智能脉搏计的系统设计
基于STM32的脉搏测量仪设计

基于STM32的脉搏测量仪设计脉搏测量仪是一种用于测量人体脉搏的仪器。
本文将设计一种基于STM32的脉搏测量仪,并介绍其主要功能和设计思路。
一、功能需求分析脉搏测量仪的主要功能为测量人体脉搏,并实时显示脉搏波形和心率。
根据这一功能需求,我们可以进一步分析出所需的具体功能模块:1.传感器模块:用于检测人体脉搏,并将其转换为电信号。
2.信号处理模块:对传感器采集到的信号进行放大、滤波和数字化处理。
3.心率计算模块:通过对信号进行处理,实时计算出心率。
4.显示模块:将心率和脉搏波形实时显示在屏幕上。
二、硬件设计1.传感器模块采用光电测量原理,通过红外光发射二极管和光敏电阻来检测人体脉搏。
在手指上放置一个带有光敏电阻的小夹具,通过红外光源照射手指,当光线被血液吸收时,光敏电阻的电阻值会发生变化,从而可以检测到脉搏信号。
2.信号处理模块采用了运放电路来放大和滤波脉搏信号,然后使用STM32的模数转换器将信号转换为数字信号。
运放电路中的放大倍数和滤波器的参数可以通过调试来确定,以获得最佳的脉搏信号质量。
3.心率计算模块将数字信号经过处理后,使用算法计算出心率。
常用的方法是通过寻找脉搏信号的波峰和波谷,然后计算脉搏波的周期,再根据周期计算心率。
4.显示模块使用了液晶显示屏,可以将心率和脉搏波形实时显示在屏幕上。
可以使用STM32的GPIO口和SPI接口来控制液晶显示屏。
三、软件设计1.通过STM32的GPIO口和SPI接口,将数据发送到液晶显示屏上,并实时更新心率和脉搏波形。
可以使用TFTLCD库来进行液晶显示的控制。
2.使用STM32的定时器和中断功能,对脉搏信号进行采样和计算心率。
可以通过设置定时器的时钟源和分频系数来控制采样率。
3.心率计算算法可以在软件中实现,通过对脉搏波形进行检测和分析,计算心率并显示在屏幕上。
四、系统测试在设计完成后,可以进行系统测试来验证脉搏测量仪的功能和性能。
可以通过将传感器模块连接到手指上,然后打开设备,观察屏幕上显示的心率和脉搏波形是否正确。
智能脉搏检测基本方案

智能脉搏检测基本方案系统基本方案通过脉搏传感器采样脉搏信号,通过放大电路对信号进行整形放大,将整形放大后的脉冲波送入单片机,采用单片机构成脉搏检测仪,实时显示脉率率变化,脉率超限时用蜂鸣器报警,报警范围可以通过键盘设定。
系统的基本框图硬件部分一.脉搏信号采集原理血液是一种高度不透明液体, 血液中含有大量的血红细胞, 这种细胞具有很强的吸收红外线的功能. 因此,红外线在一般组织中的穿透性要比在血液中大几十倍. 当人体动脉血管随心脏周期性地收缩和舒张, 动脉血管的血液容积随之发生变化时, 动脉所在部分的人体组织对于红外光的透射性就会发生变化. 这种现象在人体组织较薄的手指尖,耳垂等部位最为明显,因而取手指作为信号采集部位. 光电传感器结构图如图1所示. 本设计采用红色发光二极管LED 发出的光线通过人手指照射在光敏三极管的感光窗口上" 当指尖的血流量随心脏跳动而改变时, 从LED通过指尖到达光敏三极管的光线强弱随之改变,这样光敏三极管的电流也发生波动性变化,从而采集到脉搏跳动信号,二.光电传感器原理光电传感器通常由光源,光学通路和光电元件三部分组成,被测量可以是x1或者x2,它们能够分别造成光源本身或光学通路的变化,从而影响传感器输出的电信号I.本次采用的是脉冲式光电传感器,在这种传感器中,光电元件接受的光信号是断续变化的,因此光电元件处于开关工作状态,它输出的光电流通常是只有两种稳定状态的脉冲形式的信号,多用于光电计数和光电式转速测量.光电传感器输出的电脉冲信号是非常微弱的信号,而且频率很低.因此应先滤波后放大.一般脉搏检测电路三.负反馈放大电路原理脉搏传感器出来的电压信号较弱,一般在毫伏级,需要对其进行放大。
