运筹学第五章 图与网络分析
合集下载
运筹学-7、图与网络分析PPT课件

THANKS
感谢观看
KEEP VIEW
WENKU DESIGN
WENKU DESIGN
WENKU
REPORTING
https://
终止条件
所有节点都在同一连通分量中, 即生成树形成。
算法思想
从边开始,每次选择权值最小的 边加入,若形成回路则舍去,直 到生成树形成。
算法特点
适用于稀疏图,时间复杂度为 O(eloge),其中e为边数。
最小生成树问题的应用
通信网络设计
在构建通信网络时,需要在保证所有节点连通的前提下,使得建设 成本最低。最小生成树算法可以用于求解此类问题。
活动时间的估计
对每个活动进行时间估计,包括乐观时间(a)、最 可能时间(m)和悲观时间(b),并计算期望时间 (t=(a+4m+b)/6)。
项目工期的计算
根据活动的逻辑关系和网络结构,计算项目 的期望工期,并确定项目的关键路径。
网络计划技术的应用
项目进度管理
网络计划技术可用于制定详细 的项目进度计划,确保项目按
图与网络的应用背景
图与网络分析的方法
介绍图与网络分析中常用的最短路径 算法、最小生成树算法、最大流算法 等。
阐述图与网络在交通运输、电路设计、 社交网络等领域的应用。
学习目标与要求
学习目标
掌握图与网络分析的基本概念和 常用算法,能够运用所学知识解 决实际问题。
学习要求
熟悉图与网络分析的基本概念和 常用算法,了解相关应用领域, 具备一定的编程能力和数学基础。
算法步骤
初始化距离数组和访问标记数组;从起点开始,选择距离起点最近的未访问节点进行访问 ,并更新其邻居节点的距离;重复上述步骤,直到所有节点都被访问。
运筹学 图与网络分析PPT学习教案

ij
min{ V1到Vj中间最多经过t-2个点 P1j(t-1)=
P1j(t-2)
+wij}
终止原则:
1)当P1j(k)= P1j(k+1)可停止,最短路P1j*= P1j(k) 2)当P1j(t-1)= P1j(t-2)时,第1再9页多/共迭59页代一次P1j(t) ,若P1j(t) =
P1j(t-1) ,则原问题无解,存在负回路。
图与网络模型Graph Theory
最短路问题
v1,u1 =(M,W,G,H); v2,u2 =(M,W,G);
v3,u3 =(M,W,H);
v4,u4 =(M,G,H);
v5,u5 =(M,G)。
此游戏转化为在下面的二部图中求从 v1 到 u1 的最短路问题。
v1
v2
v3
v4
v5
u5
u4
例: 求下图所示有向图中从v1到各点 的最短路。
2 v1
v2
4
5 -2 v3 6
-3 4
v4
7
v6 -3 2
v5
3
4
v8
-1
v7
第20页/共59页
wij
d(t)(v1,vj)
v1 v2 v3 v4 v5 v6 v7 v8 t=1 t=2 t=3 t=4 t=5 t=6
v1 0 2 5 -3
0 0 0 00 0
参加的游客众多,游客甚至不惜多花机票钱暂转取道它地也愿参加
此游。旅行社只好紧急电传他在全国各地的办事处要求协助解决此
问题。很快,各办事处将其已订购机票的情况传到了总社。根据此
资料,总社要作出计划,最多能将多少游客从成都送往北京以及如
何取道转机。下面是各办事处已订购机票的详细情况表:
管理运筹学 图与网络分析PPT教案

v1
2
A
4
v6
3
7
3
v2
5
v5
5
6
2
4
5
v3 2 v4
7
v7
第27页/共83页
支撑树的权:如果T=(V,E)是G的一个支撑树,则称E中所 有边的权之和为支撑树T的权,记为w(T)。即
w(T )
wij
[vi ,v j ]T
v1
2
A
4
v6
3
7
3
v2
5
v5
5
6
2
4
5
v3 2 v4
7
v7
上例中支撑树的权为 3+7+5+2+2+3+4=26
第34页/共83页
v1
2
A
4
v6
3
7
3
v2
5
v5
5
6
2
4
5
v3 2 v4
7
v7
第35页/共83页
课堂练习:1.分别用三种方法求下图的最小支撑树
v2
7
v5
5
2
3
4
v1
4
5
v4 3
1
1
v7
7
4
v3
v6
第36页/共83页
2. 某农场的水稻田用堤埂分割成很多小块。为了 用水灌溉,需要挖开一些堤埂。问最少挖开多少条 堤埂,才能使水浇灌到每小块稻田?
