大学《统计学》课后作业及答案(定稿)
免费《统计学》课后答案

统计学费宇石磊(主编)第2章练习题参考答案2.1解:(1)首先将顾客态度分别用代码1、2、3表示,然后在数据文件的Varible View窗口Values栏定义变量值标签:1代表“喜欢并愿意购买”;2代表“不喜欢”,3代表“喜欢并愿意购买”。
操作步骤:依次点击File→点击open→点击Data→打开数据文件ex2.1→点击Analyze→点击Descriptive Statistics→点击Frequencies→将“态度”选入Variable框→点击OK。
输出结果如表2.1所示:(2)根据表2.1频数分布表资料建立的数据文件为绘制条形图操作步骤:依次点击File→点击open→点击Data→打开数据文件,选中Summaries for groups of cases→单击Define→选中Other Summary function→将“人数”选入Variable(纵轴),将“态度分类”选入Category Axis (横轴)→点击OK。
输出结果如图2.1所示:图2.1 30名顾客满意程度分布条形图绘制饼图操作步骤:依次点击File→点击open→点击Data→打开数据文件ofindividual cases→点击Define→将“人数”选入Slices Represent栏,将“态度分类”选入Variable栏→点击OK。
输出结果如图2.2所示:2.2解:首先列计算表如表2.2所示:表2.2 120名学生英语成绩的均值、中位数、众数、偏态系数、峰度系数计算表(1)均值151872072.67120iii ii xf x f=====∑∑(分) 表2.2中,分布次数最多的组是“40~50”组,这就是众数所在组;2N=60,中位数大约在第60位,可确定中位数也在“40~50”组。
众数10124230701073.333018M L i ∆-=+⨯=+⨯=∆+∆-+-(分)(42)(42)中位数11204922701072.6242m e m N S M L i f ---=+⨯=+⨯=(分) (2)首先计算标准差:11.65s ==(分)31133()/38389.64/1200.202311.65kki ii i x x f f SK s ==-===∑∑由计算结果可看出,偏态系数为正值,但与零的差距不大,说明120名大学生英语成绩为轻微右偏分布,成绩较低的同学占有一定的比例,但偏斜程度不大。
统计学7-10章课后作业答案

第7章 相关与回归分析1、设销售收入x 为自变量,销售成本y 为因变量。
现已根据某百货公司某年12个月的有关资料计算出以下数据(单位:万元):2()425053.73ix x -=∑ 647.88x =2()262855.25iy y -=∑549.8y =()()334229.09iix x y y --=∑(1)拟合简单线性回归方程,并对方程中回归系数的经济意义作出解释。
(2)计算可决系数和回归估计的标准误差。
(3)对回归系数进行显著性水平为5%的显著性检验。
(4)假定下年一月销售收入为800万元,利用拟合的回归方程预测销售成本,并给出置信度为95%的预测区间。
解:(1)定性分析可知,销售收入影响销售成本,以销售收入为自变量,销售成本为因变量拟合线性回归方程i i i y x u αβ=++,采用最小二乘法估计回归参数得:22()()(,)334229.09ˆ0.7863()425053.73ii xix x y y Cov x y x x βσ--===≈-∑∑ˆˆ549.80.7863647.8840.372y x αβ=-=-⨯= 因此,拟合的回归方程为:ˆˆˆ40.3720.7863i i iy x x αβ=+=+ 其中,回归系数β表示自变量每变动一个单位,因变量的平均变量幅度。
在此,表示销售收入每增加1万元,销售成本平均增加0.7863万元。
(2)可决系数22222[()()]334229.090.9998()()425053.73262855.25i i i i x x y y SSR R SST x x y y --===≈-⋅-⨯∑∑∑ (本问接下来的计算不做要求:为计算回归系数的标准误差,根据离差平方和分解,可知:2222222[()()]ˆˆˆˆˆˆ()[()()]()()334229.09262811.68425053.73i i i iiix x y y SSR y y x x x x x x αβαββ--=-=+-+=-=-==∑∑∑∑∑22ˆ()()262855.25262811.6843.57i i SSE SST SSR y y yy =-=---=-=∑∑因此有ˆ()0.0032S β===≈) (3)陈述假设:01:0 :0H H ββ=≠在原假设成立的前提下,构造t 检验统计量245.598t ===在5%的双侧检验显著性水平下,查自由度为10的t 分布表,得临界值0.025(10) 2.228t t =<,因此拒绝原假设。
统计学课后习题答案

统计学课后习题答案附录三:部分习题参考解答老师说这份答案有些错误,慎重参考哈~~第一章(15-16)一、判断题2.答:对。
3.答:错。
实质性科学研究该领域现象的本质关系和变化规律;而统计学则是为研究认识这些关系和规律提供合适的方法,特别是数量分析的方法。
4.答:对。
5.答:错。
描述统计不仅仅使用文字和图表来描述,更重要的是要利用有关统计指标反映客观事物的数量特征。
6.答:错。
有限总体全部统计成本太高,经常采用抽样调查,因此也必须使用推断技术。
7.答:错。
不少社会经济的统计问题属于无限总体。
例如要研究消费者的消费倾向,消费者不仅包括现在的消费者而且还包括未来的消费者,因而实际上是一个无限总体。
8.答:对。