所以,设计信号放大电路,将脉搏传感器出来的信号进行放大,使之成为一个幅值适当的信号,便于后续电路的处理。
由于本设计对于脉搏波的整形要求比较低,只需要将每个脉搏波整形成为一个标准的方波,送入单片机中进行计数,即可。
电子脉搏计的课程设计

电子脉搏计的课程设计一、课程目标知识目标:1. 学生能理解电子脉搏计的工作原理,掌握其基本结构及功能。
2. 学生能掌握电子脉搏计的使用方法,了解其在医疗领域的应用。
3. 学生了解心率与脉搏的关系,认识到电子脉搏计在监测心率方面的作用。
技能目标:1. 学生能运用所学知识,正确操作电子脉搏计,进行简单的脉搏测量。
2. 学生能通过实际操作,培养动手能力,提高实验操作技巧。
3. 学生能分析电子脉搏计的测量数据,提高数据分析能力。
情感态度价值观目标:1. 学生培养对科学技术的兴趣,激发学习热情,增强创新意识。
2. 学生通过实践活动,认识到科技在生活中的重要作用,提升社会责任感。
3. 学生在学习过程中,培养合作精神,提高沟通与团队协作能力。
本课程针对高中年级学生,结合电子技术课程内容,以实用性为原则,设计电子脉搏计的课程。
课程旨在帮助学生将所学理论知识与实际应用相结合,培养科学思维和动手能力,同时注重培养学生的情感态度价值观,使其成为具有创新意识和实践能力的高素质人才。
二、教学内容本章节教学内容主要包括以下三个方面:1. 电子脉搏计原理与结构- 理解电子脉搏计的工作原理,包括传感器、信号放大、滤波、显示等部分。
- 学习电子脉搏计的基本结构,分析各部分功能及其相互关系。
2. 电子脉搏计的使用与操作- 介绍电子脉搏计的使用方法,包括仪器准备、测量部位选择、操作步骤等。
- 学习如何正确读取和记录脉搏数据,以及如何进行简单的数据分析。
教学内容关联教材第十五章“传感器及其应用”的相关知识。
3. 实践与拓展- 安排实践活动,让学生动手操作电子脉搏计,进行实际测量。
- 分析测量结果,探讨影响脉搏测量的因素,提高学生的实际应用能力。
教学内容将按照以下进度安排:1. 第一节课:电子脉搏计原理与结构的学习。
2. 第二节课:电子脉搏计的使用与操作方法的学习。
3. 第三节课:实践活动,学生分组操作电子脉搏计,进行测量和数据分析。
三、教学方法针对本章节内容,采用以下多样化的教学方法,以激发学生的学习兴趣和主动性:1. 讲授法:教师通过生动的语言和示例,讲解电子脉搏计的工作原理、结构及其使用方法。
基于单片机的脉搏测量仪设计毕业

基于单片机的脉搏测量仪设计毕业脉搏测量仪是一种用于测量人体脉搏的仪器,可以根据脉搏信号来分析人体的心率和心律。
基于单片机的脉搏测量仪具有体积小、功耗低、成本低等优点,适用于个人使用和医疗机构。
设计一个基于单片机的脉搏测量仪的系统主要分为硬件设计和软件设计两个部分。
硬件设计部分包括传感器、滤波电路、放大电路和显示电路等。
首先,选取合适的传感器感知人体脉搏信号。
一种常用的传感器是心率传感器,它能够非侵入式地探测人体脉搏信号。
心率传感器一般采用光电技术,通过血液中的脉搏信号的变化来测量心率。
将心率传感器与单片机进行接口连接。
其次,对传感器输出的脉搏信号进行滤波处理。
脉搏信号包含许多杂散噪声,需要通过滤波电路进行滤波处理,以减小噪声对信号的干扰。
常用的滤波器有低通滤波器,可以滤除高频噪声信号。
再次,通过放大电路对滤波后的脉搏信号进行放大,以增加信号的幅度,方便后续的分析处理。
放大电路采用运放电路,通过调整放大倍数和增益可以使信号更好地显示。
最后,通过显示电路将放大后的脉搏信号进行显示。
显示电路可以选择液晶显示屏、LED指示灯或者数码管等。
