2019-2020学年八年级数学上册《11.3角的平分线的性质》教学设计 新人教版.doc

合集下载

初中数学教学课例《角的平分线的性质》教学设计及总结反思

初中数学教学课例《角的平分线的性质》教学设计及总结反思

证明后,教师强调经过证明正确的命题可作为定 理.同时强调文字命题的证明步骤.。
3.合作交流。 判断正误,并说明理由:: (1)如图 1,P 在射线 OC 上,PE⊥OA,PF⊥OB,则 PE=PF. (2)如图 2,P 是∠AOB 的平分线 OC 上的一点,E、F 分别在 OA、OB 上,则 PE=PF.。 (3)如图 3,在∠AOB 的平分线 OC 上任取一点 P,若 P 到 OA 的距离为 3cm,则 P 到 OB 的距离边为 3cm。 (4)例题讲解 例 1 如图,在△ABC 中,AD 是它的角平分线,且 BD=CD, DE⊥AB,DF⊥AC,垂足分别是 E,F.。 求证:EB=FC.。 变题 1:如图,△ABC 中,∠C=90°,AD 是∠BAC 的平 分线,DE⊥AB 于 E,F 在 AC 上,且 BD=DF,求 证:CF=EB. 变题 2:如图,△ABC 中,∠C=90°,AD 是∠BAC 的平 分线, DE⊥AB 于 E,BC=8,BD=5,求 DE.。 教师用多媒体展示问题,学生观察识图,独立思考,
整个教学过程中始终大包大揽,没有放手让学生自主合
作,在教学中总是以我在讲为主,没有培养学生的能力。
对课堂所用时间把握不够准确,由于在开始的尺规
作图中浪费了一部分时间,当然这一环节时间的浪费与
我讲授尺规作图的方式不够合理是分不开的,以至于在
后面所准备的习题没有时间去练习,给人感觉这节课不
够完整。再就是课堂上安排的内容过多,也是导致前面
利用多媒体技术可以方便地创设、改变和探索某种 数学情境,在这种情境下,通过思考和操作活动,研究数 学现象的本质和发现数学规律.根据如今各学校实际教 教学策略选 学环境及本节课的实际教学需要,我选择电脑及投影仪 择与设计 多媒体教学系统辅助教学,另外借助一定的教学软件, 如“几何画板”,“Powerpoint”等将有关教学内容用 动态的方式展示出来,让学生能够进行直观地观察,并 留下清晰的印象,从而发现变化之中的不变.这样,吸引

角平分线的性质教学设计

角平分线的性质教学设计

《角平分线的性质》教案——人教版《数学》八年级上册鞍山市二十六中学那琳11.3 《角平分线的性质》教案第二课时教学目标知识技能1、了解角的平分线的性质,能利用三角形全等证明角的平分线的性质;2、会利用角的平分线的性质进行证明与计算.解决问题1、提高综合运算三角形全等的有关知识解决问题的能力2、初步了解角平分线的性质及判定在生活、生产中的应用数学思考通过让学生经历动手实践、合作交流、演绎推理的过程,使学生学会理性思考,从而提高解决简单问题的能力。

情感态度探讨角平分线性质的过程中,培养学生探究问题的兴趣,增强解决问题的信心,获得解决问题的成功体验,逐步培养学生的理性精神。

重点角平分线的性质的证明及运用。

难点角平分线性质的探究。

教学过程设计问题与情境师生行为设计意图活动1:情境引入:如图所示,要在S区建一个集贸市场,使它到公路、铁路距离相等,•离公路与铁路交叉处500m,这个集贸市场应建于何处(在图上标出它的位置,比例尺为1:20000)?1.集贸市场建于何处,和本节学的角平分线性质有关吗?用哪一个性质可以解决这个问题?2.比例尺为1:20000是什么意思?学生以小组为单位讨论,有部分学生疑惑,用以前学过的知识解决不了,引出新知识,等待学完再解决。

通过让学生动手画最短的路线,可以复习点到直线的距离这一概念,为探究角的平分线的性质作铺垫;同时也让学生感受到数学与实际生活是紧密相连的,从而激发学生的学习兴趣,体现人人学有价值的数学。