二、单项选择题1.A;2.A;3.A;4.B。
三、分析问答题1.答:定类尺度的数学特征是“=”或“”,所以只可用来分类,民族可以区分为汉、藏、回等,但没有顺序和优劣之分,所以是定类尺度数据。
;定序尺度的数学特征是“”或“”,所以它不但可以分类,还可以反映各类的优劣和顺序,教育程度可划分为大学、中学和小学,属于定序尺度数据;定距尺度的主要数学特征是“+”或“-”,它不但可以排序,还可以用确切的数值反映现象在两方面的差异,人口数、信教人数、进出口总额都是定距尺度数据;定比尺度的主要数学特征是“”或“”,它通常都是相对数或平均数,所以经济增长率是定比尺度数据。
3.答:如考察全国居民人均住房情况,全国所有居民构成统计总体,每一户居民是总体单位,抽查其中5000户,这被调查的5000户居民构成样本。
第二章(45-46)一、单项选择题1.C;2.A;3.A。
二、多项选择题1.A.B.C.D;2.A.B.D;3.A.B.C.三、简答题1.答:这种说法不对。
从理论上分析,统计上的误差可分为登记性误差、代表性误差2.答:统计报表的日常维持需要大量的人力、物力、财力;而且统计报表的统计指标、指标体系不容易调整,对现代社会经济调查来说很不合适。
统计学课后练习题答案

统计学课后练习题答案第三章节:数据的图表展⽰ (1)第四章节:数据的概括性度量 (15)第六章节:统计量及其抽样分布 (26)第七章节:参数估计 (28)第⼋章节:假设检验 (38)第九章节:列联分析 (41)第⼗章节:⽅差分析 (43)3.1 为评价家电⾏业售后服务的质量,随机抽取了由100个家庭构成的⼀个样本。
服务质量的等级分别表⽰为:A.好;B.较好;C⼀般;D.较差;E.差。
调查结果如下:B EC C AD C B A ED A C B C DE C E EA DBC C A ED C BB ACDE A B D D CC B C ED B C C B CD A C B C DE C E BB EC C AD C B A EB AC E E A BD D CA DBC C A ED C BC B C ED B C C B C要求:(1)指出上⾯的数据属于什么类型。
顺序数据(2)⽤Excel制作⼀张频数分布表。
⽤数据分析——直⽅图制作:接收频率E16D17C32B21A14(3)绘制⼀张条形图,反映评价等级的分布。
⽤数据分析——直⽅图制作:(4)绘制评价等级的帕累托图。
逆序排序后,制作累计频数分布表:接收频数频率(%) 累计频率(%) C 32 32 32 B 21 21 53 D 17 17 70 E 16 16 86 A 14141005101520253035CDBAE204060801001203.2 某⾏业管理局所属40个企业2002年的产品销售收⼊数据如下: 152 124 129 116 100 103 92 95 127 104 105 119 114 115 87 103 118 142 135 125 117 108 105 110 107 137 120 136 117 108 9788123115119138112146113126要求:(1)根据上⾯的数据进⾏适当的分组,编制频数分布表,并计算出累积频数和累积频率。
统计学课后习题答案

第四章 统计描述某企业生产铝合金钢,计划年产量40万吨,实际年产量45万吨;计划降低成本5%,实际降低成本8%;计划劳动生产率提高8%,实际提高10%.试分别计算产量、成本、劳动生产率的计划完成程度. 解产量的计划完成程度=%5.112100%4045100%=⨯=⨯计划产量实际产量即产量超额完成%.成本的计划完成程=84%.96100%5%-18%-1100%-1-1≈⨯=⨯计划降低百分比实际降低百分比即成本超额完成%.劳动生产率计划完=85%.101100%8%110%1100%11≈⨯++=⨯++计划提高百分比实际提高百分比即劳动生产率超额完成%.某煤矿可采储量为200亿吨,计划在1991~1995年五年中开采全部储量的%,在五年中,该矿实际开采原煤情况如下(单位:万吨)试计算该煤矿原煤开采量五年计划完成程度及提前完成任务的时间. 解本题采用累计法:(1)该煤矿原煤开采量五年计划完成=100%⨯数计划期间计划规定累计数计划期间实际完成累计 =75%.12610210253574=⨯⨯ 即:该煤矿原煤开采量的五年计划超额完成%.(2)将1991年的实际开采量一直加到1995年上半年的实际开采量,结果为2000万吨,此时恰好等于五年的计划开采量,所以可知,提前半年完成计划. 我国1991年和1994年工业总产值资料如下表:要求:(1)计算我国1991年和1994年轻工业总产值占工业总产值的比重,填入表中;(2)1991年、1994年轻工业与重工业之间是什么比例(用系数表示)(3)假如工业总产值1994年计划比1991年增长45%,实际比计划多增长百分之几 解(1)(2)是比例相对数;1991年轻工业与重工业之间的比例=96.01.144479.13800≈;1994年轻工业与重工业之间的比例=73.04.296826.21670≈(3)%37.251%)451(2824851353≈-+即,94年实际比计划增长%.某乡三个村2000年小麦播种面积与亩产量资料如下表:要求:(1)填上表中所缺数字;(2)用播种面积作权数,计算三个村小麦平均亩产量; (3)用比重作权数,计算三个村小麦平均亩产量.解(1)(2))(75.72840013065015082012070011斤=⨯+⨯+⨯==∑∑==k i iki iiff xx(3)两种不同品种的玉米分别在五块地上试种,产量资料如下:已知生产条件相同,对这两种玉米品种进行分析比较,试计算并说明哪一种品种的亩产量更稳定一些解田块总面积总产量平均亩产量=即: 由于是总体数据,所以计算总体均值: 计算表格乙品种下面分别求两块田地亩产量的标准差:要比较两种不同玉米的亩产量的代表性,需要计算离散系数:<甲σv 乙σv ,∴甲品种的亩产量更稳定一些.