设计时要考虑显示界面的清晰度和易读性。
软件设计部分包括数据采集、信号处理和心率计算等。
数据采集模块负责从传感器获取脉搏信号,以一定的采样频率采集信号,并存储到单片机的存储器中。
信号处理模块对从传感器得到的脉搏信号进行处理,如滤波、放大等。
滤波可以采用数字滤波算法,如均值滤波、中值滤波等。
放大可以通过调整放大倍数和增益来实现。
处理后的信号可以传递给心率计算模块。
心率计算模块负责根据处理后的脉搏信号计算心率。
心率计算可以采用峰值检测算法,通过寻找脉搏信号的峰值来计算心率。
可以设置一个合适的阈值,当脉搏信号超过阈值时,认为达到峰值。
设计完成后,通过实验验证系统的准确性和可靠性。
可以与专业医学仪器进行对比,比较测量结果的一致性。
可以使用心电图或其他血压计进行参考。
综上所述,基于单片机的脉搏测量仪设计可以实现对人体心率的测量和分析,具有体积小、功耗低、成本低等优点。
电子技术课程设计---电子人体脉搏计的设计

电子技术课程设计---电子人体脉搏计的设计一、课程设计目的1.应用电子技术知识设计制作一台电子人体脉搏计,实现在短时间内测量人体脉搏数,并显示其数值。
总体目标:(1)掌握电子产品的初步设计方法、以及元件计算、选用。
(2)学习电子元件焊接与安装。
(3)学习电子产品使用通用测量仪器的调试方法。
2.功能技术指标(1)实现在15秒钟以内测量1分钟的脉搏数,并显示其数值;(2)测量误差≤±2次/分钟;(3)可以连续测量或单次测量;(4)最大显示300次/min。
二、课程设计内容1、电子脉搏计的原理2、确定设计方案,画出组成方框图,简述每部分功能;3、电路元件数值计算,确定主要元件参数值4、绘制完整的电路原理图,生成元件清单。
5、装配焊接硬件电路并进行硬件测试、数据记录6、芯片介绍(1)4046芯片工作原理。
输入信号Ui从14脚输入后,经放大器A1进行放大、整形后加到相位比较器Ⅰ、Ⅱ的输入端,图3开关K拨至2脚,则比较器Ⅰ将从3脚输入的比较信号Uo与输入信号Ui作相位比较,从相位比较器输出的误差电压UΨ则反映出两者的相位差。
UΨ经R3、R4及C2滤波后得到一控制电压Ud加至压控振荡器VCO的输入端9脚,调整VCO的振荡频率f2,使f2迅速逼近信号频率f1。
VCO的输出又经除法器再进入相位比较器Ⅰ,继续与Ui进行相位比较,最后使得f2=f1,两者的相位差为一定值,实现了相位锁定。
若开关K拨至13脚,则相位比较器Ⅱ工作。
(2)4060芯片工作原理。
4060是由一振荡器和14位二进制串行计数器位组成,振荡器的结构可以是RC或晶振电路,CR为高电平时,计数器清零且振荡器使用无效。
所有的计数器位均为主从触发器。
在CP1(和CP0)的下降沿计数器以二进制进行计数。
(3)4553芯片工作原理。
4553是3位十进制计数器,但只有1个输出端,要完成3位输出,采用扫描输出方式,通过它的选通脉冲信号,依次控制3位十进制的输出,从而实现扫描显示方式。
电子人体脉搏计课程设计

电子人体脉搏计课程设计一、教学目标本课程旨在让学生了解电子人体脉搏计的基本原理、结构和操作方法,培养学生运用电子技术进行人体生理参数检测的能力。
具体目标如下:1.知识目标:(1)了解电子人体脉搏计的原理及组成部分;(2)掌握电子人体脉搏计的操作方法及注意事项;(3)熟悉人体生理参数的检测方法及数据分析。
2.技能目标:(1)能够正确操作电子人体脉搏计进行测量;(2)能够对测量数据进行处理和分析;(3)能够运用所学知识解决实际问题。
3.情感态度价值观目标:(1)培养学生对生命科学的兴趣和好奇心;(2)培养学生尊重生命、关爱健康的价值观;(3)培养学生团队协作、积极进取的精神。
