2017-2019三年高考真题理科数学试题分类汇编:专题01 集合与常用逻辑用语
《精品》2017-2019三年高考真题专题01集合与常用逻辑用语-数学(文)分项汇编(解析版)

{ }专题 01 集合与常用逻辑用语1 .【 2019 年高考全国Ⅰ卷文数】已知集合 U = {1,2,3,4,5,6,7 },A = {2,3,4,5 },B = {2,3,6,7 },则B ð A =UA . {1,6}C . {6,7}B . {1,7}D . {1,6,7}【答案】C【解析】由已知得 ð A = {1,6,7 },U所以 B ð A = {6,7} .U故选 C .【名师点睛】本题主要考查交集、补集的运算,根据交集、补集的定义即可求解.2.【2019 年高考全国Ⅱ卷文数】已知集合 A={x | x > -1} , B = {x | x < 2},则 A ∩B =A .(-1,+∞)C .(-1,2)B .(-∞,2)D . ∅【答案】C【解析】由题知, AB = (-1,2) .故选 C .【名师点睛】本题主要考查交集运算,是容易题,注重了基础知识、基本计算能力的考查.易错点是理解集合的概念及交集概念有误,不能借助数轴解题.3.【2019 年高考全国Ⅲ卷文数】已知集合 A = {-1,0,1,2}, B = {x | x 2 ≤ 1} ,则 AB =A . {-1,0,1}C . {-1,1}B . {0,1}D . {0,1,2}【答案】A【解析】∵ x 2 ≤ 1,∴ -1 ≤ x ≤ 1 ,∴ B = x-1 ≤ x ≤ 1 ,又 A = {-1,0,1,2} ,∴ A故选 A .B = {-1,0,1}.1【解析】∵ ðU A = { - 1,3} ,∴ ð A【【名师点睛】本题考查了集合交集的求法,是基础题.4.【2019 年高考北京文数】已知集合 A={x|–1<x<2},B={x|x>1},则 A ∪B =A .(–1,1)C .(–1,+∞)B .(1,2)D .(1,+∞)【答案】C【解析】∵ A = {x | -1 < x < 2}, B = {x |> 1} ,∴ A B = (-1,+∞) .故选 C.【名师点睛】本题考查并集的求法,属于基础题.5.【2019 年高考浙江】已知全集U = {-1,0,1,2,3 },集合 A = {0,1,2}, B = {-1,0,1},则 (ð A) UB =A . {-1}C . {-1,2,3}【答案】AB . {0,1}D . {-1,0,1,3}( )UB = {-1} .故选 A.【名师点睛】注意理解补集、交集的运算.6. 2019 年高考天津文数】设集合 A = {-1,1,2,3,5}, B = {2,3,4}, C = {x ∈ R |1 ≤ x < 3},则 ( AC ) B =A . {2}C . {-1,2,3}【答案】D【解析】因为 A B . {2,3}D . {1,2,3,4 }C = {1,2} ,所以 ( A C ) B = {1,2,3,4} .故选 D .【名师点睛】集合的运算问题,一般要先研究集合中元素的构成,能化简的要先化简,同时注意数形结合,即借助数轴、坐标系、韦恩图等进行运算.7.【2019 年高考天津文数】设 x ∈ R ,则“ 0 < x < 5 ”是“ | x - 1| < 1 ”的A .充分而不必要条件B .必要而不充分条件2C.充要条件D.既不充分也不必要条件【答案】B【解析】由|x-1|<1可得0<x<2,易知由0<x<5推不出0<x<2,由0<x<2能推出0<x<5,故0<x<5是0<x<2的必要而不充分条件,即“0<x<5”是“|x-1|<1”的必要而不充分条件.故选B.【名师点睛】本题考查充分必要条件,解题的关键是由所给的不等式得到x的取值范围. 8.【2019年高考浙江】若a>0,b>0,则“a+b≤4”是“ab≤4”的A.充分不必要条件C.充分必要条件B.必要不充分条件D.