水源
第37页/共83页
作业 P221: 第3题
第38页/共83页
§3 最短路问题
1. 问题的提出 2. 最短路问题的Dijkstra算法 3. 求任意两点之间最短距离的矩阵算法
运筹学-图论

以可允许的10个状态向量作为顶点,将可能互相转移的状态用线段连接起 来构成一个图。
根据此图便可找到渡河方法。
(1,1,1,1) (1,1,1,0) (1,1,0,1) (1,0,1,1) (1,0,1,0) (0,0,0,0) (0,0,0,1) (0,0,1,0) (0,1,0,0) (0,1,0,1)
简单链:(v1 , v2 , v3 , v4 ,v5 , v3 )
v2
简单圈: (v4 , v1 , v2 , v3 , v5 , v7 , v6 ,v3 , v4 )
v6
v4
v5
v3
v7
连通图:图中任意两点之间均至少有一条通路,否则称为不连通 图。
v1 v5
v1
v6
v2
v2
v4
v3
v5
v4
v3
连通图
以后除特别声明,均指初等链和初等圈。
不连通图
有向图:关联边有方向 弧:有向图的边 a=(u ,v),起点u ,终点v; 路:若有从 u 到 v 不考虑方向的链,且 各方向一致,则称之为从u到v 的 路; 初等路: 各顶点都不相同的路; 初等回路:u = v 的初等路; 连通图: 若不考虑方向是
无向连通图; 强连通图:任两点有路;
端点的度 d(v):点 v 作为端点的边的个数 奇点:d(v)=奇数;
偶点:d(v) = 偶数; 悬挂点:d(v)=1; 悬挂边:与悬挂点连接的边; 孤立点:d(v)=0; 空图:E = ,无边图
v1
v3
v5 v6
v2
v4
图 5.7
v5
v4
V={v1 , v2 , v3 , v4 , v5 ,v6 , v7 }
圈:若 v0 ≠ vn 则称该链为开链,否则称为闭链或 回路或圈;
根据此图便可找到渡河方法。
(1,1,1,1) (1,1,1,0) (1,1,0,1) (1,0,1,1) (1,0,1,0) (0,0,0,0) (0,0,0,1) (0,0,1,0) (0,1,0,0) (0,1,0,1)
简单链:(v1 , v2 , v3 , v4 ,v5 , v3 )
v2
简单圈: (v4 , v1 , v2 , v3 , v5 , v7 , v6 ,v3 , v4 )
v6
v4
v5
v3
v7
连通图:图中任意两点之间均至少有一条通路,否则称为不连通 图。
v1 v5
v1
v6
v2
v2
v4
v3
v5
v4
v3
连通图
以后除特别声明,均指初等链和初等圈。
不连通图
有向图:关联边有方向 弧:有向图的边 a=(u ,v),起点u ,终点v; 路:若有从 u 到 v 不考虑方向的链,且 各方向一致,则称之为从u到v 的 路; 初等路: 各顶点都不相同的路; 初等回路:u = v 的初等路; 连通图: 若不考虑方向是
无向连通图; 强连通图:任两点有路;
端点的度 d(v):点 v 作为端点的边的个数 奇点:d(v)=奇数;
偶点:d(v) = 偶数; 悬挂点:d(v)=1; 悬挂边:与悬挂点连接的边; 孤立点:d(v)=0; 空图:E = ,无边图
v1
v3
v5 v6
v2
v4
图 5.7
v5
v4
V={v1 , v2 , v3 , v4 , v5 ,v6 , v7 }