二、教学内容本课程的教学内容主要包括以下几个部分:1.电子人体脉搏计的基本原理;2.电子人体脉搏计的组成部分及功能;3.电子人体脉搏计的操作方法及注意事项;4.人体生理参数的检测方法及数据分析;5.电子人体脉搏计在医疗领域的应用。
三、教学方法为了提高教学效果,本课程将采用以下教学方法:1.讲授法:讲解电子人体脉搏计的基本原理、结构和操作方法;2.讨论法:学生就人体生理参数检测方法及数据分析进行讨论;3.案例分析法:分析实际案例,使学生了解电子人体脉搏计在医疗领域的应用;4.实验法:引导学生动手操作电子人体脉搏计,培养实际操作能力。
四、教学资源为了支持本课程的教学,我们将准备以下教学资源:1.教材:电子人体脉搏计相关教材;2.参考书:生命科学、电子技术等相关参考书;3.多媒体资料:电子人体脉搏计的图片、视频等;4.实验设备:电子人体脉搏计、电脑、投影仪等。
五、教学评估本课程的评估方式包括以下几个方面:1.平时表现:观察学生在课堂上的参与程度、提问回答等情况,评估其学习态度和积极性;2.作业:布置相关作业,评估学生对知识点的掌握程度和应用能力;3.实验报告:评估学生在实验过程中的操作技能和对实验结果的分析能力;4.考试:期末进行闭卷考试,全面评估学生的知识掌握和运用能力。
完整word版,人体脉搏计的设计课程设计
1一、设计说明设计一个人体脉搏计,要求能够实现在30s 内测量人的脉搏跳动次数,并且将脉搏次数显示出来。
正常人的脉搏数为60~80次/min ,婴儿为90~100次/min ,老人为100~150次/min 。
电路原理框图如图1所示。
图1 脉搏计原理框图将脉搏跳动信号转换为对应的电脉冲信号,放大整形后进行二倍频,并在30s (基准时间) 内对此信号计数,便得到了1min 脉搏数。
二、技术指标1.设计人体脉搏计数器并用LED 显示。
2.误差为±2次/min 。
三、设计要求1.在选择器件时,应考虑成本。
2.根据技术指标通过分析计算确定电路形式和元器件参数。
3.主要器件:(1)74LS74双D 触发器;(2)74LS47或4LS48译码器;(3) 74LS163计数器;(5)OP07等。
四、实验要求1.根据技术指标制定实验方案;验证所设计的电路。
2.进行实验数据处理和分析。
倍频器基准时间产生电路放大与整形 计数译码显示器控制电路传感器五、推荐参考资料1.谢自美. 电子线路设计·实验·测试. [M]武汉:华中理工大学出版社,2000年2.阎石. 数字电子技术基础. [M]北京:高等教育出版社,2006年3.付家才. 电子实验与实践. [M]北京:高等教育出版社,2004年六、按照要求撰写课程设计报告指导教师年月日负责教师年月日学生签字年月日成绩评定表评语、建议或需要说明的问题:成绩指导教师签字:日期:3人体脉搏计的设计一、概述脉搏计在实际中的应用非常广泛,它是用来测量一个人心脏跳动次数的电子仪器,也是心电图的主要组成部分,用来测量频率较低的小信号。
其原理适用于很多声控器械,它涉及到时序逻辑电路如何设计、分析和工作等方面。
通过此电路更深刻的了解时序逻辑部件的工作原理,从而掌握如何根据需要设计满足要求的各种电路图,解决生活中的实际问题,将所学知识应用于实践中。
设计任务技术指标;1.要求在规定时间内实现测量人体的脉搏跳动次数。
智能脉搏记录系统任务书
智能脉搏记录仪系统
内容:
本设计为一个智能脉搏记录仪系统,通过脉搏传感器和数字技术相结合,可以进行人体脉搏等数据的测量,为预防和治疗疾病提供参考。
文章给出了系统的功能特点,设计原理等。
整个系统成本低,调试方便,易于实现。
本文的工作是对智能化测试脉搏信号的一次努力和尝试,无论是在传感器设计、信号传输,还是在脉搏信号处理上,都采用了比较独特的方法,为中医脉搏信号智能化测试研究提供了重要而具有指导意义的途径。