既不充分也不必要条件【答案】A【解析】当a>0,b>0时,a+b≥2ab,则当a+b≤4时,有2ab≤a+b≤4,解得a b≤4,充分性成立;当a=1,b=4时,满足ab≤4,但此时a+b=5>4,必要性不成立,综上所述,“a+b≤4”是“ab≤4”的充分不必要条件.故选A.【名师点睛】易出现的错误:一是基本不等式掌握不熟练,导致判断失误;二是不能灵活地应用“赋值法”,通过取a,b的特殊值,从假设情况下推出合理结果或矛盾结果.9.【2019年高考全国Ⅱ卷文数】设α,β为两个平面,则α∥β的充要条件是A.α内有无数条直线与β平行C.α,β平行于同一条直线B.α内有两条相交直线与β平行D.α,β垂直于同一平面【答案】B【解析】由面面平行的判定定理知:α内有两条相交直线都与β平行是α∥β的充分条件;由面面平行的性质定理知,若α∥β,则α内任意一条直线都与β平行,所以α内有两条相交直线都与β平行是α∥β的必要条件.31 1故 α∥β 的充要条件是 α 内有两条相交直线与 β 平行.故选 B .【名师点睛】面面平行的判定问题要紧扣面面平行的判定定理,最容易犯的错误为定理记不住,凭主观臆断.10.【2019 年高考北京文数】设函数 f (x )=cosx +b sinx (b 为常数),则“b =0”是“f (x )为偶函数”的A .充分而不必要条件C .充分必要条件B .必要而不充分条件D .既不充分也不必要条件【答案】C【解析】当 b = 0 时, f ( x ) = cos x + b sin x = cos x , f ( x ) 为偶函数;当 f ( x ) 为偶函数时, f (- x ) = f ( x ) 对任意的 x 恒成立,由 f (- x ) = cos(- x ) + b sin(- x ) = cos x - b sin x ,得 cos x + b sin x = cos x - b sin x ,则 b sinx = 0 对任意的 x 恒成立,从而 b = 0 .故“ b = 0 ”是“ f ( x ) 为偶函数”的充分必要条件.故选 C.【名师点睛】本题较易,注重重要知识、基础知识、逻辑推理能力的考查.11.【2018 年高考浙江】已知全集 U={1,2,3,4,5},A={1,3},则UA =A . ∅C .{2,4,5}B .{1,3}D .{1,2,3,4,5}【答案】C【解析】因为全集,,所以根据补集的定义得.故选 C .【名师点睛】若集合的元素已知,则求集合的交集、并集、补集时,可根据交集、并集、补集的定义求解.12.【2018 年高考全国Ⅰ卷文数】已知集合 A = {0 ,2}, B = {-2 ,- 1,0 , ,2},则 AA . {0 ,2}B . { ,2}4B =1C.{0}D.{-2,-1,0,,2}【答案】A【解析】根据集合的交集中元素的特征,可以求得.故选A.【名师点睛】该题考查的是有关集合的运算问题,在解题的过程中,需要明确交集中元素的特征,从而求得结果.13.【2018年高考全国Ⅱ卷文数】已知集合A={1,3,5,7},B={2,3,4,5},则A B=A.{3} C.{3,5}B.{5} D.{1,2,3,4,5,7}【答案】C【解析】,.故选C.【名师点睛】集合题是每年高考的必考内容,一般以客观题的形式出现,解决此类问题时要先将参与运算的集合化为最简形式,如果是“离散型”集合可采用V enn图法解决,若是“连续型”集合则可借助不等式进行运算.14.【2018年高考全国Ⅲ卷文数】已知集合A={x|x-1≥0},B={0,1,2},则A B=A.{0}C.{1,2}【答案】C【解析】易得集合A={x|x≥1},所以AB.{1}D.{0,1,2} B={1,2}.故选C.【名师点睛】本题主要考查交集的运算,属于基础题.15.【2018年高考北京文数】已知集合A={x||x|<2},B={–2,0,1,2},则A B=A.{0,1}C.{–2,0,1,2}【答案】A【解析】,,因此A B=.B.{–1,0,1}D.{–1,0,1,2}5(.故选 A.