两家企业生产相同的产品,每批产品的单位成本及产量比重资料如下: 甲企业乙企业试比较两个企业哪个企业的产品平均单位成本低,为什么解∴乙企业的产品平均单位成本更低.某粮食储备库收购稻米的价格、数量及收购额资料如下:要求:(1)按加权算术平均数公式计算稻米的平均收购价格;(2)按加权调和平均数公式计算稻米的平均收购价格.解(1))(02.19000915011元≈==∑∑==k i iki iiff xx (2))(02.190009150400030002000360031502400m H 元≈=++++==∑∑xm x已知我国1995年—1999年末总人口及人口增长率资料:试计算该期间我国人口平均增长率. 解计算过程如下:按照平均增长率的公式可知:1-平均发展速度平均增长率=所以,1995年—1999年期间我国人口平均增长率=96.91-1204861253604≈‰某单位职工按月工资额分组资料如下: 根据资料回答问题并计算: (1)它是一个什么数列(2)计算工资额的众数和中位数;(3)分别用职工人数和人数所占比重计算平均工资.结果一样吗(4)分别计算工资的平均差和标准差. 解(1)是等距分组数列 (2)d f f f f f f L M m m m m m m ⨯-+--+≈+--)()(1110下限公式:即:59.54821000)30134()37134(371345000)()(1110≈⨯-+--+=⨯-+--+≈+--df f f f f f L M m m m m m m(注:用上限公式算出的结果与上述结果相同) (注:用上限公式算出的结果与上述结果相同) (3))(22.5343236107500306500134550037450025350011元≈⨯+⨯+⨯+⨯+⨯==∑∑==k i iki iiff xx (元)2.53434.24%7500 71%.12650078%.56550068%.15450059%.103500x 1111≈⨯+⨯+⨯+⨯+⨯=⋅==∑∑∑∑====ki ki iii k i iki iiff x ff x两者结果一样.(忽略小数点位数的保留对结果造成的影响)(4)平均差 92.65411≈-=∑∑==ki iki iidff x xM标准差 33.923)(12≈-=∑=Nf X XKi i iσ某市甲、乙两商店把售货员按其人均年销售额分组,具体资料如下:要求:(1)分别计算这两个商场售货员的人均销售额; (2)通过计算说明哪个商场人均销售额的代表性大解(1) 423001260011===∑∑==k i iki iiff xX 甲(2)05.1030030300)(12≈=-=∑=Nf X XKi i i甲甲σ >甲σv 乙σv ,∴乙商场销售额的代表性大.第五章 统计抽样袋中装有5只同样大小的球,编号为1,2,3,4,5,从中同时取出3只球,求取出的最大号X 的分布律及其分布函数并画出其图形.解先求X 的分布律:由题知,X 的可能取值为3,4,5,且2345{5}/6/10P X C C ===,∴X 的分布律为:⎪⎪⎭⎫ ⎝⎛10/610/310/1543, 由(){}i i ix xF x P X x p ≤=≤=∑得:设X 的密度函数为求: (1)常数c ;(2)X 的分布函数()F x ; (3){13}P X <≤. 解(1)24241()0(32)018f x dx dx c x dx dx c +∞+∞-∞-∞==+++=⎰⎰⎰⎰(2)当2x ≤时,()00xF x dt -∞==⎰;当24x <<时,22211()()0(32)(310)1818xxF x f t dt dt t dt x x -∞-∞==++=+-⎰⎰⎰当4x ≥时,24241()()0(32)0118xx F x f t dt dt t dt dt -∞-∞==+++=⎰⎰⎰⎰.故分布函数 (3)21{13}=(3)(1)(33310)04/918P X F F <≤-=+⨯--= 随机变量,X Y 相互独立,又(2)XP ,1(8,)4YB ,试求(2)E X Y -和(2)D X Y -.解(2)()2()2222E X Y E X E Y -=-=-⨯=-一本书排版后一校时出现错误处数X 服从正态分布(200,400)N , 求: (1)出现错误处数不超过230的概率;(2)出现错误处数在190~210的概率. 解(200,400)X N(1)200230200(230)()2020X P X P --∴≤=≤ (2) 190200200210200(190210)()202020X P X P ---∴≤≤=≤≤某地区职工家庭的人均年收入平均为12000元,标准差为2000元.若知该地区家庭的人均年收入服从正态分布,现采用重复抽样从总体中随机抽取25户进行调查,问出现样本均值等于或超过12500元的可能性有多大 解对总体而言,2(12000,2000)XN∴样本均值22000(12000,)25xN某商场推销一种洗发水.据统计,本年度购买此种洗发水的有10万人,其中3万6千人是女性.如果按重复抽样方法,从购买者中抽出100人进行调查,问样本中女性比例超过50%的可能性有多大解总体比例 3.6=36%10π=万万(1)(,)p N nπππ-∴即2(0.36,0.048)pN第八章 相关分析和回归分析某店主分析其店面的经营情况时,收集了连续10天的访问量数据(单位:天)和当天营业额数据(单位:元)如下.对以上访问量和营业额数据作相关分析.