任务要求:
本系统主要由脉搏检测显示部分组成。
系统通过脉搏传感器分别拾取脉搏信号,后续电路对其进行放大、整形、计数或A/ D 转换并显示
本设计为一个智能脉搏记录仪系统。
通过信号检测、信号处理、计数显示等几个功能模块的设计,实现了对人体脉搏的电子测量。
通知
4月20号左右答辩,4月10号交论文电子稿,4月15号交论文本,排版按A4纸排版。
基于STM32人体脉搏无线监测系统的设计
基于STM32人体脉搏无线监测系统的设计随着人们对健康的关注日益增加,人体脉搏无线监测系统的设计变得越来越重要。
本文将介绍一种基于STM32的人体脉搏无线监测系统的设计。
人体脉搏无线监测系统是一种能够实时监测人体脉搏并将数据传输到手机或电脑的设备。
它能够帮助人们随时了解自己的健康状况,并及时采取措施以防止疾病的发生。
在这个系统中,STM32是一种微控制器,它能够控制和处理系统的各个部分。
该系统由传感器、信号处理模块、数据传输模块和显示模块组成。
首先,传感器用于检测人体脉搏信号。
传感器通常采用光电传感器,它能够测量血液通过皮肤的光强度变化,并将其转换成电信号。
然后,信号处理模块对传感器采集到的数据进行处理和滤波。
这是为了提高数据的准确性,并去除噪声干扰。
STM32微控制器负责控制信号处理模块的运行并协调各个模块之间的通信。
接下来,数据传输模块将处理后的数据通过无线方式传输到手机或电脑。
这可以通过蓝牙或Wi-Fi技术实现。
这样,用户就可以通过手机或电脑查看自己的脉搏数据,并进行分析和记录。
最后,显示模块可以将数据以图表或数字的形式显示在设备上,方便用户进行实时观察和分析。
这种基于STM32的人体脉搏无线监测系统具有许多优点。
首先,它具有高精度和稳定性,可以准确地检测人体脉搏信号。
其次,该系统具有实时性,可以实时监测脉搏并及时传输数据。
此外,它还具有便携性和易用性,用户可以随时随地监测自己的健康状况。
总之,基于STM32的人体脉搏无线监测系统是一种重要的健康监测设备。
它不仅能够提供准确的脉搏数据,还能够帮助人们随时关注自己的健康状况。
相信在未来,这种系统将会得到更广泛的应用,并为人们的健康保驾护航。
脉搏测量仪设计方案
1. 引言脉搏是人体生命活动中重要的生理指标之一,脉搏测量仪可以实时监测人体的脉搏情况,并提供相应的数据分析。
本文档将详细介绍脉搏测量仪的设计方案,包括硬件设计和软件开发。
2. 硬件设计2.1 传感器选择脉搏测量仪的核心是脉搏传感器,选择适合的传感器对脉搏信号的采集至关重要。
我们建议选择带有光电传感器的脉搏传感器,该传感器可以通过红外线光电技术来测量脉搏信号。
2.2 信号采集电路设计脉搏传感器的输出是微弱的光电信号,需要通过信号采集电路进行放大和滤波处理。
我们建议采用放大器和滤波器的组合来实现信号的放大和去噪。
2.2.1 放大器设计放大器的作用是放大传感器输出的微弱信号,提高信号的幅值。
我们建议使用差分放大电路,以提高信号的抗干扰能力。
2.2.2 滤波器设计滤波器的作用是滤除高频噪声,保留脉搏信号的低频成分。
我们建议采用带通滤波器,设置合适的截止频率,以滤除高频和低频信号。
2.3 数据处理电路设计脉搏信号的采集和处理完成后,需要将脉搏数据传输到微处理器进行进一步处理。
我们建议使用微控制器作为数据处理的主要控制单元。
2.3.1 微控制器选择选择适合的微控制器对整个脉搏测量仪的性能和功能实现起着至关重要的作用。
我们建议选择一款具有高性能和低功耗的微控制器,以满足脉搏测量仪的要求。
2.3.2 数据传输接口设计在数据传输方面,我们建议使用串行接口(如UART)将脉搏数据传输到外部设备或计算机上进行进一步的分析和存储。