【名师点睛】解决集合问题时,认清集合中元素的属性是点集、数集或其他情形)和化简集合是正确求 解的两个先决条件.16 .【 2018 年高考天津文数】设集合A = {1, 2, 3, 4},B = {-1,0,2,3} ,C = {x ∈ R | -1 ≤ x < 2} ,则( A B) C =A .{ - 1,1}C .{ - 1,0,1}B .{0,1}D .{2,3,4}【答案】C【解析】由并集的定义可得:,结合交集的定义可知:.故选 C.【名师点睛】本题主要考查并集运算、交集运算等知识,意在考查学生的计算求解能力17.【2018 年高考浙江】已知平面 α,直线 m ,n 满足 m ⊄ α,n ⊂ α,则“m ∥n ”是“m ∥α”的A .充分不必要条件C .充分必要条件B .必要不充分条件D .既不充分也不必要条件【答案】A【解析】因为,所以根据线面平行的判定定理得 .由不能得出 与 内任一直线平行,所以是的充分不必要条件.故选 A.【名师点睛】充分、必要条件的三种判断方法:(1)定义法:直接判断“若 则 ”、“若 则 ”的真假.并注意和图示相结合,例如“⇒”为真,则 是 的充分条件.(2)等价法:利用⇒ 与非⇒ 非 ,⇒ 与非⇒ 非 ,⇔ 与非⇔ 非 的等价关系,对于条件或结论是否定式的命题,一般运用等价法.(3)集合法:若⊆,则 是 的充分条件或 是 的必要条件;若 = ,则 是 的充要条件.18.【2018 年高考天津文数】设 x ∈ R ,则“ x 3 > 8 ”是“ |x |> 2 ”的 A .充分而不必要条件 B .必要而不充分条件6.A.A B=⎨x|x<2⎭C.A B=⎨x|x<⎩D.A 2⎭C.充要条件D.既不充分也不必要条件【答案】A【解析】求解不等式可得,求解绝对值不等式可得或,据此可知:“”是“”的充分而不必要条件.故选A.【名师点睛】本题主要考查绝对值不等式的解法、充分不必要条件的判断等知识,意在考查学生的转化能力和计算求解能力.19.【2018年高考北京文数】设a,b,c,d是非零实数,则“ad=bc”是“a,b,c,d成等比数列”的A.充分而不必要条件C.充分必要条件B.必要而不充分条件D.既不充分也不必要条件【答案】B【解析】当时,不成等比数列,所以不是充分条件;当成等比数列时,则,所以是必要条件.综上所述,“”是“成等比数列”的必要不充分条件.故选B.【名师点睛】此题主要考查充分必要条件,实质是判断命题“⇒”以及“⇒”的真假.判断一个命题为真命题,要给出理论依据、推理证明;判断一个命题为假命题,只需举出反例即可,或者当一个命题正面很难判断真假时,可利用原命题与逆否命题同真同假的特点转化问题20.【2017年高考全国Ⅰ卷文数】已知集合A={x|x<2},B={x|3-2x>0},则⎧⎩3⎫⎬B.A B=∅【答案】A ⎧3⎫⎬B=R【解析】由3-2x>0得x<32,33所以A B={x|x<2}{x|x<}={x|x<}.22故选A.71 2, 3 4 123 ,4 22.【2017 年高考北京文数】已知全集U = R ,集合 A = {x | x < -2或x > 2},则 ð A ={ }【解析】因为 A = {x x < -2 或 x > 2},所以 ð A = x -2 ≤ x ≤ 2 .【名师点睛】对于集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图处理.21.【2017 年高考全国Ⅱ卷文数】设集合 A = {1,2,3}, B = {2,3,4} ,则 AB =A . {,3,4}C . {2,,}【答案】AB . {,,}D . {13,}【解析】由题意 AB = {1,2,3,4} .故选 A.【名师点睛】集合的基本运算的关注点:(1)看元素组成.集合是由元素组成的,从研究集合中元素的构成入手是解决集合运算问题的前提.(2)有些集合是可以化简的,先化简再研究其关系并进行运算,可使问题简单明了,易于解决.