模糊自适应PID控制

合集下载

供热系统模糊自整定PID控制的操作指南

供热系统模糊自整定PID控制的操作指南

供热系统模糊自整定PID控制的操作指南供热系统模糊自整定PID控制的操作指南供热系统模糊自整定PID控制操作指南供热系统模糊自整定PID控制是一种常用的控制方法,可以根据实时的供热需求自动调整控制参数,以实现系统的稳定运行和节能优化。

下面将介绍一种逐步思考和实施的操作指南。

1. 确定控制目标:首先,需要明确控制目标,例如保持供热温度稳定在设定值附近,或者根据供热负荷变化自动调整供热输出。

2. 收集系统数据:收集供热系统的相关数据,包括供热温度、供热负荷、供水流量等。

这些数据将用于模糊控制算法的计算和参数调整。

3. 设计模糊控制器:根据系统特性和控制目标,设计模糊控制器的输入和输出变量。

输入变量可以是供热温度误差和供热负荷变化率,输出变量可以是供热输出。

选择合适的模糊集合和模糊规则,以反映实际的供热控制逻辑。

4. 初始参数设定:根据经验或者系统特性,设定初始的模糊控制参数。

这些参数包括模糊集合的边界和中心值,模糊规则的权重等。

初始参数的设定可以根据实验结果进行调整。

5. 实时数据采集:将实时的供热系统数据输入到模糊控制器中。

这些数据可以通过传感器或者数据采集系统获取。

6. 模糊推理计算:根据输入数据和模糊规则,进行模糊推理计算,得到模糊输出。

这个输出表示了供热输出的调整幅度。

7. 去模糊处理:将模糊输出转化为具体的控制量,可以采用去模糊处理方法,例如重心法、最大值法等。

去模糊处理后得到的控制量即为供热系统的实际输出。

8. 控制参数调整:根据实际的供热效果和控制需求,可以进行控制参数的调整。

可以根据实验结果或者专家经验进行调整,以达到更好的控制效果。

9. 性能评估和优化:对控制系统的性能进行评估和优化。

可以根据控制误差、响应时间、稳定性等指标进行评估,进一步调整控制参数,以提高系统的性能和稳定性。

10. 持续监控和维护:在实际运行中,持续监控控制系统的运行情况,及时调整参数和处理故障。

定期进行系统维护和检修,确保供热系统的稳定运行和控制效果。

模糊pid原理

模糊pid原理

模糊pid原理
模糊PID原理
PID控制是一种常用的控制算法,可以实现对系统的自动控制。

PID控制器由比例(P)、积分(I)和微分(D)三个控制项
组成,通过计算这三个控制项的值来调节系统的输出,以达到期望的状态。

比例控制项(P)根据系统的误差信号来调整输出。

它与误差
成正比,误差越大,输出也会越大。

比例控制项的作用是使系统的响应快速且精确,但在某些情况下可能会引发超调或振荡的问题。

积分控制项(I)是对误差信号进行累积运算,并与积分时间
相乘。

积分控制项的作用是消除系统的静差,使系统的输出能够达到期望的状态。

但如果积分时间设置不当,可能会导致系统的响应速度变慢或产生超调。

微分控制项(D)是对误差信号的变化率进行计算,并与微分
时间相乘。

微分控制项的作用是抑制系统的振荡或超调,使系统的输出更加稳定。

但如果微分时间设置过大,可能会引发系统的抖动或震荡。

模糊控制则是在PID控制的基础上引入了模糊逻辑来调整PID 各个参数的权重。

模糊控制根据系统的输入和输出,通过模糊化、规则库匹配和去模糊化的过程,确定PID各个参数的取值,从而实现对系统的自适应控制。

模糊控制可以有效地应对
非线性、复杂的系统,具有较强的鲁棒性和适应性。

总之,模糊PID控制通过模糊化逻辑来调整PID各个参数的权重,从而实现对系统的自适应控制。

它在处理非线性、复杂系统时表现出较好的鲁棒性和适应性。

模糊自适应PID控制在无刷直流电动机矢量控制中的应用

模糊自适应PID控制在无刷直流电动机矢量控制中的应用

了无刷直流电动机推广前景。 无刷直流电动机的相关研究 国内外正在广泛地开 展起来 ,相应地数学模型 已经被成功地建立出来。无
子磁链定向方法 ,提出一种 电流环使用传统的 PD控 I 制 ,速度环使用模糊 自适应 PD控制方法 , I 设计出了
无刷直流电机的模糊 自适应 P I D控制系统。从而能够
c n o S lo u e . n e h ei nn ft u z d p v I c nr l v c sc rid ot l r Wa i r d c d a dt n t d s igo h f y a a t eP D o to iewa are n h e g e z i e d o . df l ec s t d sc rido . n en meia i lt nWa are u dte t u An mal t a es y wa are u a dt u r I mu ai S c rido a yh u t h c s o tn h
( a g a gP lt h i C l g , u n g n 3 0 2 C ia Hun g n o e nc ol e H a g a g4 8 0 , hn ) yc e
