种颜色,可以把每国领土染 上一种颜色,并使相邻国家异色。4CC的提法和内容十分简朴, 以至于可以随便向一个人(哪怕他目不识丁)在几分钟之内讲清 楚。1852年英国的一个大学生格思里(Guthrie)向他的老师德·摩 根(De Morgan)请教这个问题,德·摩根是当时十分有名的数学家, 他不能判断这个猜想是否成立,于是这个问题很快有数学界流 传开来。1879年伦敦数学会会员Kemple声称,证明了4CC成立, 且发表了论文。10年后,Heawood指出了Kemple的证明中
运筹学05_图与网络分析2-最短路

根 据 Dijkstra 算 法 , 可 以 得 出 从 v1 到 v2 最 短路权是2,但是这显然不对,因为从v1到 v2的最短路是(v1, v3, v2),权是-1。
2
v1
v2
2
-3
vh 3
38
有向图某些权值为负
逐次逼近算法
1、先对图中各个点按照Dijkstra算法标号,称之为第 一次标号,令m=1,转入第二步;
2.5
3
1
2
v3
4 3
4
v7 2
v4
v9
4 v8
h
27
v5
3
5
3
3 0 v1
v2
3
2
v6
2.5
3
1
2
v3
4 3
4
v7 2
v4
v9
4 v8
h
28
v5
3
5
3
3 0 v1
v2
3
v6
2.5
2
53
1
2
v3
4 3
4
v7 2
v4
v9
4 v8
h
29
v5
3
5
3
3 0 v1
v2
3
v6
2.5
2
53
1
2
v3
4 3
4
v7 2
h
60
v1 v2 v3 v4 v5 v6 0 0 12 1 04 5 2 2 0 5 5 1 4 0 6 v5 2 3 0 v6 2 2 0
h
61
v1 v2 v3 v4 v5 v6 0 0 12 1 04 5 2 2 05 5 1 4 0 6 3 23 0 v6 2 2 0
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(P0
)
min P
(P)
路P0的权称为从vs到vt的距离,记为d(vs,vt)。
求网络上的一点到其它点 的最短路
Dinkstra标号法
这是解决网络中某一点到其它点的最 短路问题时目前认为的最好方法。
适用于有向图权值非负的情况
有向图权值非负---- Dijkstra算法
Dijkstra算法的基本步骤(权值非负) 1、给顶点v1标号(0),v1称为已标号点,记标号点集为
(1,2)
2
2
0
1
2
5
7
(2,4)
3 5 55
7
3
1 (4,4) 3 1
4
6
7
(1,3)
5
④重复上述步骤,直至全部的
点都标完。
(1,2)
2
2
0
1
2
5
7
(2,4)
3 5 55
7
1
3
3
1
4
6
7
(1,3)
5
7
(1,2)
2
2
0
2
7
1
5
(2,4)
35
55
7
1
3
3
1
4
6
7
(1,3)
5
(3,7)
(1,2)
2
2
0
2
7
1
5 3 5 55 7
3
1
3 1
34 5 6
7
④重复上述步骤,直至全部的
(1,2)
点都标完。
2
2
0
2
7
1
5 3 5 55 7
3
1
4
3
1
6
7
(1,3)
5
④重复上述步骤,直至全部的
点都标完。
(1,2)
2
2
0
1
2
5
4
7
3 5 55
7
1
3
3
1
4
6
7
(1,3)
5
④重复上述步骤,直至全部的
点都标完。
一个图有5个点,8条边。这个图一定是
A.连通图 B.树 C.完全图 D.不连通图
连通图G有n个点,其部分树是T,则有
A.T有n个点n条边 B.T的长度等于G的每条边的长度之和 C.T有n个点n-1条边 D.T有n-1个点n条边
某人要从上海乘飞机到奥地利首都维也纳, 他希望选择一条航线,经过转机,使他在空 中飞行的时间尽可能短。该问题可转化为
v7 2
v4
v9
4 v8
1,3 3 0 v1
4
v5
3
5
v2
3
v6
2.5
2 2,5 3
1
2
v3
1,4
3
v4
v7 2
v9
4 v8
1,3 3 0 v1
4
v5
3
5
v2
3
v6
2.5
2 2,5 3
27
2
2
15
3 5 55 7
1
3
3
1
4
6
7
5
2
权wij(dij) 距离、价格
2
2
15 3
点(vi)
边eij或记为(vi,vj)
①从点1出发,因L11=0, 在点1处标记 0
27
02
2
15