(3)注意数形结合思想的应用,常用的数形结合形式有数轴、坐标系和 V enn 图.UA . (-2,2)C . [-2,2] B . (-∞, -2) (2, +∞)D . (-∞, -2] [2, +∞)【答案】CU故选 C.【名师点睛】集合分为有限集合和无限集合,若集合个数比较少时可以用列举法表示;若集合是无限集合就用描述法表示,并注意代表元素是什么.集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图进行处理.23.【2017 年高考全国Ⅲ卷文数】已知集合 A={1,2,3,4},B={2,4,6,8},则 AB 中元素的个数为A .1C .3【答案】BB .2D .4【解析】由题意可得 AB = {2,4},故 A B 中元素的个数为 2.8( .x x - 1 < 1N则所以选 B.【名师点睛】求集合的基本运算时,要认清集合元素的属性 是点集、数集或其他情形)和化简集合,这 是正确求解集合运算的两个先决条件.集合中元素的三个特性中的互异性对解题影响较大,特别是含有字母的集合,在求出字母的值后,要注意检验集合中的元素是否满足互异性24.【2017 年高考天津文数】设集合 A = {1,2,6}, B = {2,4}, C = {1,2,3,4} ,则 ( AB) C =A .{2}C .{1,2,4,6}【答案】BB .{1,2,4}D .{1,2,3,4,6}【解析】由题意可得 AB = {1,2,4,6 },所以 ( A B) C = {1,2,4 }.故选 B .【名师点睛】集合分为有限集合和无限集合,若集合个数比较少时可以用列举法表示,若集合是无限集合就用描述法表示,注意代表元素是什么,集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图进行处理.25.【2017 年高考浙江】已知集合 P = {x | -1 < x < 1} , Q = {0 < x < 2} ,那么 PQ =A . (-1,2)C . (-1,0) 【答案】A【解析】利用数轴,取 P , Q 中的所有元素,得 PB . (0,1)D . (1,2)Q = (-1,2) .故选 A.【名师点睛】对于集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图处理.26.【2017 年高考山东文数】设集合 M ={}, = {x x < 2}, MN =A . (-1,1)C . (0,2 )【答案】C【解析】由 | x - 1| < 1 得 0 < x < 2 ,B . (-1,2 )D . (1,2 )9故 MN ={x | 0 < x < 2} {x | x < 2} = {x | 0 < x < 2} .故选 C.【名师点睛】对于集合的交、并、补运算问题,应先把集合化简再计算,对连续数集间的运算,借助数轴的直观性,进行合理转化;对已知连续数集间的关系,求其中参数的取值范围时,要注意单独考察等号能否取到,对离散的数集间的运算,或抽象集合间的运算,可借助 V enn 图.27.【2017 年高考浙江】已知等差数列{a n }的公差为 d ,前 n 项和为 S n ,则“d >0”是“S 4 + S 6>2S 5”的A .充分不必要条件C .充分必要条件B .必要不充分条件D .既不充分也不必要条件【答案】C【解析】由 S + S - 2S = 10a + 21d - 2(5a + 10 d ) = d ,46 5 1 1可知当 d > 0 时,有 S + S - 2S > 0 ,即 S + S > 2S ,46 5 4 6 5反之,若 S + S > 2S ,则 d > 0 ,465所以“d >0”是“S 4 + S 6>2S 5”的充分必要条件.故选 C .【名师点睛】本题考查等差数列的前 n 项和公式,通过套入公式与简单运算,可知 S + S - 2S = d ,465结合充分必要性的判断,若 p ⇒ q ,则 p 是 q 的充分条件,若 p ⇐ q ,则 p 是 q 的必要条件,该题“ d > 0 ” ⇔ “ S + S - 2S > 0 ”,故互为充要条件.46528.