活动2:根据表中的图形和已知,猜想由已知可推出的结论,并用符号语言填写下表:1、学生可以讨论,独立思考,然后说出答案。

已知条件符合直角三角形全等的条件,所以Rt△PEO≌△PDO(HL).于是可得∠POE=∠POD.由已知推出的结论:点P在∠AOB的平分线上.判定定理:在角的内部到角的两边距离相等的点在角的平分线上[师]这样的话,我们又可以得到一个性质:到角的两边距离相等的点在角的平分线上.同学们思考一下,这两个性质有什么联系吗?[生]这两个性质已知条件和所推出的结论可以互换.[师]对,这是自己的语言,这一点在数学上叫“互逆性”.2、进一步引导学生用集合的观点概括两个性质,教师及时点拨讲解,让学生区别性质和判定两个的区别引导学生写出命题的已知、求证并加以证明,让学生熟悉证明文字命题的步骤,体会由实践活动得到的猜想,只能通过证明来验证,从而发展学生的理性思维。

人教版初中八年级数学上册角的平分线的性质教案

人教版初中八年级数学上册角的平分线的性质教案

12.3 角的平分线的性质(1)教学内容本节课首先介绍作一个角的平分线的方法,然后用三角形全等证明角平分线的性质定理.教学目标1.知识与技能通过作图直观地理解角平分线的两个互逆定理.2.过程与方法经历探究角的平分线的性质的过程,领会其应用方法.3.情感、态度与价值观激发学生的几何思维,启迪他们的灵感,使学生体会到几何的真正魅力.重点难点1.重点:领会角的平分线的两个互逆定理.2.难点:两个互逆定理的实际应用.教具准备投影仪、制作如课本图11.3─1的教具.教学方法采用“问题解决”的教学方法,让学生在实践探究中领会定理.教学过程一、创设情境,导入新课【问题探究】(投影显示)如课本图11.3─1,是一个平分角的仪器,其中AB=AD,BC=DC,将点A放在角的顶点,AB和AD沿着角的两边放下,沿AC画一条射线AE,AE就是角平分线,你能说明它的道理吗?【教师活动】首先将“问题提出”,然后运用教具(如课本图11.3─1•)直观地进行讲述,提出探究的问题.【学生活动】小组讨论后得出:根据三角形全等条件“边边边”课本图11.3─1判定法,可以说明这个仪器的制作原理.【教师活动】请同学们和老师一起完成下面的作图问题.操作观察:已知:∠AOB.求法:∠AOB的平分线.作法:(1)以O为圆心,适当长为半径作弧,交OA于M,交OB于N.(2)分别以M、N为圆心,大于12MN的长为半径作弧,两弧在∠AOB的内部交于点C.(3)作射线OC,射线OC•即为所求(课本图11.3─2).【学生活动】动手制图(尺规),边画图边领会,认识角平分线的定义;同时在实践操作中感知.【媒体使用】投影显示学生的“画图”.【教学形式】小组合作交流.二、随堂练习,巩固深化课本P19练习.【学生活动】动手画图,从中得到:直线CD与直线AB是互相垂直的.【探研时空】(投影显示)如课本图,将∠AOB对折,再折出一个直角三角形(使第一条折痕为斜边),然后展开,观察两次折叠形成的三条折痕,你能得出什么结论?【教师活动】操作投影仪,提出问题,提问学生.【学生活动】实践感知,互动交流,得出结论,“从实践中可以看出,第一条折痕是∠AOB的平分线OC,第二次折叠形成的两条折痕PD、PE是角的平分线上一点到∠AOB两边的距离,这两个距离相等.”