3 5 55 7
3
1
4
3
1
6
7
5
从已标号的点出发,找与这些
相邻点最小权数(距离)者,找
2 到之后:标号;边变红。
A.最短路线问题求解 B.最大流量问题求解 C.最小树问题求解 D.中国邮递员问题求
21
2
6
5
08
7
1
17
2
1
9
32
5
9 3
79
66
11 2 13
431 4
9
1
10
21
2
6
5
08
7
1
17
2
1
9
32
5
9 3
79
66
11 2 13
431 4
9
1
10
一般的最短路问题描述:
给定一个赋权有向图D=(V,A),对每一个弧a=(vi,vj),相应 地有权w(a)=wij,又给定D中的任何两个顶点vs和vt ,设P是 从vs到vt的路,定义路P的权是P中所有弧之和,记为w(P), 最短路问题就是要在所有从vs到vt的路中,求一条权最小的路, 即一条从vs到vt的路P0使得:
最短路问题
最短(通)路问题是最重要的 优化问题之一,例如各种管道的 铺设、线路的安排、厂区的布局、 设备的更新及运输网络的最小费 用流等。(最短距离、费时最少、 费用最省)
破圈法是:任取一圈,去掉圈中最长边,直 到无圈
避圈法是:去掉图中所有边,从最短边开始 添加,加边的过程中不能形成圈,直到连通 (n-1条边)
一个连通的无向图叫做树 树 无圈,但不相邻的两个点之间加一条边, 得到一个圈 树 中任意两个顶点之间,恰有且仅有一条链
下图中右图是支撑树
v2
e1 v1
e6 e7
e2
v3
e8 e9
e3
v7
e10 v4 e11 e4
v6 e5 v5
(a)
v2
e1
e8
v1
e6 e7 v7
v6 e5
v5
(b)
一个连通图能一笔画的条件是: 它没有奇点;或者它恰好有一个奇点。
2
0
1
2
5
(2,4)
3
5
78
55
7
1
3
3
1
4
6
7
(1,3)
5
(3,7)
(1,2)
2
2
0
1
2
5
(2,4)
3
7
5
(6,8)
55
7
1
3
3
1
4
6
7
(1,3)
5
(3,7)
(1,2)
2
2
0
15
1 3
4
(1,3)
2
(2,4)
3
5
7 (6,8)
5 55
3
1
6
7
(3,7)
(5,13)
7
(1,2)
2
2
0
15
1 3
2
7 2
0
15
3 5 55 7
1
3
3
1
4
6
7
5
(1,2)
2
2
0
7 2
15
3 5 55 7
1
3
3
1
4
6
7
5
③从已标号的点出发,找与这
(1,2)
2
些相邻点最小权数(距离)者, 找到之后:标号;边变红。
2
0
2
7
1
5 3 5 55 7
1
3
3
1
4
6
7
5
③从已标号的点出发,找与这
(1,2)
2
些相邻点最小权数(距离)者, 找到之后:标号;边变红。
4
(1,3)
2
(2,4)
3
5
7 (6,8)
5 55
3
1
6
7
(3,7)
(5,13)
7
对有向图同样可以用标号算法:
例2 如图,有一批货物要从v1运 到v9,弧旁数字表示该段路长, 求最短运输路线。
3 0 v1
4
v5
3
5
v2
3
2
v6
2.5
3
1
2
v3 3
v7 2
v4
v9
4 v8
v5
3
5
1,3
3 0 v1
V1={v1} 2、在未标号点集V2中找出与标号点集V1中的顶点vi有弧相连
(并且以vi为起点)的点vj, 3、在第2步选出的点中,选出满足下面条件的点vk,并给vk标
号(l,L1k),其中l为第一标号, L1k为第二标号
L1k L1l ωlk min L1i ωij vi V1 ,v j V2
v2
3
2
v6
2.5
3
1
2
v3
4
v7 2
3
v4
v9
4 v8
v5
3
5
1,3
3 0 v1
v2
3
2
v6
2.5
3
1
2
v3
4
v7 2
3
v4
v9
4 v8
v5
3
5
1,3
3 0 v1
v2
3
2
v6
2.5
3
1
2
v3
4
1,4
3
v7 2
v4
v9
4 v8
v5
3
5
1,3
3 0 v1
v2
3
2
v6
2.5
3
1
2
4 1,4
v3 3
为从v1到vk的最短路的长度,l表示在从v1到vk的最短路上,与vk 相邻的点是vl 4、若最后一个顶点vn未标号,则转回第2步;若vn已标号,则 从vn开始,按照第一个标号逆向追踪,直到v1,就得到从v1到 vn的最短路,vn的第二个标号表示最短路的长度。