圈:若 v0 ≠ vn 则称该链为开链,否则称为闭链或 回路或圈;
运筹学图与网络分析

第5章 图论与网络分析
网络分析
➢ 图的基本概念 ➢最小支撑树问题 ➢ 最短路径问题 ➢网络最大流问题
图论起源:哥尼斯堡七桥问题
A
A
C
D
C
D
B
B
问题:一个散步者能否从任一块陆地出发;走过七 座桥;且每座桥只走过一次;最后回到出发点
结论:每个结点关联的边数均为偶数
§1 图的基本概念
1图
由点和边组成;记作G=V;E;其中 V=v1;v2;……;vn为结点的集 合;E=e1;e2;……;em 为边的集合; 点表示研究对象 边表示研究对象之间的特定关系
例 : G1为不连通图; G2为连通图
G1
G2
5 支撑子图
图G=V;E和G'=V ' ;E ';若V =V ' 且E ' E ;则 称G' 为
G的支撑子图;
例 :G2为G1的支撑子图
v5
v5
v1
v4 v1
v4
v2
v3
G1
v2
v3
G2
例 : G2 是G1 的子图;
v2
e1 v1
e6 e7
e2
v3
e8 e9
两条以上的边都是权数最大的边;则任意去掉其 中一条: ③若所余下的图已不含圈;则计算结束;所余下的图 即为最小支撑树;否则;返问①;
例 求上例中的最小支撑树
v1
5
v2
7.5 4
5.5
3
v5
2
解:
v3 3.5 v4 v1
5
v2
75 4
55
3
v5
2
v3 3 5 v4
算法2避圈法:从某一点开始;把边按权从小到大 依次添入图中;若出现圈;则删去其中最大边;直至 填满n1条边为止n为结点数 ;
网络分析
➢ 图的基本概念 ➢最小支撑树问题 ➢ 最短路径问题 ➢网络最大流问题
图论起源:哥尼斯堡七桥问题
A
A
C
D
C
D
B
B
问题:一个散步者能否从任一块陆地出发;走过七 座桥;且每座桥只走过一次;最后回到出发点
结论:每个结点关联的边数均为偶数
§1 图的基本概念
1图
由点和边组成;记作G=V;E;其中 V=v1;v2;……;vn为结点的集 合;E=e1;e2;……;em 为边的集合; 点表示研究对象 边表示研究对象之间的特定关系
例 : G1为不连通图; G2为连通图
G1
G2
5 支撑子图
图G=V;E和G'=V ' ;E ';若V =V ' 且E ' E ;则 称G' 为
G的支撑子图;
例 :G2为G1的支撑子图
v5
v5
v1
v4 v1
v4
v2
v3
G1
v2
v3
G2
例 : G2 是G1 的子图;
v2
e1 v1
e6 e7
e2
v3
e8 e9
两条以上的边都是权数最大的边;则任意去掉其 中一条: ③若所余下的图已不含圈;则计算结束;所余下的图 即为最小支撑树;否则;返问①;
例 求上例中的最小支撑树
v1
5
v2
7.5 4
5.5
3
v5
2
解:
v3 3.5 v4 v1
5
v2
75 4
55
3
v5
2
v3 3 5 v4
算法2避圈法:从某一点开始;把边按权从小到大 依次添入图中;若出现圈;则删去其中最大边;直至 填满n1条边为止n为结点数 ;
运筹学图与网络分析-最短路

(P0
)
min P
(P)
路P0的权称为从vs到vt的距离,记为d(vs,vt)。
求网络上的一点到其它点 的最短路
Dinkstra标号法
这是解决网络中某一点到其它点的最 短路问题时目前认为的最好方法。
适用于有向图权值非负的情况