【2017 年高考北京文数】设 m ,n 为非零向量,则“存在负数 λ ,使得 m = λ n ”是“ m ⋅ n < 0 ”的A .充分而不必要条件C .充分必要条件B .必要而不充分条件D .既不充分也不必要条件【答案】A【解析】若 ∃λ < 0 ,使 m = λn ,则两向量 m ,n 反向,夹角是180︒ ,那么 m ⋅ n = m n cos180︒ = - m n < 0 ;若 m ⋅ n < 0 ,那么两向量的夹角为 ( 90︒,180︒] ,并不一定反向,即不一定存在负数 λ ,使得 m = λn ,所以是充分而不必要条件.故选 A.10{ } { } / / /【名师点睛】本题考查平面向量的知识及充分必要条件的判断,若 p ⇒ q ,则 p 是 q 的充分条件,若 p ⇐ q ,则 p 是 q 的必要条件.29.【2017 年高考山东文数】已知命题 p : ∃x ∈ R, x 2 - x + 1 ≥ 0 ;命题 q :若 a 2 < b 2 ,则 a <b .下列命题为真命题的是A . p ∧ qC . ⌝p ∧ qB . p ∧⌝ q D . ⌝p ∧⌝ q【答案】B【解析】由 x = 0 时, x 2 - x + 1 ≥ 0 成立知 p 是真命题;由12 < (-2)2 ,1 > -2 可知 q 是假命题,所以 p ∧⌝ q 是真命题.故选 B.【名师点睛】判断一个命题为真命题,要给出推理与证明;判断一个命题是假命题,只需举出反例.根据“原命题与逆否命题同真同假 ,逆命题与否命题同真同假 ”这一性质,当一个命题直接判断不易进行时 ,可转化为判断其等价命题的真假.30.【2017 年高考天津文数】设 x ∈ R ,则“ 2 - x ≥ 0 ”是“ | x -1|≤ 1”的A .充分而不必要条件C .充要条件B .必要而不充分条件D .既不充分也不必要条件【答案】B【解析】由 2 - x ≥ 0 ,可得 x ≤ 2 ,由 | x -1|≤ 1,可得 -1 ≤ x - 1 ≤ 1 ,即 0 ≤ x ≤ 2 ,因为 x 0 ≤ x ≤ 2 ⊂ x x ≤ 2 ,所以“ 2 - x ≥ 0 ”是“ | x -1|≤ 1”的必要而不充分条件.故选 B .【名师点睛】判断充要关系的的方法:①根据定义,若 p ⇒ q , q ⇒ p ,那么 p 是 q 的充分而不必要条件,同时 q 是 p 的必要而不充分条件,若 p ⇔ q ,那么 p 是 q 的充要条件,若 p ⇒ q , q ⇒ p ,那那么 p 是 q 的既不充分也不必要条件;11. (②当命题是以集合的形式给出时,那就看包含关系,若 p : x ∈ A , q : x ∈ B ,若 A 是 B 的真子集,那么 p 是 q 的充分而不必要条件,同时 q 是 p 的必要而不充分条件,若 A = B ,那么 p 是 q 的充要条件,若没有包含关系,那么 p 是 q 的既不充分也不必要条件;③命题的等价性,根据互为逆否命题的两个命题等价,将“p 是 q ”的关系转化为“⌝q 是 ⌝p ”的关系进行判断.31.【2019 年高考江苏】已知集合 A = {-1,0,1,6} , B = {x | x > 0, x ∈ R } ,则 A【答案】{1,6}【解析】由题意利用交集的定义求解交集即可.B = ▲ .由题意知, AB = {1,6} .【名师点睛】本题主要考查交集的运算,属于基础题.32.【2018 年高考江苏】已知集合, ,那么 ________.【答案】{1,8}【解析】由题设和交集的定义可知:.【名师点睛】本题考查交集及其运算,考查基础知识,难度较小33.【2017 年高考江苏】已知集合 A = {1,2} , B = {a, a 2 + 3},若 AB = {1} ,则实数 a 的值为 ▲ .【答案】1【解析】由题意1∈ B ,显然 a 2 + 3 ≥ 3 ,所以 a = 1 ,此时 a 2 + 3 = 4 ,满足题意.