multisimbuck电路仿真

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章概述

1.1 直流―直流变换的分类

直流—直流变换器(DC-DC)是一种将直流基础电源转变为其他电压种类的直流变换装置。目前通信设备的直流基础电源电压规定为−48V,由于在通信系统中仍存在−24V(通信设备)及+12V、+5V(集成电路)的工作电源,因此,有必要将−48V基础电源通过直流—直流变换器变换到相应电压种类的直流电源,以供实际使用。D C/DC变换是将固定的直流电压变换成可变的直流电压,也称为直流斩波。主要有

(1)Buck电路——降压斩波,其输出平均电压小于输入电压,极性相同。

(2)Boost电路——升压斩波,其输出平均电压大于输入电压,极性相同。

(3)Buck-Boost电路——降压―升压斩波,其输出平均电压大于或小于输入电压,极性相反,电感传输。

(4)Cuk电路——降压或升压斩波,其输出平均电压大于或小于输入电压,极性相反,电容传输。

此外还有Sepic、Zeta电路。

1.2 直流—直流变换器的发展

当今软开关技术的发展使得DC/DC发生了质的飞跃,美国VICOR公司(美国怀格公司,国际知名的电源模块生产厂家)设计制造的多种ECI软开关DC/DC变换器,其最大输出功率有300W、600W、800W等,相应的功率密度为(6.2、10、17)W/cm3,效率为(80~90)%。日本NEMIC—LAMBDA(联美兰达,日本的开关电源厂商.2012年兰达被TDK收购,名称也改为TDK-LAMBDA)公司最新推出的一种采用软开关技术的高频开关电源模块RM系列,其开关频率为(200~300)kHz,功率密度已达到27W/cm3,采用同步整流器(MOSFET代替肖特基二极管),使整个电路效率提高到90%。

第二章降压―升压斩波电路的设计

2.1 基本工作原理

电路原理图如图2-1所示,基本工作原理如下:

b)R

a)

i

i

2

I

I

图2-1: 降压―升压斩波电路原理图

设电路中电感L值很大,电容C值也很大。使电感IL和电容电压即负载电压uo基本为恒值。

当可控开关V处于通态时,电源E经V向电感L供电使其储存能量,此时电流为i1,方向如图2-1a)所示。同时,电容C维持输出电压基本恒定并向负载R供电。此后,使V关断,电感L中储存的能量向负载释放,电流为i2,方向如图2-1a)所示。

可见,负载电压极性为上正下负,与电源电压极性相反,因此又称为反极性斩波电路。

稳态时,一个周期T电感L两端电压ul对时间积分为零,即0

T

L

u dt=

⎰当V处于通态期间,uL=E;而当V处于断态期间,uL=-u0。于是

所以输出电压为

改变占空比α,输出电压既可以比电源电压高,

也可以比电源电压低。当0<α<1/2时为降压,当1/2<α<1时为升压,因此将该电路称为降压―升压斩波电路。也有的文献直接按英文称之为buck-boost 变换器。

图2-1b)给出了电源电流i1和负载电流

i2的波形,设两者的平均电流分别为I1和I2,当电流脉动足够小时,有

如果V和VD为没有损耗的理想开关时,则EI1=U0I2,其输出功率和输入功率相等,可以看做直流变压器。

2.2 触发方式

根据对输出电压平均值进行调制的方式不同,斩波电路可以有三种控制方式:

保持开关周期T不变,调节开关导通时间ton,称为脉冲宽度调制(Pulse Width Modulation,PWM ),或脉冲调宽型。

保持开关导通时间ton不变,改变开关周期T,称为频率调制或调频型。

ton和T都可调,使占空比改变,称为混合型。其中第一种方式应用最多。

第三章电路仿真及其分析

off

o

on

t

U

t

E⋅

=

直流降压―升压斩波变换电路的输出电压可以高于或者低于输入电压,它具有一个相对于输入电压公共端为负极性的输出电压。在电路中,改变占空比系数α,即可改变输出电压。

3.1电路为直流降压斩波变换电路时的波形及其分析

基于Multisim的直流降压―升压斩波电路的仿真电路图如图3-1所示,当函数发生器的设置如图3-2所示。占空比系数α为10%时,直流电压表指示的输出电压如图。其中特别注意直流电压表的接入方向问题,由此可见输出电压小于输入电压,完成降压斩波功能。直流电压表示数如图3-3所示,示波器显示的输出电压信号波形如图3-4所示。

图3-1:直流降压―升压斩波变换电路(降压时)

图3-2:信号发生器板面设置

图3-3:直流电压表示数

图3-4:输出电压信号波形

下面对仿真结果分析如下:在仿真电路图中,电源电压E设为9V,开关管为2SK2070L,即Silicon N Channel MOS FET High Speed Power Switching,是一种高速的MOSFET开关管,由日立公司(HITACHI)生产,函数信号发生器的参数设置足以驱动MOSFET,占空比α设为10%,由计算公式在理论上输出电压值应为1V,但是由于开关不是理想的,存在一定的压降,所以输出电压略小于理论值。

3.2 电路为直流升压斩波电路时的波形及其分析

在图3-5所示的电路中,函数发生器的设置如图3-6,占空比系数α=0.7时,直流电压表的输出电压如图3-8所示,可见输出电压大于输入电压,完成了升压的功能。示波器显示的输出电压信号波形如图3-8 a)和3-8 b)所示。

图3-5:直流降压―升压斩波电路(升压时)

图3-6:信号发生器设置面板

图3-7:直流电压表示数

相关文档
最新文档