Ab t a t I r e a etev co o to o eBr s ls sr c: n o d rt h v e t r nr l r u he sDC oo fe t ey a dtef z y o h c f t h M tre c i l, n h u z v
tsigrs l h we a i to a o da a t ea dlg l bly e t eut s o dt th s h dh dag o d pi ihr i i t. n s h t me v n l ea i K e r s P D o to; m s ls ywo d : I c n lb he sDC oo ; e tr o to r M tr v co nr l c

模糊PID与常规PID的比较

模糊PID与常规PID的比较

模糊PID与常规PID的比较最优控制与智能控制基础文献总结报告模糊PID 与常规PID的MATLAB 仿真比较与分析学生姓名:班级学号:5080628任课教师:段洪君提交日期:2011.04.02成绩:文献总结报告自查表自查项目“是”标√“否”标×1 报告是否由本人独立撰写完成2 参考文献是否由本人独立查阅完成3 文献总结报告是否按时提交4 题目是否包含被控对象名称及与本课程相关的控制方法5 封面是否按“示样”标准打印,签名是否手写6 报告正文是否包含“要求”的三部分7 报告正文是否按“样本”格式撰写8 报告正文中的公式、图表等是否由本人编辑、绘制9 所引用的参考文献在报告正文中是否按顺序标注10 参考文献的数量是否达到要求11 参考文献的格式是否规范12 报告的正文与参考文献的总页数是否在8~10页之间13 报告是否达到“总体要求”14 报告是否包含对现有文献结论的仿真验证结果15 报告是否包含本人的研究内容及结果对所提交报告的自我评价(按百分制打分)1 研究的背景及意义随着工业的发展和社会的进步,被控对象越来越复杂,其数学模型的建立也越发困难,对于很多控制对象有的只能建立起粗糙的模型,有的甚至无法建立模型。

这类对象往往被称为不确定性系统。

对于不确定性系统很难用传统的控制方法取得满意的控制效果。

但是对于这类系统,人类却可以凭借自身的操作经验进行很好的控制。

于是,人类将这些专家控制经验转化为可以用计算机实现的算法,为不确定性系统的控制开辟一条新途径。

而后,控制专家运用模糊控制工具,结合人类的专家控制控制经验建立了一种新型的控制方法-----模糊控制。

模糊控制的基本思想是将人类专家对特定对象的控制经验,运用模糊集理论进行量化,转化为可数学实现的控制器从而实现对被控对象的控制。

模糊控制器的基本工作原理是:将测量得到的被控对象的状态经过模糊化接口转换为用人类自然语言描述的模糊量,而后根据人类的语言控制规则,经过模糊推理得到输出控制量的模糊取值,控制量的模糊取值再经过清晰化接口转换为执行机构能够接收的精确量。

自适应模糊pid控制的plc设计

自适应模糊pid控制的plc设计

基于PLC 的自适应模糊-PID 压力控制系统杨云飞(常熟理工学院 信息与控制工程系,江苏 常熟 215500)摘要: 本文在传统PID 控制技术和模糊控制技术的基础上,吸收两者长处,设计了自适应模糊-PID 控制器,并将其应用于压力控制中。

基于S7-200 PLC 的自适应模糊-PID 压力控制系统,以偏差和偏差变化率作为输入,根据被控系统不同工况变化的要求,通过修改PID 控制器的参数来获得满意的动态和静态控制性能。

关键词: 模糊控制 自适应 PID PLC中图分类法: TP273 文献标识码: ASelf-adaptive Fuzzy-PID pressure control system based on PLCYANG Yun-fei(Dept. of Information and Control Engineering ,Chang Shu Institute of Technology ,Chang Shu 215500,china ) Abstract : The self-adaptive Fuzzy-PID controller is designed based on traditional PID control technology and fuzzy control technology and it is applied to pressure control system. A self-adaptive Fuzzy-PID control system based on S7-200 PLC is carried out. It takes the deviation and the deviation change as input, according to varying performance state varying the parameters of PID controller to get good dynamic and static control quality. Keywords : Fuzzy control ;adaptive ;PID ;PLC1. 引言常规PID 控制器以其技术成熟在工业控制中得到了广泛的应用,其特点是控制精度高,但鲁棒性差,对非线性、时变参数等系统难以获得满意的控制效果。