有向图权值非负---- Dijkstra算法
Dijkstra算法的基本步骤(权值非负) 1、给顶点v1标号(0),v1称为已标号点,记标号点集为
(1,2)
2
2
0
1
2
5
7
(2,4)
3 5 55
7
3
1 (4,4) 3 1
4
6
7
(1,3)
5
④重复上述步骤,直至全部的
点都标完。
(1,2)
2
2
0
1
2
5
7
(2,4)
3 5 55
7
1
3
3
1
4
6
7
(1,3)
5
7
(1,2)
2
2
0
2
7
1
5
(2,4)
35
55
7
1
3
3
1
4
6
7
(1,3)
5
(3,7)
(1,2)
2
2
0
2
7
1
5 3 5 55 7
3
1
3 1
34 5 6
7
④重复上述步骤,直至全部的
(1,2)
点都标完。
2
2
0
2
7
1
5 3 5 55 7
运筹学复习题

5、制造某机床需要A、B、C三种轴,其规格、需要量如下表所示。各种轴都用长7.4米的圆钢来截毛坯。如果制造100台机车,问最少要用多少根圆钢?试建立该问题的线性规划模型,并写出其对偶规划。
轴件
规格:长度(米)
每台机床所需轴件数量
A
B
C
2.9
2.1
1.5
1
1
1
6、试用单纯形法求解下列线性规划问题
2、某工厂生产A、B、C三种产品,现根据订货合同以及生产状况制定生产计划。
已知甲合同为:A产品1000件,单价600元,违约金为120元/件;
B产品700件,单价500元,违约金为100元/件。
乙合同为:B产品900件,单价550元,违约金为110元/件;
C产品800件,单价450元,违约金为90元/件。
有关各产品生产过程所需工时以及原材料的情况见下表。试以利润最大为目标,建立该工厂的生产计划线性规划模型(不求解)。
(1)应如何指派,使总的翻译效率最高?
(2)若甲不懂德文,乙不懂日文,其他数字不变,则应如何指派?
第五章图与网络分析
一复习思考题
1.通常用G(V,E)来表示一个图,试述符号V,E及这个表达式的涵义。
2.解释下列各组名词,并说明相互间的联系和区别:(a)端点,相邻,关联边;(b)环,多重边,简单图;(c)链,初等链;(d)圈,初等圈,简单圈;(e)回路,初等路;(f)节点的次,悬挂点,孤立点;(g)连通图,支撑子图;(h)有向图,赋权图。
2、用分技定界法求解一个极大化的整数规划问题时,任何一个可行解的目标函数是该问题目标函数值的下界;
3、用分枝定界法求解一个极大化的整数规划问题,当得到多于一个可行解时,通常可任取其中一个作为下界值,再进行比较剪枝;
轴件
规格:长度(米)
每台机床所需轴件数量
A
B
C
2.9
2.1
1.5
1
1
1
6、试用单纯形法求解下列线性规划问题
2、某工厂生产A、B、C三种产品,现根据订货合同以及生产状况制定生产计划。
已知甲合同为:A产品1000件,单价600元,违约金为120元/件;
B产品700件,单价500元,违约金为100元/件。
乙合同为:B产品900件,单价550元,违约金为110元/件;
C产品800件,单价450元,违约金为90元/件。
有关各产品生产过程所需工时以及原材料的情况见下表。试以利润最大为目标,建立该工厂的生产计划线性规划模型(不求解)。
(1)应如何指派,使总的翻译效率最高?
(2)若甲不懂德文,乙不懂日文,其他数字不变,则应如何指派?
