晶科能源晶硅组件技术白皮书

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

晶科能源发布晶硅组件技术白皮书

1.LID衰减

LID(LightInducedDegradation):即光致功率衰减,一般组件运行初始阶段LID较高,之后随电池片硼氧复合体的逐年平稳下降,但理论数据和电站历史实测数据都证实多晶无论是第一年的初始光衰,第1~5年的光率,还是以后的稳定光率都要明显低于单晶。所以单多晶提供的功率衰减质保和实测数据都是多晶更具优势。

行业功率衰减线性质保:多晶功率衰减质保就较单晶低0.5%,同样功率组件,多晶寿命周期内保障的发电量就高于单晶。

LID衰减实测:单晶初始LID光率较多晶高1.0%,光衰后单晶组件功率与标称功率差距显著大于多晶,导致单晶出厂后经光衰导致的发电量损失高于多晶,由此带来的发电收益损失高于多晶。

初始LID越高,则稳定后组件功率与标称功率差距越大,则组件发电损失越多,发电收益损失越大。

从图1和图2显示,同样辐照量下,无论电池端,还是组件端,单晶较多晶衰减均高1.00%,即单晶比多晶光衰率更高。

稳定衰减:单多晶初始光衰的差异是由于硅片性质决定的,而之后的稳定衰减主要根据组件封装材料、工艺决定组件老化速度,所以和是单晶还是多晶的硅片关系不大,稳定衰减方面,单多晶一线品牌都提供线性质保0.7%。

2.CTM封装损失

CTM(Cell-to-Module):即从电池到组件的功率封装损失,电池片在封装成为组件的过程中,封装前后发电功率会变化,通常称为CTM。

CTM实测:单晶较多晶高2.0%以上,同样效率电池封装成组件,单晶功率低于多晶。

单晶封装损失:2-5%

多晶封装损失:-1~1%

图3显示,单晶CTM均在2.0%以上,甚至高达5%,而多晶则在0.5%以内,甚至封装后功率有提升。

这就是为什么单多晶最终组件效率的差异要小于电池片效率差异,在主流量产的功率输出上单多晶相差不多,以晶科和某品牌为例,其60片多晶的量产主流功率档265-

275W,而某品牌单晶同样在270-275W。

CTM差异原因:从电池到组件,由于电池与组件发电面积与光学反射原理差异,单晶光学利用率的降低及有效发电面积的减少,均较多晶更高,导致单晶CTM高于多晶。

1)电池与组件反射率的巨大差异:单晶硅片反射率约10%,电池片反射率约2%;多晶硅片反射率约20%,电池片反射率约6%。就电池片而言反射率多晶不如单晶,这是常规多晶效率低于单晶的主要原因;但当电池封装成为组件以后,组件的反射基本发生在玻璃表面,玻璃反射率约4%,这样单晶电池片原本在反射率上的优势就被牺牲掉了。这也是为什么多晶的封装损失可能甚至出现负值,是因为多晶电池被封装以后,电池表面反射率大幅下降,电池实际接受到的光线获得了增益,所以效率可能不降反升。

2)外量子效率EQE:多晶,短波区域(380-560nm区域),组件较电池更高,即该波段区域,组件对光子的利用率更高;而单晶,整个波段,组件较电池均有显著降低,即整个波段组件对光子的利用率均小于电池。

此外,多晶,长波区域(900-1200nm),组件较电池更低,即该波段区域,组件反射的光少于电池;而单晶,在该长波区域,组件与电池反射率相当,组件反射的光与电池相当。

从图4的单多晶电池到组件—外量子效率EQE及反射率Ref-变化图可以清楚得看到短波区域(380-560nm区域)和长波区域(900-1200nm),多晶组件较多晶电池对光的利用更好,而单晶组件较单晶电池对光的利用差,如此导致单晶电池到组件的CTM更高,而多晶更低。所以就封装以后的光学损失方面,单晶显著高于多晶。

3)发电面积利用率:单晶电池片倒角形状导致当封装到组件上,组件实际的有效接受太阳光的受光面积要小于方形多晶电池片的组件,再加上电池片上的栅线是不发电的,所以其占居的这部分面积也不能发挥效能。组件中单多晶有效发电面积利用率—单晶组件有效发电面积的利用率较多晶更低,致使其CTM改善的空间不及多晶。

总结:单晶电池扣除面积损失、封装损失、光衰的话,最终的组件效率与多晶的组件效率相差不大。

1.量产多晶

自晶科量产多晶开始,组件功率保持5-10W/年的速度提升,并始终引领行业的发展。

量产功率:晶科多晶以5-10W/年的速度提升,当前量产多晶主流功率265-275W及最高功率280W,高出行业平均水平1-2个档,而与单晶量产功率仅差1个档。

量产技术:行业内率先实现四主栅技术的全面量产,并融合自主研发的低位错高纯度J硅片/低电阻焊接技术/IQE匹配封装技术,助力晶科多晶功率行业领先。

发电性能vs行业单晶:晶科量产多晶较行业量产单晶具有更低的电流,户外发电时线缆损耗更低,组件发热更小,因而工作温度更低,发电性能更优,发电量损失也更少

图5和图6显示的是晶科多晶电池和组件量产效率与行业平均水平及其他一线主流品牌的比较,晶科在多晶电池和组件量产功率方面遥遥领先行业和其他一线品牌。

图7是晶科多晶产品量产功率路线图,晶科多晶量产功率始终处于行业前沿。

晶科多晶量产主流功率(265-275W)及量产最高功率(280W)较行业多晶平均水平高1-2个档位(行业多晶量产主流功率255-265W,多晶量产最高功率270-275W),而较行业单晶量产功率仅低1个档位。晶科多晶产品功率当前在行业内处于领先水平。

2.融合多项先进技术的量产多晶产品

低位错高纯度的晶科J硅片

四主栅技术-业内率先实现全面量产

低电阻焊接技术

IQE封装匹配技术

3.晶科较行业量产单晶发电性能更优

组件电流越高,则电站中线路损耗越高,且组件工作时发热也越高,即组件工作温度更高,从而组件发电量损失越大。

从电性能参数列表可以看出,同档位组件(280W),某品牌-单晶较晶科-多晶具有更高的Is(高0.05A,0.25%)c和Imp0.05A(高0.09A,1.08%);更高档位的某品牌-单晶-285W 与晶科-多晶-280W的Isc(高0.05A,0.55%)和Imp(高0.13A,1.50%)差值更大。因而,户外发电时,晶科-多晶产品较某品牌-单晶产品具有更低的线路损耗和工作温度,实际发电损失更小,发电性能更优。

相关文档
最新文档