自适应模糊PID在温度控制系统中的应用

自适应模糊PID在温度控制系统中的应用

到 F 一 工序 。 道 由于 实 际 工艺 中扰 动 因 素 多 , 荷 会 经常 发生 变 负 化 , . 度 系 统 容 量 滞 后 大 , 了保 证 整 个 工 艺顺 利 运 行 . 求 日温 为 要 锅 炉 温 度 波 动不 能 过 大 , 则 会 影 响 后续 产 品 的质 量 。 1中锅 否 图
1 系统 要 求 及 控 制 方 案设 计
模 糊 PD 控 制 器 的 基 本 思 想 是 将 模 糊 决 策 理 论 和 PD 控 I I 制 结 合 起 来 , 偏 差 e和偏 差 变 化 e 作 为 输 入 , 用 模 糊 控 制 以 。 利
规 则 在 线 对 P D参 数 进 行 修 改 。其 既 具 有 模糊 控制 灵 活 而适 应 I
性 强 的优 点 , 具 有 PD控 制 精 度 高 的特 点 。 又 I
11 系统 工 艺 要 求 如 图 1所示 为 温度 控 制 系 统 工艺 流 图 ,系统 要 求 对 锅 炉 加 热 至 某 一恒 定 值 ( 4 ) 右 , 热 后 的 热 水 通 过 一 段 管 导 输 送 7% 左 加
模 型 的复 杂 系统 。 对此 , 常规 PD控 制 器无 法 获得 好 的控 制 效果 。 I 而模 糊控 制 器 则 是根 据 人 工控 制 规 则组 织 控 制决 策 表 , 后 由 该 然 表决 定控 制 量 的大 小 。将 模 糊控 制 和 PD控 制 器 两者 结 合起 来 , I 扬 长 避短 , 具 有 模 糊 控 制 灵 活 而 适应 性强 的优 点 , 具 有 PD 既 又 I 控制 精 度 高 的特 点 , 复杂 控 制 系统 具 有 良好 的控 制 效果 。本 文 对 研 究 一 种 自适 应 型模 糊 PD控 制器 在 锅炉 温 度系 统 中 的应 用 。 I

pid控制参数的模糊整定方法

pid控制参数的模糊整定方法

pid控制参数的模糊整定方法下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。

文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor. I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!pid控制参数的模糊整定方法模糊PID控制参数整定方法通过引入模糊逻辑理论,使PID参数的整定过程更加智能化。

自适应模糊PID控制在茶叶杀青机中的应用

自适应模糊PID控制在茶叶杀青机中的应用

1 . 驱动装置
2 . 料斗
3 . 主动托辊
4 . 前支架
5 . 远红外辐射器
6 . 后支架
7 . 辅助托辊
8 . 滚筒
9 . 红外测温器
1 O . 出料 口
图1 滚筒式远红外茶叶杀青机结构简图
Fi g . 1 Ro l l e r -t y p e f a r i n f r a r e d ma c h i n e f o r g r e e n r e mo v i n g o f t e a d i a ra g m
滚 筒 两端分 别 支 承 在 主 动 托辊 和辅 助 托 辊 上 , 驱
动装置通过主动托辊驱动简体旋转 , 滚筒 内的茶 叶在 筒壁摩擦力和拨板 的作用下被提升到一定 高度 , 然后 向斜上方抛 出, 越 过远红外辐射器后落到滚筒 内壁 的 另一侧 ( 如图2 所示 ) , 如此反复循环 。由于滚筒倾斜
关键词 :茶 叶杀青机 ;自适 应 :模糊 P I D控制 ;滚筒式 ;远红外 中图分类号 :T P 2 7 3 3; S 1 2 6 文献标识 码 :A 文章编号 :1 0 0 3 — 1 8 8 X( 2 0 1 3) 0 2 — 0 2 0 1 — 0 4
0 引 言
杀青 是 制 备绿 茶 的第 一 道 工 序 , 其 目的是 通 过 高 温 破 坏 和钝 化 鲜 叶 中的 氧 化 酶 活 性 , 抑 制 鲜 叶 中 的茶
碳 或柴 禾 , 加 热 方 式 落 后 加 热 温 度 难 以控 制 , 效 果 不 够理想 , 易 出现蕉 叶或糊 叶 等 。 远 红 外 辐 射 干燥 是 近些 年 比较 流 行 的一 种 干 燥 方 式 , 其 辐 射加 热是 以
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《系统辨识与自适应控制》 课程论文