3. 软件开发3.1 脉搏信号处理算法在软件开发方面,我们需要实现一些脉搏信号处理算法,以提取和分析脉搏信号中的相关特征。
常见的脉搏信号处理算法包括脉率计算、心率变异性分析等。
3.2 数据可视化界面设计为了方便用户理解和使用脉搏测量仪,我们需要设计一个用户友好的数据可视化界面。
该界面可以实时显示脉搏数据,并提供相应的数据分析和报告功能。
3.3 脉搏测量仪的控制逻辑在软件开发过程中,我们需要设计脉搏测量仪的控制逻辑。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
智能脉搏记录仪设计摘要:脉搏测量仪在日常生活中已经得到广泛的应用。
为了提高脉搏测量的简便性和精确度,本文介绍一款以AT89S52单片机为核心控制模块的智能脉博记录仪。
该仪器通过红外发射管FBCB30与红外接收管TBBB30组成的光电传感器采集脉搏模拟信号,利用LM358芯片构成的放大整形电路将采集到的模拟信号处理成数字信号送给单片机处理,通过LCD1602液晶屏将单片机处理后得到每分钟的脉搏跳动次数显示出来。
经过多次实验表明,该仪器较为精确的测量出人体一分钟内脉搏跳动次数,而且操作方便简洁。
关键词:AT89S52;脉搏测量;信号处理;计数The Design of Intelligent Pulse RecorderAbstract:Pulse measuring instrument in daily life has been widely used. In order to improve the simplicity and definition , this paper introduces a AT89S52 microcontroller as the core control module intelligent pulse recorder. The instrument FBCB30 and the infrared receiving tube photoelectric sensor acquisition pulse TBBB30 composed of analog signal through the infrared emission tube ,using the LM358 chip shaping circuit consisting of the collected analog signal into digital signal to the microcontroller processing, the microcontroller via LCD 1602 obtained after processing the pulse beats per minute is displayed. After several experiments show that the instrument is more accurately measure the human pulse beats a minute, and the operation is simple and convenient.Key words:AT89S52 microcontroller; Pulse measuring; Signal Processing; Count目录前言 (1)第1章系统总体设计 (3)1.1 系统设计方案确定 (3)1.2 系统模块设计方案论证 (4)1.3 系统技术指标 (5)第2章系统硬件设计 (6)2.1 主控制模块 (6)2.1.1 AT89S52芯片简介 (6)2.1.2 单片机最小系统设计 (10)2.2 脉搏感应模块 (12)2.2.1 光电传感器简介 (12)2.2.2 信号采集电路 (13)2.3 信号处理模块 (15)2.3.1 LM358芯片简介 (15)2.3.2低通滤波放大电路设计 (16)2.3.3 整形电路设计 (18)2.4 脉搏跳动提示模块 (19)2.5 LCD显示模块 (20)2.5.1 LCD1602简介 (20)2.5.2 LCD1602显示电路设计 (22)2.6 测量结束提示模块 (23)2.7 电源电路设计 (24)第3章系统软件设计 (25)3.1 主程序设计 (25)3.2 外部中断子程序设计 (26)3.3 定时中断服务子程序设计 (27)3.4 LCD显示子程序设计 (28)第4章系统调试 (29)4.1 硬件调试 (29)4.2 软件调试 (30)4.3 误差分析 (30)第5章总结 (32)参考文献 (33)致谢 (35)附录一:电路原理图 (36)附录二:PCB图 (37)附录三:实物图 (38)附录四:元器件清单 (39)附录五:程序清单 (40)前言脉搏每分钟跳动次数和频率可以反映出人身体的健康状况,在我国中医“望、闻、问、切”四诊中,脉诊占据着重要的位置。
脉诊作为我国传统医学中最具特色的一项“绿色无创”诊断的手段和方法,引起了国内外人士的广泛关注。
虽然脉诊以简便、无创、无痛的特点为广大患者所接受,但是中医的医师靠手指获取脉搏信息的方法,在长期的医疗实践中存在一定的局限性[1]。
首先,医生切脉时单凭手指感觉和经验来辨别脉象的特征,表述过程中难免存在许多主观臆断因素,不能规范地判断脉象,其次,用手指切脉的技巧难以掌握,感知的脉象难以记录和保存,对脉象机理的研究产生影响。
脉诊的这种定性化和主观性,影响了脉搏测量的精度与可行性,很大程度上制约了中医脉诊的应用、发展和交流。
为了提高诊脉的精确度和规范化,需要将诊脉与现代科学技术结合起来,使得脉诊结果更加准确,切脉的方式更加便捷。
随着科学技术的飞速发展,脉搏测量技术也逐渐成熟,对脉搏的测量精度要求也越来越高。
国内外先后研制了各种类型的脉搏测量仪,其中脉搏测量的关键是脉搏传感器的研究。
如今,脉搏传感器主要分为接触式脉搏传感器和非接触式脉搏传感器,利用接触式脉搏传感器所研制的脉搏测量仪各有其优缺点。
指夹式脉测量仪比较方便、简单,但手指上的汗腺较多,常年使用可能会使测量灵敏度下降;耳脉测量比较干净,传感器使用环境污染少,容易维护,但耳脉信号较弱,尤其是当季节变化时,所测信号受环境温度影响明显,造成测量结果不准确。
人体心室周期性的收缩和舒张导致主动脉的收缩和舒张,血流压力以波的形式从主动脉根部开始沿着整个动脉系统传播,这种波称为脉搏波。
脉搏波所呈现出的形态(波形)、强度(波幅)、速率(波速)和节律(周期)等方面的综合信息,很大程度上反映出人体心血管系统中许多生理病理的血流特征。
因此,对脉搏波采集和处理具有很高的医学价值和应用前景。
近年来国内外致力于开发无创非接触式的传感器,其中以光电式脉搏传感器的发展为主。
光电式传感器是根据光电容积法制成的脉搏传感器,通过对手指末端透光度的监测,间接检测出脉搏信号。
具有结构简单、无损伤、精度高、可重复使用等优点。
通过光电式脉搏传感器所研制的脉搏测量仪已经应用到临床医学等各个方面并收到了理想效果。
但人体的生物信号多属于强噪声背景下的低频的弱信号, 脉搏波信号更是低频微弱的非电生理信号,因此,必须经过放大和后级滤波以满足采集的要求。
本课题设计是一个智能脉搏记录仪系统,利用人体血液循环对光的吸收与衰减呈周期性变化的原理来测量人体的脉搏,通过红外光电传感器采集人体脉搏信号,转换为模拟信号,经过滤波,放大整形电路处理成可供单片机使用的数字信号,单片机对信号计算并通过LCD液晶屏显示每分种脉搏跳动的次数。