第五章图与网络分析
一复习思考题
1.通常用G(V,E)来表示一个图,试述符号V,E及这个表达式的涵义。
2.解释下列各组名词,并说明相互间的联系和区别:(a)端点,相邻,关联边;(b)环,多重边,简单图;(c)链,初等链;(d)圈,初等圈,简单圈;(e)回路,初等路;(f)节点的次,悬挂点,孤立点;(g)连通图,支撑子图;(h)有向图,赋权图。
2、用分技定界法求解一个极大化的整数规划问题时,任何一个可行解的目标函数是该问题目标函数值的下界;
3、用分枝定界法求解一个极大化的整数规划问题,当得到多于一个可行解时,通常可任取其中一个作为下界值,再进行比较剪枝;
运筹学

目标规划
( Goal programming )
本章主要内容:
目标规划问题及其数学模型
目标规划问题及其数学模型
Page 28
问题的提出:
目标规划是在线性规划的基础上,为适应经济管理多目 标决策的需要而由线性规划逐步发展起来的一个分支。
由于现代化企业内专业分工越来越细,组织机构日益复 杂,为了统一协调企业各部门围绕一个整体的目标工作,产 生了目标管理这种先进的管理技术。目标规划是实行目标管 理的有效工具,它根据企业制定的经营目标以及这些目标的 轻重缓急次序,考虑现有资源情况,分析如何达到规定目标 或从总体上离规定目标的差距为最小。
含量 食物
甲
乙
成分
A1 A2 A3 原料单价
0.1
0.15
1.7
0.75
1.10 1.30
2
1.5
最低 需要量
1.00 7.50 10.00
线性规划在管理中的应用
解:设Xj 表示Bj 种食物用量
min Z 2 x1 1.5 x2
0.10x1 0.15x2 1.00
1.7 1.1
艇攻击时损失最少; 3. 在各种情况下如何调整反潜深水炸弹的爆炸深
度,才能增加对德国潜艇的杀伤力等。
Page 5
运筹学简述
Page 6
运筹学(Operations Research) 运筹学所研究的问题,可简单地归结为一句话:
“依照给定条件和目标,从众多方案中选择最佳方案” 故有人称之为最优化技术。
x5 x6 30
x1 , x2 , x3 , x4 , x5 , x6 0
此问题最优解:x1=50, x2=20, x3=50, x4=0, x5=20, x6=10,一共需要司机和乘务员150人。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
④ A= {v1,v2 , v3, v4}
网络的生成树和线性规划的关系
■网络的一个生成树对应于线性规划的 一个基
■生成树上的边对应于线性规划的基变 量
■生成树的弦对应于线性规划的非基变 量
■生成树的变换对应于线性规划单纯形 法的进基和离基变换
破圈法举例
4
7 1
3
2 24
4
3
5 3
7
6
2
4
7
5 1
间的关系.
e1
v1
e2
v2
e5e3e6Fra biblioteke7 v4
e4
v3
子图:图的一部分,记为G1.
G1 (V1, E1), 其中V1 V , E1 E。
e1
v1
e2
v2
e5
e3
e6
e7 v4
e4
v3
图G
v1
e2
v2
e5
e3
e6
v4
e4
v3
图G1
多重边:两节点之间有多于一条边。
环:首尾相接的边
简单图:无环、无多重边的图。 2.有向图与无向图 ❖有向图:有方向的图。 ❖无向图:无方向的图。
问题:求网络中一定点到其它点的最短路。
5.3.1 最短路问题的Dijstra解法 方法:给vi点标号[αi,vk] 其中:αi:vi点到起点vs的最短距离
vk: vi的前接点
方法:(1) 给起点vs标号[0,vs]。 (2)把顶点集v分为互补的两部分A和Ā
其中:A:已标号点集 Ā:未标号点集
、时间、费用、容量等), 1
4
则称这样的连通图为网络图 。
20
45
3
❖典例: 会议日程安排
某单位要在今后的三天内召开6个会议,每天 上下午各安排一个会议,参加会议的领导如 下∶
会议A: 朱、马、牛、姬、江、姚 会议B: 朱、杨、张、江 会议C: 马、姬、侯、王、姚 会议D: 朱、姬、张 会议E: 杨、侯、王 会议F: 刘、杨、王、江、姚
3.关联与相邻
❖关联(边与节点的关系):若e是v1、v2两节点间
的边,记e=[v1,v2 ],称v1、v2 与e关联。
v1
e
v2
❖相邻(边与边、节点与节点的关系):
点v1与v2有公共边,称节点v1与v2相邻;
边e1与e2 有公共节点,称边e1与e2相邻。
e1
V2
V1
e2
V3
4. 链、圈与连通图
■链:由图G中的某些相连的边构成的图形(首尾
2)把顶点集V分为互补的两部分 A,Ā,其中:
A:与已选边相关联的点集 Ā :不与已选边相关联的点集
3) 考虑所有这样的边[vi,vj],其中 vi∈A,vj∈Ā,挑选其中权最小的。
4)重复3),直至全部顶点均属于A即 可。
❖例2:用避圈法求图的最小 V1 支撑树。
3 V2 4
5 V3 1
7 V4
第5章 图与网络分析
第5章 图与网络分析
5.1基本概念 5.2最小支撑树问题 5.3最短路问题 5.4最大流问题
5.1 基本概念
1.图、子图与简单图
图:由节点和线组成的图形.