论证如下:已知:OC是∠AOB的平分线,点P在OC上,PD⊥OA,PE⊥OB,垂足分别是D、E(课本图11.3─4)求证:PD=PE.证明:∵PD⊥OA,PE⊥OB,∴∠PDO=∠PEO=90°在△PDO和△PEO中,,,,PDO PEO AOC BOC OP OP ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△PDO ≌△PEO (AAS )∴PD=PE【归纳如下】角的平分线上的点到角的两边的距离相等.【教学形式】师生互动,生生互动,合作交流.三、情境合一,优化思维【问题思索】(投影显示)如课本图11.3─5,要在S 区建一个集贸市场,使它到公路、铁路的距离相等,•离公路与铁路交叉处500米,这个集贸市场应建于何处(在图上标出它的位置,比例尺为1:20 000)?【学生活动】四人小组合作学习,动手操作探究,获得问题结论.从实践中可知:角平分线上的点到角的两边距离相等,将条件和结论互换:到角的两边的距离相等的点也在角的平分线. 证明如下:已知:PD ⊥OA ,PE ⊥OB ,垂足分别是D 、E ,PD=PE .求证:点P 在∠AOB 的平分线上.证明:经过点P 作射线OC .∵PD ⊥OA ,PE ⊥OB∴∠PDO=∠PEO=90°在Rt △PDO 和Rt △PEO 中,,,OP OP PD PE =⎧⎨=⎩∴Rt △PDO ≌Rt △P EO (HL ) ∴∠AOC=∠BOC ,∴OC 是∠AOB 的平分线.【教师活动】启发、引导学生;组织小组之间的交流、讨论;帮助“学困生”.【归纳】到角的两边的距离相等的点在角的平分线上.【教学形式】自主、合作、交流,在教师的引导下,比较上述两个结论,弄清其条件和结论,加深认识.四、范例点击,应用所学【例】如课本图11.3─6,△ABC的角平分线BM,CN相交于点P,求证:点P•到三边AB,BC,CA的距离相等.【思路点拨】因为已知、求证中都没有具体说明哪些线段是距离,而证明它们相等必须标出它们.所以这一段话要在证明中写出,同辅助线一样处理.如果已知中写明点P到三边的距离是哪些线段,那么图中画实线,在证明中就可以不写.【教师活动】操作投影仪,显示例子,分析例子,引导学生参与.证明:过点P作PD、PE、PF分别垂直于AB、B C、CA,垂足为D、E、F.∴BM是△ABC的角平分线,点P在BM上.∴PD=PE同理 PE=PF∴PD=PE=PF即点P到边AB、BC、CA的距离相等.【评析】在几何里,如果证明的过程完全一样,只是字母不同,可以用“同理”二字概括,省略详细证明过程.【学生活动】参与教师分析,主动探究学习.五、随堂练习,巩固深化课本P50练习1、2.六、课堂总结,发展潜能1.学生自行小结角平分线性质及其逆定理,和它们的区别.2.说明本节例子实际上是证明三角形三条角平分线相交于一点的问题,•说明这一点是三角形的内切圆的圆心(为以后学习设伏).七、布置作业,专题突破课本P51习题12.3第1、2、3题.板书设计把黑板分成三部分,左边部分板书概念、定理等,中间部分板书探究,右边部分板书例题,重复使用时,中间部分和右边部分板书练习题.。