解相关分析(1)画访问量和营业额数据的散点图,如下所示从图上可以看出,访问量和营业额数据是简单线性正的不完全相关. (2)计算相关系数计算访问量和营业额的简单线性相关系数为,大于,说明访问量和营业额之间存在较高的线性关系.某饮料广告费投入为x,产品销售数量为y,根据收集2年的月度数据 资料,计算得到以下结果:∑=-6546)(2x x i,∑=-5641)(2y y i375=x ,498=y ,6054))((=--∑y y x x i i(1)计算相关系数,并初步判断x 与y 之间的关系; (2)用最小二乘法估计模型回归系数,并写出模型结果; (3)说明所计算的回归系数的经济意义;(4)计算模型可决系数,并用其说明模型的拟合效果. 解最小二乘法的计算(一元)(1)计算相关系数,并初步判断x 与y 之间的关系;计算x 与y 相关系数为r=,说明两者的简单线性相关程度非常高,因此可以初步判断x 与y 呈现线性关系.(2)用最小二乘法估计模型回归系数,并写出模型结果;记模型为:i i x y 10ˆˆˆββ+=,将以上结果代入最小二乘法的计算公式,得到=1ˆβ,=0ˆβ. 因此,产品销售数量为y 对广告费投入为x 的模型为i i x y92484.01852.151ˆ+= (3)说明所计算的回归系数的经济意义;=1ˆβ表示当广告费投入每增加1个单位,产品销售数量会增加个单位. (4)计算模型可决系数,并用其说明模型的拟合效果.由于模型为一元线性回归模型,根据一元线性回归模型中可决系数为模型因变量和自变量简单线性相关系数的平方的关系,可得模型的可决系数R 2=(r)2=2=.可决系数接近1,说明模型拟合的非常好.第九章 统计指数某市场上四种蔬菜的销售资料如下:(1) 根据综合指数编制规则,将上表所缺空格填齐; (2) 用拉氏公式编制四种蔬菜的销量总指数和价格总指数; (3) 用帕氏公式编制四种蔬菜的销量总指数和价格总指数; (4) 建立适当的指数体系,对蔬菜销售额的变动进行因素分析.解 %p q p q L %pq pq L p q 11.1092282431227.1072282390220010001======∑∑∑∑)拉氏:(即 ()⎩⎨⎧+=⨯=元175********.10727.10712.115%%计算表明: 四种蔬菜的销量增长了 %,使销售额增加了 162元;四种蔬菜的价格上长了 %,使销售额增加了175元;两因素共同影响,使销售额增长了%, 销售额增加了337元. 结论:某厂三种产品的产量情况如下表:试分析出厂价格和产量的变动对总产值的影响. 解第一步:计算三个总产值:24200064000101100081350000=⨯+⨯+⨯=∑p q(万元);25080064800101020081500001=⨯+⨯+⨯=∑pq (万元);2637005480011102005.81500011=⨯+⨯+⨯=∑pq (万元);第二步:建立指标体系即⎪⎩⎪⎨⎧-+-=-⨯=)250800263700()242000250800(242000263700250800263700242000250800242000263700 第三步:分析结论.计算结果表明:由于出厂价上涨了%,使总产值增加了8800元;由于产量提高了%,使总产值增加了12900元;两因素共同作用,使总产值上升了%,增加了21700元.若给出题中四种蔬菜的资料如下:(1) 编制四种蔬菜的算术平均指数; (2) 编制四种蔬菜的调和平均指数;(3) 把它们与上题计算的拉氏指数和帕氏指数进行比较,看看有何种关系什么条件下才会有这种关系的呢 (4)解(1)(2) (3)算术平均指数的结果与拉氏指数相等——以基期的总值指标为权数. 调和平均指数的结果与帕氏指数相等——以报告期的总值指标为权数.某地区2005年农副产品收购总额为1 360亿元,2006年比上年的收购总额增长了12%,农副产品价格指数为105%;试考虑:2006年与2005年相比较(1) 农副产品收购总额增长了百分之几农民共增加多少收入 (2)(3) 农副产品收购量增加了百分之几农民增加了多少收入 (4)(5) 由于农副产品收购价格提高了5%,农民又增加了多少收入 (6) 验证以上三者之间有何等关系解已知:农民交售农副产品增加收入亿元, 与去年相比增长幅度为12%; 农副产品收购数量增长 %, 农民增加收入 亿元; 农副产品收购价格上涨 %, 农民增加收入 亿元.显然,有:⎩⎨⎧+=⨯=(亿元)5.727.902.16300.10567.10600.112%%%可见,分析结论是协调一致的.某企业生产的三种产品的有关资料如下:(1) 根据上表资料计算相关指标填入上表(见绿色区域数字); (2) 计算产品产量总指数及由于产量增长而增加的总成本;(3)计算单位成本总指数及由于单位成本变动而增减的总成本.解建立指数体系:结论:计算结果表明:由于产量总指数增加了37%(=%-1),而使总成本增加了37元,由于单位成本总指数下降了%(=%-1),使总成本减少了元.两个因素共同影响使总成本上升了%,增加了元.9.8某商场的销售资料如下:(1)根据上表资料计算相关指标填入上表(见绿色区域数字);(2)计算商品销售量总指数及由于销量变化而增减的销售额;(3)计算商品价格总指数及由于价格变动而增减的销售额.解建立指数体系:计算结果表明:由于商品销量总指数下降了%(=%),而使销售额减少了万元,由于商品价格总指数下降了%(=%),使销售额减少了万元.两个因素共同影响使销售总额下降了%(=%),减少了54万元.