记为: G = ( V, E )
V={v1,v2,…,vm}—节点集,表示研究对象.
E={e1,e2,…,en}—边集,表示研究对象之
第二天 会议C
B
第三天 会议D
F
5.2 最小支撑树问题
C1 根
C2
C3
C4
叶
❖树:无圈的连通图,记为T。
❖树的性质
■ 树中任意两个节点间有 且只有一条链。
2
3
1
5
4
■ 在树中任意去掉一条边, 1
则不连通。
2
3
5
4
■如果树T有m个节点,则 边的个数为m-1。
2 1
3 5
4
❖图的支撑树
图G1和G2 的节点相同,但图G1边的集合包 含于G2边的集合,且 G1是树图,则 图G1 是G2 的支撑树。 一个图的支撑树不是唯一的。
8
①任选点v1,挑与之相关 联的权最小的边( v1,v4) ②. A= {v1,v4},Ā={v2,v3}
3 V2 7
V1
4 V4
5
8
V3
从边( v1,v2),( v1,v3), ( v4,v2), (1 v4,v3) 中选权最小的边( v1,v2)。
③A= {v1,v2 ,v4},Ā={v3}
从边( v1,v3), ( v2,v3), ( v4,v3) 中选 权最小的边( v2,v3)。
每位领导每天最多只参加一个会议。会议A要 安排在第一天上午,会议F安排在第三天下午, 会议B要安排在任何一天的下午。试根据上述 要求排出一个会议日程表,使各位领导都能 参加相应的会议
解: 用节点表示会
A
B
议,若两个会议能
安排在一天,
F
则用连线连接。
EC
D
会议日程安排如下:
上午
下
午
第一天 会议A
E
图 G1
图 G2
❖最小支撑树 树枝总长最短的支撑树。 特点:各节点都连通且线路总长
最短.
❖最小支撑树的求法
1 破圈法 2 避圈法
5.2.1 求解最小支撑树问题的破圈法
❖方法:去边破圈的过程。 ❖步骤:1)在给定的赋权的连通图上任找
一 个圈。 2)在所找的圈中去掉一条权数最
大的边。 3)若所余下的图已不含圈,则计
v6
8 v5
v2
1
3
v1
3
v7
3 v6
v3 7
2
v4
v5
权和=19
例4 电话线网架设问题
某6个城市之间的道路网如图所示.要 求沿着已知长度的道路联结6个城市的 电话线网,并使电话线的总长度最短.
v3
5
6
v1
1
7
5
v2
2
v5 3
v4
4 v6
4
v3
v1 1
5 v2
v5
3
v6
4
2
v4
权和=15
5.3 最短路问题
算结束,余下的图即为最小支撑 树,否则返回 1)。
❖例1:用破圈法求右图 的最小支撑树。
V2
V2
V1
V4 V1
V3
V3
总权数=3+4+1=8
3 V2 7
V1
4 V4
5
8
V3
1 V2
V4 V1
V4
V3
V2
V1
V4
V3
5.2.2 求解最小支撑树的避圈法
❖方法:选边的过程。 ❖步骤:1)从网络中任意选一点vi,找出 与vi相关联的权最小的边[vi,vj],得第二个 顶点vj。
2
6
避圈法举例
4
7 1
3
2 24
4
3
5 3
6
2
4
7
5 1
2
6
例3 校园局域网问题
某大学准备把所属7个学院办公室的计 算机联网.这个网络的可能联通的途径 如图所示.边上权数为这条边的长度, 单位为百米.试设计一个网络联通7个 学院办公室,并使总长度为最短.
v2
1
v3
3 4
v1
3
v7 5
7
2
v4
10 3 4
不能相接),称为图G中的一条链。
如:μ ={(1,2),(3,2),(3,4)}
2
1
4
■圈 3
封闭的链称为圈 2
如:μ={(1,2),(2,4),(3,4),(1,3} 1
4
3
■连通图
任意两个节点之间至
2
少有一条链的图称为连
1
4
通图
3
5.网络图
给图中的节点和边赋以
具体的含义和权数(如距离
2
50
70