故答案为 1.【名师点睛】(1)认清元素的属性.解决集合问题时,认清集合中元素的属性是点集、数集或其他情形)和化简集合是正确求解的两个先决条件.(2)注意元素的互异性.在解决含参数的集合问题时,要注意检验集合中元素的互异性,否则很可能会因为不满足“互异性”而导致错误.(3)防范空集.在解决有关A虑 ∅ 时是否成立,以防漏解. B = ∅, A ⊆ B 等集合问题时,往往容易忽略空集的情况,一定要先考34.【2018 年高考北京文数】能说明“若 a ﹥b ,则 【答案】 ,(答案不唯一)121 1 < ”为假命题的一组 a ,b 的值依次为_________. a b.【解析】使“若,则 ”为假命题,则使“若 ,则 ”为真命题即可,只需取即可满足, 所以满足条件的一组的值为 (答案不唯一). 【名师点睛】此题考查不等式的运算,解决本题的关键在于对原命题与命题的否定真假关系的灵活转换,对不等式性质及其等价变形的充分理解,只要多取几组数值,解决本题并不困难35.【2017 年高考北京文数】能够说明“设 a ,b ,c 是任意实数.若 a >b >c ,则 a +b >c ”是假命题的一组整数a,b ,c 的值依次为______________________________.【答案】-1,-2,-3(答案不唯一)【解析】 -1 > -2 > -3, -1 + (-2) = -3 > -3 ,矛盾,所以−1,−2,−3 可验证该命题是假命题.【名师点睛】对于判断不等式恒成立问题,一般采用举反例排除法.解答本题时利用赋值的方式举反例进行验证,答案不唯一.13。
2019年高考真题+高考模拟题 专项版解析汇编 理数——专题01 集合与常用逻辑用语(解析版)

专题01 集合与常用逻辑用语1.【2019年高考全国Ⅰ卷理数】已知集合2|42{|60}{},M x x N x x x =-<<=--<,则M N =A .}{43x x -<<B .}42{x x -<<-C .}{22x x -<<D .}{23x x <<【答案】C【解析】由题意得2|42,{|60}{}|23}{M x x N x x x x x =-<<=--<=-<<, 则{|22}MN x x =-<<.故选C .【名师点睛】注意区分交集与并集的不同,交集取公共部分,并集包括二者所有的部分. 2.【2019年高考全国Ⅱ卷理数】设集合A ={x |x 2–5x +6>0},B ={x |x –1<0},则A ∩B = A .(–∞,1) B .(–2,1)C .(–3,–1)D .(3,+∞)【答案】A【解析】由题意得,2{560|}{2|A x x x xx =-+><=或3}x >,{10}{1|}|B x x x x =-<=<,则{|1}(,1)A B x x =<=-∞.故选A .【名师点睛】本题考点为集合的运算,为基础题目.3.【2019年高考全国Ⅲ卷理数】已知集合2{1,0,1,2},{|1}A B x x =-=≤,则A B =A .{}1,0,1-B .{}0,1C .{}1,1-D .{}0,1,2【答案】A【解析】∵21,x ≤∴11x -≤≤,∴{}11B x x =-≤≤,又{1,0,1,2}A =-,∴{}1,0,1A B =-.故选A .【名师点睛】本题考查了集合交集的求法,是基础题.4.【2019年高考天津理数】设集合{1,1,2,3,5},{2,3,4},{|13}A B C x x =-==∈≤<R ,则()AC B =A .{}2B .{}2,3C .{}1,2,3-D .{}1,2,3,4【答案】D 【解析】因为{1,2}A C =,所以(){1,2,3,4}A C B =.故选D .【名师点睛】集合的运算问题,一般要先研究集合中元素的构成,能化简的要先化简,同时注意数形结合,即借助数轴、坐标系、韦恩图等进行运算.5.【2019年高考浙江】已知全集{}1,0,1,2,3U =-,集合{}0,1,2A =,{}1,0,1B =-,则()U A B ð=A .