某乡力图通过推广良种和改善田间耕作管理来提高粮食生产水平,有关生产情况如下表所示:(1) 该乡粮食平均亩产提高了百分之几由此增产粮食多少吨 (2)(3) 改善田间耕作管理使平均亩产提高多少增产粮食多少吨 (4)(5) 推广良种使平均亩产提高多少增产粮食多少吨 (6)解计算的相关数据(∑∑∑110100110100x f x f x f x f x f x f )见上表中绿色区域数字;从而有:建立指数体系: ⎪⎩⎪⎨⎧-+=-⨯=)()-(10011001假假假假x x x x x x x x x x x x 即 ()()⎪⎩⎪⎨⎧-+-=-⨯=000 657 48000 737 49000 478 46000 657 48000 478 46000 737 4948.40548.417 32.38748.40532.38748.417 即 ()⎩⎨⎧+=⨯=公斤 000 080 1000 179 2000 259 3 %22.102 %69.104%01.107分析结论: 计算结果表明(1)该乡粮食平均亩产提高了%(=%-1),由此增产粮食3 259吨; (2)由于改善田间管理,使平均亩产提高了%,粮食增产2 179吨; (3)由于推广优良品种,使平均亩产提高了%,粮食增产1 080吨.第十章 时间序列分析某公司2009年末有职工250人,10月上旬的人数变动情况是:10月4日新招聘12名大学生上岗,6日有4名老职工退休离岗,8日有3名青年职工应征入伍,同日又有3名职工辞职离岗,9日招聘7名销售人员上岗.试计算该公司10月上旬的平均在岗人数. 解)(25610256010518252516524750212232)7334262(1)334262(2)4262(2)12250(3250人==++++=++++⨯+---+⨯---+⨯-+⨯++⨯==∑∑iii fxf x 答:该公司10月上旬的平均在岗人数为256人. 某银行2009年部分月份的现金库存额资料如下:要求:(1)该时间序列属于哪一种时间序列.(2)分别计算该银行该年第一、二季度和上半年的平均现金库存额. 解(1) 该时间序列属于动态时点时间序列; (2) 第一季度平均现金库存额:)(4803144032520450480250014224321万元==+++=-+++=x x x x x ; 第二季度平均现金库存额:)(5673170032580600550252014227324万元==+++=-+++=x x x x x ; 上半年平均现金库存额:)(52363140625806005505204504802500172 (2)721万元==++++++=-+++=x x x x 某企业08年上半年的产量和单位成本资料如下:试计算该企业08年上半年的产品平均单位成本.解答:该企业08年上半年的产品平均单位成本为元. 某企业有关资料如下,计算该企业一季度人均月销售额.解 该企业一季度月平均销售额:)(33.12331201501003321万元=++=++=a a a a ;该企业一季度月平均职工人数:)(1133211611012021003224321人=+++=+++=b b b b b ; 该企业一季度人均月销售额:)/(091.111333.123人万元===ba c .某市2001~2005年的地区生产总值如下表:(1) 按平均发展速度估计2002~2004年的地区生产总值. (2) 按此5年的平均发展速度预测2008年和2010年的GDP.解(1)2002~2006年泉州市地区生产总值的平均发展速度为:%12.11399316264==v ; 按平均发展速度估计2002~2004年的地区生产总值分别为:11437%)12.113(9931270%)12.113(9931123%12.11399332=⨯=⨯=⨯(将计算结果填入上表绿色区域内);(2)按此5年的平均发展速度预测2008年和2010年的GDP 分别为:2008年地区GDP 预测值)(23541312.116263亿元=⨯=; 2010年地区GDP 预测值)(7.30111312.116265亿元=⨯=.我国某地区2001年~ 2006年税收总额如下:试计算:(1)环比发展速度和定基发展速度; (2)环比增长速度和定基增长速度; (3)增长1%绝对值;(4)用水平法计算平均增长速度;(5)分析表中所列资料反映的趋势特征,拟配合适的趋势模型,并预测2007年该地区的税收收入.解(1)~(3)相关计算结果填入下表(见绿色区域数字):(4) 用水平法计算平均发展速度和平均增长速度:平均发展速度%44.1161644.11404.22821603855====v ; 则平均增长速度%44.161%44.1161=-=-=v ;。
《统计学》教材课后习题答案

0.00
92.24
368.80
829.69
1175.5
589.80
0.51
32.65
114.80
246.94
661.22
合计
350
800
20300
94250
42700
800.03
2580.48
2821.43
(1)设 表示企业总产值, 表示固定资产价值,则有:
(2)
(3)当 时, (万元)
(4)根据已知数据计算可得:
全距:24 - 20 = 4
表3-2某企业30名工人在一个工作间内生产的零件数量次数分布表
按零件数分组(件)
工人数(人)
比重(%)
20
21
22
23
24
3
7
10
6
4
10.0
23.3
33.3
20.0
13.4
合计
30
100.0
3、把题中数值按大小顺序排序:
49 54 57 57 60 61 64 65 67 68 70 71 72 72 72 73 75 75 76 7678 79 81 81 81 82 83 84 85 8686 87 87 87 89 89 89 90 95 97
(4)
含义:在单位成本取值的总体误差中,有82.81%可以由单位成本与产量之间的线性关系来解释,可见回归直线的拟合程度较高。
2、根据某地区历年人均收入(元)与商品销售额(万元)资料计算的有关数据如下:(x代表人均收入,y代表销售额):