八年级数学上册《11.3角的平分线的性质(1)》学案 人教新课标版

八年级数学上册《11.3角的平分线的性质(1)》学案 人教新课标版

八年级数学上册《11.3角的平分线的性质(1)》学案人教新课标版11、3角的平分线的性质(1)》学案人教新课标版使用说明:学生利用自习先预习课本第19页探究-第21页思考前10分钟,然后35分钟独立做完学案。

正课由小组讨论交流10分钟,25分钟展示点评,10分钟整理落实,对于有疑问的题目教师点拨、拓展。

【学习目标】1、经历角的平分线性质的发现过程,初步掌握角的平分线的性质定理、2、能运用角的平分线性质定理解决简单的几何问题、3、极度热情、高度责任、自动自发、享受成功。

教学重点:掌握角的平分线的性质定理教学难点: 角平分线定理的应用。

【学习过程】一、自主学习1、复习思考什么是角的平分线?怎样画一个角的平分线?2、如右图,AB=AD,BC=DC,沿着A、C画一条射线AE,AE就是∠BAD的角平分线,你知道为什么吗3、根据角平分仪的制作原理,如何用尺规作角的平分线?自学课本19页后,思考为什么要用大于MN的长为半径画弧?4、OC是∠AOB的平分线,点P是射线OC上的任意一点,操作测量:取点P的三个不同的位置,分别过点P作PD⊥OA,PE ⊥OB,点D、E为垂足,测量PD、PE的长、将三次数据填入下表:观察测量结果,猜想线段PD与PE的大小关系,写出结论 PDPE第一次第二次第三次5、命题:角平分线上的点到这个角的两边距离相等、题设:一个点在一个角的平分线上结论:这个点到这个角的两边的距离相等结合第4题图形请你写出已知和求证,并证明命题的正确性解后思考:证明一个几何命题的步骤有那些?6、用数学语言来表述角的平分线的性质定理:如右上图,∵OC是∠AOB的平分线,点P是∴二、合作探究1、如图所示OC是∠AOB 的平分线,P 是OC上任意一点,问PE=PD?为什么?OABEDCP2、如图:在△ABC中,∠C=90,AD是∠BAC的平分线,DE⊥AB于E,F在AC上,BD=DF;求证:CF=EB三、学以致用EDCBA在Rt△ABC中,BD平分∠ABC,DE⊥AB 于E,则⑴图中相等的线段有哪些?相等的角呢?⑵哪条线段与DE相等?为什么?⑶若AB=10,BC=8,AC=6,求BE,AE的长和△AED的周长。

八年级数学上册《角的平分线的性质》教案、教学设计

八年级数学上册《角的平分线的性质》教案、教学设计
3.学会运用角的平分线性质解决实际问题,如构造线段相等、角度相等等问题。
学生能够将角的平分线的性质应用于实际问题的解决中,培养学以致用的能力。
(二)过程与方法
1.通过实际操作,让学生经历角的平分线的探索过程,培养动手操作能力和观察能力。
教学过程中,教师引导学生通过实际操作,观察角的平分线,培养学生动手操作的能力和观察能力。
“同学们,你们在生活中见过这样的角吗?它们有什么特殊之处呢?今天我们要学习角的平分线,一起来探索这些角的奥秘吧!”
2.提问:引导学生思考角的平分线的定义及作用。
“谁能来说说什么是角的平分线?它有什么作用呢?”
3.导入新课:通过学生回答,自然导入本节课的学习内容——角的平分线的性质。
(二)讲授新知
1.概念讲解:详细解释角的平分线的定义,并通过图示进行展示。
3.提高题挑战:
完成课后提高题6、7,这两题难度较大,旨在培养学生几何证明的思路和方法,提高学生的逻辑思维能力和解题技巧。
4.探究性问题:
针对本节课所学内容,提出一个探究性问题:“除了点到角的两边的距离相等,角的平分线还有其他性质吗?”鼓励学生在课后进行自主探究,培养学生的创新意识和研究精神。
5.小组合作任务:
五、作业布置
为了巩固本节课所学内容,检验学生对角的平分线性质的理解和应用能力,特布置以下作业:
1.基础知识巩固:
完成课本第章节后的练习题1、2、3,这些题目旨在帮助学生巩固角的平分线的定义和性质,加强对基础知识的掌握。
2.应用题训练:
选择两道应用题(如课本例题4、5),要求学生运用角的平分线性质进行解决。通过解决实际问题,提高学生将理论知识应用于实际情境的能力。
2.强调几何证明的思路和方法。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020学年八年级数学上册《11.3角的平分线的性质》教学设计
新人教版
教学课题

课标要求 1、知识与技能:掌握作已知角的平分线的方法;能够利用角平分线的性质和
判定进行推理和计算,初步了解角的平分线的性质在生活、
生产中的应用.
2、过程与方法:在探究作已知角的平分线的方法和角平分线的性质的过程中,
发展几何直觉。经历探索、猜想、证明的过程,进一步发展
学生的推理证明意识和能力.提高综合运用三角形全等的有
关知识解决问题的能力.
3、情感目标: 在探讨作角的平分线的方法及角的平分线的性质的过程中,
结合实际,创造丰富的情境,培养学生探究问题的兴趣,增
强解决问题的信心,让他们在活动中获得成功的体验,树立
学习的信心.

识记 理解 应用 综合
知识点1 角的平分线的尺规作图 ∨

知识点2 角的平分线的性质 ∨
知识点3 角的平分线的判定 ∨
知识点4 角的平分线的性质与判定 ∨
目标设计 1、通过实例及观察探究角平分线的尺规作图。
2、通过实验和理论分析理解角的平分线的性质。并进行简单应用。
3、通过实际问题的引入,探究角的平分线的判定,并由全等加以证明。
4、通过实验和理论分析理解三角形三条角平分线交于一点的原因。
5、进一步使学生对角的平分线的性质与判定加深理解,提高解决问题的能力。

教学过程设计
一、情境与问题设计
情境1、如何将一个角平分是一个有趣的实验课题,有一个简易平分角的仪器(如图),其
中AB=AD,BC=DC,将A点放角的顶点,AB和AD沿AC画一条射线AE,AE就是∠BAD
的平分线,你能说明它的道理吗?