基于Matlab的模糊自适应PID控制器仿真研究 。

-可编辑修改- 学 院: 电信学院 专 业: 控制工程 姓 名: 王 晋 学 号: 102430111356 。

-可编辑修改- 基于Matlab的模糊自适应PID控制器仿真研究

王晋 (辽宁科技大学 电信学院 鞍山)

摘 要:传统PID在对象变化时,控制器的参数难以自动调整。将模糊控制与PID控制结合,利用模糊推理方法实现对PID参数的在线自整定。使控制器具有较好的自适应性。使用MATLAB对系统进行仿真,结果表明系统的动态性能得到了提高。 关键词: 模糊PID控制器;参数自整定;Matlab;自适应

0引言 在工业控制中,PID控制是工业控制中最常用的方法。但是,它具有一定的局限性:当控制对象不同时,控制器的参数难以自动调整以适应外界环境的变化。为了使控制器具有较好的自适应性,实现控制器参数的自动调整,可以采用模糊控制理论的方法[1]

模糊控制已成为智能自动化控制研究中最为活跃而富有成果的领域。其中,模糊PID控制技术扮演了十分重要的角色,并目仍将成为未来研究与应用的重点技术之一。到目前为止,现代控制理论在许多控制应用中获得了大量成功的范例。然而在工业过程控制中,PID类型的控制技术仍然占有主导地位。虽然未来的控制技术应用领域会越来越宽广、被控对象可以是越来越复杂,相应的控制技术也会变得越来越精巧,但是以PID为原理的各种控制器将是过程控制中不可或缺的基本控制单元。本文将模糊控制和PID控制结合起来,应用模糊推理的方法

实现对PID参数进行在线自整定,实现PID参数的最佳调整,设计出参数模糊自整定PID控制器,并进行了Matlab/Simulink仿真[2]。仿真结果表明,与常规PID控制系统相比,该设计获得了更优的鲁棒性和动、。 -可编辑修改- 静态性及具有良好的自适应性。

1 PID控制系统概述 PID控制器系统原理框图如图1所示。将偏差的比例(KP)、积分(KI)和微分(KD)通过线性组合构成控制量,对被控对象进行控制,KP、KI和KD 3个参数的选取直接影响了控制效果。

/ 图1 PID控制器系统原理框图

)(tu 比例 积分 微分 被控对

)(tr)(tc)(te。

-可编辑修改- 在经典PID控制中,给定值与测量值进行比较,得出偏差e(t),并依据偏差情况,给出控制作用u(t)。对连续时间类型,PID控制方程的标准形式为, (1)

式中,u(t)为PID控制器的输出,与执行器的位置相对应;t为采样时间;KP为控制器的比例增益;e(t)为PID控制器的偏差输入,即给定值与测量值之差;TI为控制器的积分时间常数;TD为控制器的微分时间常数。 离散PID控制的形式为

(2)

式中,u(k)为第k次采样时控制器的输出;k为采样序号,k=0,1.2 …;e(k)为第k次采样时的偏差值;T为采样周期;e(k-1)为第(k-1)次采样时的偏差值。 离散PID控制算法有如下3类:位置算法、增量算法和速度算法。增量算法为相邻量词采样时刻所计算的位置之差,即 (3)

])()(1)([)(0dttdeTdtteTteKtuDtICkjDIpTkekeTjeTTkeKku0])1()()()([)(

)]2()1(2)([)()]1()([)1()()(kekekeKkeKkekeKkukukuDIP。

-可编辑修改- 式中,IPIT

TKK,TTKKDPD。

从系统的稳定性、响应速度、超调量和稳态精度等方面来考虑,KP、KI、KD对系统的作用如下。 (1)系数KP的作用是加快系统的响应速度,提高系统的调节精度。KP越大,系统的响应速度越快,系统的调节精度越高,但易产生超调,甚至导致系统不稳定、KP过小,则会降低调节精度,使响应速度缓慢,从而延长调节时间,使系统静态、动态特性变坏。 (2)积分系数KI的作用是消除系统的稳态误差。KI越大,系统的稳态误差消除越快,但KI过大,在响应过程的初期会产生积分饱和现象,从而引起响应过程的较大超调;若KI过小,将使系统稳态误差难以消除,影响系统的调节精度。 (3)微分作用系数KD的作用是改善系统的动态特性。其作用要是能反应偏差信号的变化 趋势,并能在偏差信号值变的太大之前,在系统引入一个有效的早期修正信号,从而加快系统的动作速度,减少调节时间。 KP 、K I、 K,D与系统时间域性能指标之间的关系如表1所示。 参数名称 上升时间 超调亮 过渡过程时间 静态误差 KP 减少 增大 微小变化 减少 KI 减少 增大 增大 消除 KD 微小变化 减小 减小 微小变化