=9, =546, =260, =34362, =16918
要求:
《统计学》课后习题答案
统计学课后习题答案第六章
统计学课后习题答案第六章第六章统计学课后习题答案统计学是一门研究数据收集、分析和解释的学科。
无论是在科学研究、商业决策还是社会调查中,统计学都起着重要的作用。
在学习统计学的过程中,课后习题是巩固知识和提高技能的重要方式。
本文将为大家提供第六章统计学课后习题的答案,希望能够帮助大家更好地理解和应用统计学知识。
第一题:根据给定的数据集,计算平均数、中位数和众数。
解答:平均数是将所有数据相加,然后除以数据的个数。
中位数是将数据按照大小顺序排列,找到中间的数值。
众数是数据集中出现次数最多的数值。
第二题:给定一个样本数据集,计算方差和标准差。
解答:方差是每个数据点与平均数的差的平方的平均数。
标准差是方差的平方根。
第三题:根据给定的数据集,计算相关系数。
解答:相关系数是用来衡量两个变量之间的线性关系的强度和方向。
相关系数的取值范围是-1到1,接近1表示正相关,接近-1表示负相关,接近0表示无相关。
第四题:利用给定的数据集,进行假设检验。
解答:假设检验是用来判断一个假设是否成立的统计方法。
首先,我们提出一个原假设和备择假设。
然后,根据样本数据进行计算,得到一个统计量。
最后,根据统计量的取值和临界值进行判断,接受或拒绝原假设。
第五题:根据给定的数据集,进行回归分析。
解答:回归分析是用来研究两个或多个变量之间关系的统计方法。
通过建立一个数学模型,我们可以预测一个变量对另一个变量的影响。
回归分析可以帮助我们理解和解释变量之间的关系。
第六题:根据给定的数据集,进行抽样调查。
解答:抽样调查是从总体中选择一部分样本进行调查和研究的方法。
通过合理地选择样本,我们可以从样本中得出总体的特征和规律。
抽样调查可以帮助我们节省时间和成本,同时保证研究的可靠性和有效性。
通过以上的答案,我们可以看到统计学在数据分析和解释中的重要性。
掌握统计学知识和技能,可以帮助我们更好地理解和应用数据,从而做出准确的决策和预测。
希望以上答案能够对大家的学习和实践有所帮助。
统计学课后习题答案(统计学 第三版
第1章1.什么是统计学?怎样理解统计学与统计数据的关系?2.试举出日常生活或工作中统计数据及其规律性的例子。
3..一家大型油漆零售商收到了客户关于油漆罐分量不足的许多抱怨。
因此,他们开始检查供货商的集装箱,有问题的将其退回。
最近的一个集装箱装的是2 440加仑的油漆罐。
这家零售商抽查了50罐油漆,每一罐的质量精确到4位小数。
装满的油漆罐应为4.536 kg。
要求:(1)描述总体;(2)描述研究变量;(3)描述样本;(4)描述推断。
答:(1)总体:最近的一个集装箱内的全部油漆;(2)研究变量:装满的油漆罐的质量;(3)样本:最近的一个集装箱内的50罐油漆;(4)推断:50罐油漆的质量应为4.536×50=226.8 kg。
4.“可乐战”是描述市场上“可口可乐”与“百事可乐”激烈竞争的一个流行术语。
这场战役因影视明星、运动员的参与以及消费者对品尝试验优先权的抱怨而颇具特色。
假定作为百事可乐营销战役的一部分,选择了1000名消费者进行匿名性质的品尝试验(即在品尝试验中,两个品牌不做外观标记),请每一名被测试者说出A品牌或B品牌中哪个口味更好。
要求:(1)描述总体;(2)描述研究变量;(3)描述样本;(4)一描述推断。
答:(1)总体:市场上的“可口可乐”与“百事可乐”(2)研究变量:更好口味的品牌名称;(3)样本:1000名消费者品尝的两个品牌(4)推断:两个品牌中哪个口味更好。
第2章统计数据的描述——练习题(1) 指出上面的数据属于什么类型;(2)用Excel制作一张频数分布表;(3) 绘制一张条形图,反映评价等级的分布。
解:(1)由于表2.21中的数据为服务质量的等级,可以进行优劣等级比较,但不能计算差异大小,属于顺序数据。
(2)频数分布表如下:服务质量等级评价的频数分布服务质量等级家庭数(频数)频率%A1414B2121C 32 32D 18 18E 15 15 合计100100(3)条形图的制作:将上表(包含总标题,去掉合计栏)复制到Excel 表中,点击:图表向导→条形图→选择子图表类型→完成(见Excel 练习题2.1)。
《统计学》第1-4章课后习题答案
统计学练习题第一—四章描述统计学学号:姓名:一、填空题1、当我们研究某市居民户的生活水平时,该市全部居民户便构成,每一居民是。
2、标准正态分布的期望为_________,方差为__________ 。
3、某连续变量数列,其首组为开口组,上限为80,又知其邻组的组中值为95,则首组的组中值为_________。
4、由一组频数2,5,6,7得到的一组频率依次是、、和,如果这组频数各增加20%,则所得到的频率。
5、中位数eM可反映总体的趋势,四分位差DQ.可反映总体的程度,数据组1,2,5,5,6,7,8,9中位数是, 四分位差是,众数为。
6、假如各组变量值都扩大2 倍,而频数都减少为原来的1/3 ,那么算术平均数。
7、已知一个闭口等距分组数列最后一组的下限为600,其相邻组的组中值为580,则最后一组的上限可以确定为,其组中值为。
8、如果各组相应的累积频率依次为0.2,0.25,0.6,0.75,1,观察样本总数为100,则各组相应的观察频数为______。
9、某连续变量,末组为开口组,下限为500,其邻组组中值为480,则末组组中值为______。
10、正确的统计分组应该做到组间______和组内______。
二、判断题1、甲乙两班统计学考试的平均分数和标准差分别为:甲班平均分数为85分,σ为10分;乙班平均分数为72分,σ为9分,则平均成绩代表性乙班高于甲班。
()2、中位数是处于任意数列中间位置的那个数。