第1章系统总体设计1.1系统设计方案确定智能脉搏记录仪系统的设计,通过采集人体脉搏跳动变化引起的一些生物信号,使之转化为可以被测量的物理信号,这些变化的物理信号能够反应人体脉搏的变化。
通过后级滤波,放大及整形的方法对转化后的低频微弱物理信号进行处理,处理后的信号送入单片机,单片机将计算得出的每分钟脉搏跳动次数输出到液晶屏上显示。
设计的实现,需要运用相应的硬件电路及芯片来处理变化的物理信号并存储脉搏次数。
可以根据脉搏信号转化成电信号的思路开始本次设计,通过硬件电路设计和软件编程来实现智能脉搏记录仪的功能要求。
根据上面所述,本次智能脉搏记录仪的设计主要分为以下几个模块:单片机控制模块、脉搏感应模块、信号处理模块、测量结束提示模块、脉搏跳动提示模块、LCD显示模块、电源电路模块、晶振模块、复位电路模块。
整体系统结构如图1-1所示。
图1-1系统框图图1-1中,系统各模块功能如下:脉搏感应模块:采用红外发射接收对管对人体手指之间的脉搏信号进行检测与采集,将非电量的脉搏信号转化成电信号。
信号处理模块:转化后的模拟信号经过低通滤波、放大电路和整形电路的处理,使之转变成能够供单片机使用的数字信号。
脉搏跳动提示模块:处理后的数字信号通过对LED发光二极管的点亮和熄灭的方式,提示脉搏跳动的状态。
单片机控制模块:单片机作为主控制模块对传递进来的数字信号进行定时,计数及运算处理,计算出每分钟脉搏跳动的次数。
测量结束提示模块:当一次脉搏计数结束后,该模块中的蜂鸣器就会导通,提示本次脉搏测量结束。
LCD显示模块:采用LCD1602显示每分钟脉搏跳动的次数。
电源电路模块:产生直流5V电压给其它电路供电。
复位模块:采用复位电路为单片机实现上电复位和手动复位功能。
晶振模块:采用晶振电路为单片机提供时钟频率。
1.2 系统模块设计方案论证1.单片机控制模块方案方案一:采用AT89S52单片机AT89S52单片机是一种低功耗、高性能CMOS 8位微控制器,具有8K在系统可编程Flash存储器。
片上Flash允许程序存储器在系统可编程,亦适于常规编程器。
在单片机芯片上,拥有灵巧的8位CPU和在系统可编程Flash,使得AT89S52单片机为众多嵌入式控制应用系统提供高灵活,超有效的解决方案。
方案二:采用FPGA单片机FPGA(Field Programmable Gate Array),即现场可编程门阵列,它是在PAL、GAL、CPLD等可编程器件的基础上进一步发展的产物。
它是作为专用集成电路(ASIC)领域中的一种半定制电路而出现的,既解决了定制电路的不足,又克服了原有可编程器件门电路数有限的缺点。
本设计采用方案一,选用AT89S52单片机作为主控制模块。
因为FPGA可编程器件接口复杂,操作繁琐。
AT89S52单片机使用Atmel公司高密度非易失性存储器技术制造,与工业80C51产品指令和引脚完全兼容,功耗低,操作简单方便,易于实现。
2.脉搏感应模块方案方案一:HK-2000A集成化脉搏传感器HK-2000A 集成化脉搏传感器采用高度集成化工艺,将力敏元件(PVDF压电膜)、灵敏度温度补偿元件、感温元件、信号调理电路集成在传感器内。
HK-2000A 集成化脉搏传感器的原理是采集信号,输出的模拟信号同步于脉搏波动的脉冲信号,脉搏波动一次,输出一个正脉冲。
该产品可用于脉率检测,如运动、健身器材设备中的心率测试。
方案二:光电传感器光电传感器是各种光电检测系统中实现光电转换的关键元件,它是把光信号(红外、可见及紫外光辐射)转变成为电信号的器件。
光电式传感器是以光电器件作为转换元件的传感器。
它可用于检测直接引起光量变化的非电量,如光强、光照度、辐射测温、气体成分分析等,可以利用红外光电元器件接收脉搏信号并转换成电信号。