表1 KP 、K I、 K,D与系统时间域性能指标之间的关系 2模糊自适应PID控制系统 。 -可编辑修改- 模糊控制通过模糊逻辑和近似推理方法,让计算机把人的经验形式化、模型化,根据所取得的语言控制规则进行模糊推理,给出模糊输出判决,并将其转化为精确量,作为馈送到被控对象(或过程)的控制作用。模糊控制表是模糊控制算法在计算机中的表达方式,它是根据输入输出的个数、隶属函数及控制规则等决定的。日的是把人工操作控制过程表达成计算机能够接受,并便于计算的形式。模糊控制规则一般具有如下形式: If{ e = Ai and ec = Bi}then u= Ci ,i=1,2…,其中e,ec和u分别为误差变化和控制量的语言变量,而Ai、Bi、Ci为其相应论域上的语言值。 应用模糊推理的方法可实现对PID参数进行在线自整定,设计出参数模糊自整定PID控制器。仿真结果表明,该设计方法使控制系统的性能明显改善。 自适应模糊PID控制器是在PID算法的基础上,以误差e和误差变ec作为输入,利用模糊规则进行模糊推理,查询模糊矩阵表进行参数调整,来满足不同时刻的e和ec对PID参数自整定的要求。利用模糊规则在线对PID参数进行修改,便构成了自适应模糊PID控制器,其结构框图如图2所示[3]

图2 自适应模糊PID控制器结构框图 。

-可编辑修改- PID糊自整定是找出PID参数(KP、KI、KD)与e和ec之间的模糊关系,在运行中通过不断检测e和ec,根据模糊控制原理对3个参数进行在线修改,以满足不同e和ec对控制参数的不同要求,从而使对象具有良好的动、静态性能,模糊控制的核心是总结工程设计人员的技术和实际操作经验,建立合适的模糊规则表,得到针对3个参数KP 、KI、KD,分别整定的模糊规则表。 3常规PID和模糊自适应PID控制系统的仿真比较 利用MATLAB中的SMULllVK工具箱和模糊逻辑工具箱可以对经典P 1U控制系统和模糊自适应PID控制系统进行仿真,

)110)(12)(15(1)(sssSG 3.1常规PID控制系统仿真 在MATLAB中,构建PID控制系统仿真的模型如图3所示。利用稳定边界法、按以下步骤进行参数整定:

图3 PID控制系统仿真模型 。

-可编辑修改- (1) 将积分、微分系数TI=inf ,TD=0,KP置较小的值,使系统投入稳定运行,若系统无法稳定运行,则选择其他的校正方式, (2) 逐渐增大KP, 直到系统出现等幅振荡,即临界振荡过程,记录此时临界振荡增益KC临界振荡周期TC 。 (3) 按照经验公式:CPKK6.0 ,CITT5.0,CDTT125.0

。整定相应的PID参数,然

后进行仿真校验。

等幅振荡时: KC=12.8,TC=25-10=15 临界稳定法整定后参数: KP= 7.6800 ; Ti= 7.5 Td= 2

IPIT

TKK,TTKKDPD 得到 K

I=1,KD

=15

等幅振荡如图4, 。

-可编辑修改- 图4 系统等幅振荡 临界振荡整定法整定后图形如下:

010203040506070809010000.20.40.60.811.21.41.61.8。

-可编辑修改- 图5 传统PID控制系统仿真结果 010203040506070809010000.20.40.60.811.21.41.6。

-可编辑修改- 3.2模糊自适应PID控制系统仿真 首先利用F IS图形窗口创建1个两输入(e、ec)和三输出(KP、KI、KD)的Mamdani推理的模糊控制器,如图6 设输入(e、ec)的论域值均为(-6,6),输出(KP、KI、KD)的模糊论语为(-3,3),取相应论域上的语言值为负大(NB)、负中(NM)、负小(N S)、零(ZO)、正小(PS)、正中(PM)和正大(PB),而令所有输入、输出变量的隶属度函数均为trinf如图6,图7所示;图9为P ID控制的3个参数(KP、Ti、TD)的模糊控制规则。

相关文档
最新文档