()3、算术平均数、调和平均数、几何平均数、众数均受极端值影响。
()4、抽样误差是不可避免的,也是不可控制的。
()5、比较两个总体平均数的代表性,如果标准差系数越大则说明平均数的代表性越好。
()6、已知分组数据的各组组限为:10~15,15~20,20~25,取值为15的这个样本被分在第一组。
()7、将收集到得的数据分组,组数越多,丧失的信息越多。
()8、数字特征偏度、峰度、标准差都与数据的原量纲无关。
统计学课后答案
第一章1.举出你所知道的统计应用的例子。
答:期末考试后统计班里同学的成绩,从而进行排名等;人口普查统计,从而得知男女人口比例,年龄分布等;统计一个生态系统里某种物种的密度;统计股票市场上某一天的各种数据;统计某个城市的人均收入水平,人民幸福指数,对某一电视节目的看法等。
2. 解释定性数据和定量数据的区别,分别给出一个定性数据和一个定量数据的例子。
答:定性数据和定量数据的区别:定性数据是由于我们考虑的是取值为类别的变量,对这些类别用数字来分别代表就得到定性数据;定量数据是我们所考虑的变量的取值为数值,它将在某个区间上连续取值,或在某个区间上取离散的值。
定性数据的例子:例如考察某幼儿园10个人的性别,定义1=男,2=女,则所得到定性数据为:1,1,2,2,2,1,2,1,1,1. ;定量数据的例子:考察某幼儿园10个人的身高,则此变量取值区间为(0,200)(单位:cm)3. 解释样本和总体的区别。
答:总体是根据一定目的和要求所确定的研究事物的全体。
为了了解总体的分布,我们从总体中随机地抽取一些个体,称这些个体的全体为样本。
样本和总体的区别在于总体是要考虑对象的全体,而样本是从总体中抽取出的一部分具有代表性的个体,从而通过对样本的研究得出关于总体的一些结论。
4. 解释离散型变量和连续型变量的区别,并各举一例。
离散型变量是指其数值只能用自然数或整数单位计算。
例如:某企业里职工的人数连续型变量是如果所考虑变量可以在某个区间内取任一实数,即变量的取值可以是连续的。
例如:生产零件的规格尺寸。
5.阐述四种主要的收集数据方法的区别。
答:观测,访问,问卷,实验区别:观测数据的研究者尽量不干涉研究对象的行为模式;访问在一定程度上对被访问者心理造成干扰,则收集到的数据会有误差;问卷常会产生未响应误差;实验时需要其控制它变量的影响。
6.举出一些观测数据和实验数据的例子。
·答:(1)观测数据:证券分析人员可能会记录某即将收购的公司在被收购的前一天的股市收盘价,并与宣布被收购的当天的收盘价比较。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大学《统计学》课后作业及答案(定稿) 第一篇:大学《统计学》课后作业及答案(定稿) 1.1什么是统计学? 统计学是一门研究随机现象,以推断为特征的方法论科学,“由部分推及全体”的思想贯穿于统计学的始终。具体地说,它是研究如何搜集、整理、分析反映事物总体信息的数字资料,并以此为依据,对总体特征进行推断的原理和方法。用统计来认识事物的步骤是:研究设计—>抽样调查—>统计推断—>结论。这里,研究设计就是制定调查研究和实验研究的计划,抽样调查是搜集资料的过程,统计推断是分析资料的过程。显然统计的主要功能是推断,而推断的方法是一种不完全归纳法,因为是用部分资料来推断总体。 增加定义:是关于收集、整理、分析和解释统计数据的科学,是一门认识方法论性质的科学,其目的是探索数据内在的数量规律性,以达到对客观事物的科学认识。统计学是收集、分析、表述和解释数据的科学 1.2解释描述统计和推断统计 描述统计学(Descriptive Statistics)研究如何取得反映客观现象的数据,并通过图表形式对所收集的数据进行加工处理和显示,进而通过综合概括与分析得出反映客观现象的规律性数量特征。内容包括统计数据的收集方法、数据的加工处理方法、数据的显示方法、数据分布特征的概括与分析方法等。 推断统计学(1nferential Statistics)则是研究如何根据样本数据去推断总体数量特征的方法,它是在对样本数据进行描述的基础上,对统计总体的未知数量特征做出以概率形式表述的推断。 描述统计学和推断统计学的划分,一方面反映了统计方法发展的前后两个阶段,同时也反映了应用统计方法探索客观事物数量规律性的不同过程。 统计研究过程的起点是统计数据,终点是探索出客观现象内在的数量规律性。在这一过程中,如果搜集到的是总体数据(如普查数据),则经过描述统计之后就可以达到认识总体数量规律性的目的了;如果所获得的只是研究总体的一部分数据(样本数据),要找到总体的数量规律性,则必须应用概率论的理论并根据样本信息对总体进行科学的推断。 1.3 统计数据可分为哪几种类型?不同类型的统计数据各有什么特点? 1.分类数据:由定类尺度计量形成,表现为类别,通常用文字表述,但不区分顺序。 2.顺序数据:由定序尺度计量形成,表现为类别,通常用文字表述,但有顺序。 3.数值型数据:由定距尺度和定比尺度计量形成,说明的是现象的数量特征,通常用数值来表现。也称为定量数据或数量数据。数据类型的不同,可采用不同的统计方法来处理和分析。 1.4解释分类数据、顺序数据和数值型数据的含义。分类数据和顺序数据说明的是事物的品质特征,通常是用文字来表述的,其结果表现为类别,因而也称为定性数据或品质数据。 数值型数据说明的是现象的数量特征,通常是用数值来表现的,因而也可称为定量数据或数量数据.1.5 举例说明总体、样本、参数、统计量、变量这几个概念。总体(population)是包含所研究的全部个体(数据)的集合。样本是从总体中抽取的一部分元素的集合。参数是用来描述总体特征的概括性数字度量。统计量是用来描述样本特征的概括性数字度量。变量是说明现象某种特征的概念。