知识点
认知层次
问题1、已知一个角你会将它平分吗?说一说,你有哪些方法?有没有既简单又准确的方
法?

问题2、从上面的探究中,可以得出作已知角的平分线的方法。
(1)已知什么?求作什么?
(2)把简易平分角的仪器放在角的两边.且平分角的仪器两边相等,从几何角度怎么
画?
(3)简易平分角的仪器BC=DC,从几何角度如何画?
(4)OC与简易平分角的仪器中,AE是同一条射线吗?
(5)你能说明OC是∠AOB的平分线吗?
(6)归纳角平分线的作法

情境2、如图,将∠AOB的两边对折,再折个直角三角形(以第一条折痕为斜边),然后展开,
观察两次折叠形成的三条折痕,你能得到什么结论?你能利用所学过的说明你的结
论的正确性吗?
问题3、观察折纸(得角平分线的性质:角平分线上的点到角两边的距离相等 .)
(1)折痕PE和PD与角的两边OA、OB有什么关系?PD和PE相等吗?
(2)两次折叠形成的三条折痕,两个直角三角形全等吗?
(3)你能归纳出角平分线的性质吗?
(4)请证明你的结论?(利用全等三角形证明课本20页)

小结:证明几何命题的步骤
(1)明确已知和求证。
(2)根据题意画出图形,用数学符号写出已知和求证。
(3)经过分析,写出证明过程。
情境3、如图,要在S区建一个贸易市场,使它到铁路和公路距离相等, 离公路与铁路交
叉处500米,这个集贸市场应建在何处?为什么?

情境4、多媒体课件动态演示,当拖动∠AOB内部的点P时,在保持PM=PN(PM⊥OA,PN⊥
OB)的前提下,观察点P留下的痕迹。
(发现:射线OP是∠AOB的平分线,即角平分线的判定方法。)

问题4、 你能利用三角形全等知识进行解释吗?
(用HL证明)
情境5、学生活动一:剪一个三角形纸片,通过折叠找出每个角的平分线,观察这三条角平
分线,你发现了什么?
学生活动二:画一个三角形,利用尺规作出这个三角形三个内角的平分线,你是否
也发现了同样的结果?与同伴进行交流.
问题5、画一个任意三角形,并作出两个角的平分线,观察交点与这个三角形三条边的距离。
(1)你发现了什么?(2)点P在∠A的平分线上吗?
问题6、如图,为了促进当地旅游发展,某地要在三条公路围成的一块平地上修建一个度假
村。
(1)要使这个度假村到三条公路的距离相等,应在何处修建?
(2)在确定度假村的位置时,一定要画出三个角的平分线吗?你是怎样思考的?你是
如何证明的?

二、习题设计
(落实知识点2)
1、如图,连接平分仪的BD、AC,那么AC与与BD有什么关系?为什么?


2、如图,△ABC中,∠C=90°,AD是△ABC的角平分线,DE⊥AB于E,F在AC上,BD=DF,

求证:CF=EB。


3、如图,在△ABC中,∠C=90°,AD平分∠BAC交BC于点D,若BC=8,BD=5,则点D

到AB的距离为多少?

4、如图,在△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于点0,DE⊥AB,垂足为E,
且AB=6 cm,则△DEB的周长为_______cm。
(落实知识点3)
5、如图BD⊥AM于点D,CE⊥AN于点E,BD、CE交点F,CF=BF,
求证:点F在∠A的平分线上.

6、如图,在△ABC中,D是BC的中点,DE⊥AB,DF⊥AC,垂足分别是E,F,且BE=CF。
求证:AD是△ABC的角平分线。

(落实知识点4)
7、已知:如下图,在△ABC的外角∠CBD和∠BCE的平分线相交于点F,求证:点F在∠DAE
的平分线上.

8、直线表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,
则可供选择的地址有:( )
A.一处 B. 两处 C.三处 D.四处

相关文档
最新文档