比如我们欲了解某市的中学教育情况,那么该市的所有中学则构成一个总体,其中的每一所中学都是一个个体。我们若从全市中学中按某种抽样规则抽出了10所中学,则这10所中学就构成了一个样本。在这项调查中我们可能会对升学率感兴趣,那么升学率就是一个变量。我们通常关心的是全市的平均升学率,这里这个平均值就是一个参数。而此时我们只有样本的有关升学率的数据,用此样本计算的平均值就是统计量。 1.6 变量可分为哪几类? 在统计中,把说明某种现象特征的概念称为变量,变量的具体表现为变量值。 1.分类变量:一个变量由分类数据来记录就称为分类变量。 2.顺序变量:一个变量由变量数据来记录就称为顺序变量。 3.数值型变量:一个变量由数值型数据来记录就称为数值型变量。 (1)离散变量:可以取有限个值,而且其取值都以整位数断开,可以一一例举。 (2)连续变量:可以取无穷多个值,其取值是连续不断的,不能一一例举。 在社会经济问题研究中,当离散变量的取值很多时,也可以将离散变量当作连续变量来处理。大多数统计方法所处理的变量是数值型变量,因此有时也把数值型变量称为变量 1.7 举例说明离散变量和连续变量。 (1)离散变量可以取有限个值,而且其取值都以整数位断开,可以一一列举。如企业数、产品数量.(2)连续变量可以取无穷多个值,其取值是连续不断的,不能一一列举。如年龄、温度、零件尺寸 1.8请举出统计应用的几个例子。 统计方法在实际生活中的应用的三个例子 我们知道真理往往隐藏在各种繁杂的凌乱的表象之中,很多的科学研究就是通过对大量的数据进行统计分析,进而得到其内在的规律。面对各种现象,我们首先要做的就是数据的获得,这就涉及到统计的知识!结合视频学习下面给出几个具体的例子来谈谈几种抽样方法。 (1)分层抽样 如果总体样本是具有明显个性差异的几个部分组成,则在抽样时可将其分为若干部分(具有明显相同特性的放在同一部分),然后按比例在每个部分内利用简单随机抽样法抽样。 例:现在要了解某市400个国营企业的生产经营情况,决定采取类型随机抽样法抽取20个企业作为样本进行调查,其具体做法是:首先,将这400个企业按产业分为三类,假定第一产业40个,第二产业200个,第三产业160个。然后,按各类企业在总体中的比重,确定各类企业抽取样本单位的数量。其中,第一产业的企业占总体10%,按比例应抽样本企业2个;按同样方法计算,第二产业中应抽样本企业10个,第三产业中应抽样本企业8个。最后,采用简单随机抽样或等距随机抽样方法,从各类企业中抽出上述数量的样本单位。(2)系统抽样 如果总体和样本容量都很大是时,采用随机抽样会很麻烦,就可以使用系统抽样。先将总体的个体编号,按照随机抽样抽取第一个样本,然后按相同的间隔抽取其他样本。例如:某工厂每天生产机器零件15000个,检验员每天要抽取其中的100个进行检验。首先计算抽样距是:15000÷100=150;其次将一天生产的零件编号,比如第一个是1号,第二个是2号,以此类推;第三步从编号为1˜150中随机抽取一件零件,编号是k,下来只需按顺序抽取编号为k+150,k+150*2,k+150*3…k+150*99。 (3)简单随机抽样 从包含有N个个体的总体中抽取样本量为n个样本,每个样本被抽取的可能性相等。常见的方法有抽签法、随机数法。要考察某公司生产的500克袋装牛奶的质量是否达标,现从800袋牛奶中抽取60袋进行检验。首先,将800袋牛奶编号,001,002,…,800,再在在随机数表中任选一数,例如是7则从7开始往右读(方向随意),得到第一个三位数785读,得到916>编号800,舍弃;如此继续下去,直至抽出60袋牛奶。 从以上三个方面和实例中来看: 通过实例和学生的实践统计的实用价值,帮助学生理解统计的概念和解决方法,再统计相关性教学重在数学思想。 1.9请举出应用统计的几个领域。 统计是适用于所有学科领域的通用数据分析方法,是一种通用的数据分析语言 主要有几个研究方向:包括国民经济核算与研究,市场调查分析,社会公共事业统计领域,金融市场领域等等。 统计学研究所涉及领域相当广泛,但归结起来三方面。核算、计量、市场调查。 统计学的应用 企业发展战略发展策略是一个企业长远的发展方向。控制发展战略一方面需要及时的了解和把握整个宏观经济的状况及发展变化趋势,另一方面还要对企业进行合理的市场定位,把握企业自身的优势和劣势。所有这些都需要统计提供可靠的数据,利用统计方法进行科学的数据分析和预测。产品质量管理 质量是企业的生命,是企业持续发展的基础。质量管理中离不开统计的应用。在一些知名的跨国公司,准则已经成为一种重要的管理理念。质量控制应经成为统计学在生产领域中的一项重要应用。各种统计质量控制图被广泛应用于监测生产过程。市场研究 企业要在激烈的市场竞争中取得优势,首先必须了解市场,要了解市场就需要进行广泛的市场统计调查,取得所需信息,并对这些信息进行统计分析,以便作为生产和营销的依据。财务分析 上市公司的财务数据是股民投资的重要参考依据。一些投资咨询公司主要是根据上市公司提供的财务和统计数据进行分析,为股民提供参考。企业自身的投资也离不开对财务数据的分析,其中要用到大量的统计方法。经济预测 企业要对未来市场状况进行预测。比如:对产品的市场潜力进行预测,及时调整生产计划。这就需要利用统计方法进行收集、整理和分析数据。人力资源管理 利用统计方法对企业员工的年龄、性别、受教育程度、工资等进行分析,并作为企业制度工资计划、奖惩程度的依据。 2.1什么是二手资料?使用二手资料需要注意什么? 第二篇:统计学课后简答题答案 第一章思考题 1.1什么是统计学 统计学是关于数据的一门学科,它收集,处理,分析,解释来自各个领域的数据并从中得出结论。 1.2解释描述统计和推断统计 描述统计;它研究的是数据收集,处理,汇总,图表描述,概括与分析等统计方法。 推断统计;它是研究如何利用样本数据来推断总体特征的统计方