{}1-B .{}0,1C .{}1,2,3-D .{}1,0,1,3-【答案】A【解析】∵{1,3}U A =-ð,∴(){1}U A B =-ð.故选A.【名师点睛】注意理解补集、交集的运算.6.【2019年高考浙江】若a >0,b >0,则“a +b ≤4”是 “ab ≤4”的 A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】A【解析】当0, 0a >b >时,a b +≥,则当4a b +≤时,有4a b ≤+≤,解得4ab ≤,充分性成立;当=1, =4a b 时,满足4ab ≤,但此时=5>4a+b ,必要性不成立, 综上所述,“4a b +≤”是“4ab ≤”的充分不必要条件.故选A.【名师点睛】易出现的错误:一是基本不等式掌握不熟练,导致判断失误;二是不能灵活地应用“赋值法”,通过取,a b 的特殊值,从假设情况下推出合理结果或矛盾结果. 7.【2019年高考天津理数】设x ∈R ,则“250x x -<”是“|1|1x -<”的 A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件【答案】B【解析】由250x x -<可得05x <<,由|1|1x -<可得02x <<, 易知由05x <<推不出02x <<, 由02x <<能推出05x <<,故05x <<是02x <<的必要而不充分条件,即“250x x -<”是“|1|1x -<”的必要而不充分条件. 故选B.【名师点睛】本题考查充分必要条件,解题的关键是由所给的不等式得到x 的取值范围. 8.【2019年高考全国Ⅱ卷理数】设α,β为两个平面,则α∥β的充要条件是 A .α内有无数条直线与β平行 B .α内有两条相交直线与β平行 C .α,β平行于同一条直线 D .α,β垂直于同一平面【答案】B【解析】由面面平行的判定定理知:α内有两条相交直线都与β平行是αβ∥的充分条件;由面面平行的性质定理知,若αβ∥,则α内任意一条直线都与β平行,所以α内有两条相交直线都与β平行是αβ∥的必要条件. 故α∥β的充要条件是α内有两条相交直线与β平行. 故选B .【名师点睛】面面平行的判定问题要紧扣面面平行的判定定理,最容易犯的错误为定理记不住,凭主观臆断.9.【2019年高考北京理数】设点A ,B ,C 不共线,则“AB 与AC 的夹角为锐角”是。
高考数学真题分项汇编 专题01 集合与常用逻辑用语 理(含解析)-人教版高三全册数学试题

专题01集合与常用逻辑用语1.【2019年高考全国Ⅰ卷理数】已知集合2|42{|60}{},M x x N x x x =-<<=--<,则M N =A .}{43x x -<<B .}42{x x -<<-C .}{22x x -<<D .}{23x x <<【答案】C【解析】由题意得2|42,{|60}{}|23}{M x x N x x x x x =-<<=--<=-<<, 则{|22}MN x x =-<<.故选C .【名师点睛】注意区分交集与并集的不同,交集取公共部分,并集包括二者所有的部分. 2.【2019年高考全国Ⅱ卷理数】设集合A ={x |x 2–5x +6>0},B ={x |x –1<0},则A ∩B = A .(–∞,1) B .(–2,1)C .(–3,–1)D .(3,+∞)【答案】A【解析】由题意得,2{560|}{2|A x x x x x =-+><=或3}x >,{10}{1|}|B x x x x =-<=<,则{|1}(,1)A B x x =<=-∞.故选A .【名师点睛】本题考点为集合的运算,为基础题目.3.【2019年高考全国Ⅲ卷理数】已知集合2{1,0,1,2},{|1}A B x x =-=≤,则A B =A .{}1,0,1-B .{}0,1C .{}1,1-D .{}0,1,2【答案】A【解析】∵21,x ≤∴11x -≤≤,∴{}11B x x =-≤≤,又{1,0,1,2}A =-,∴{}1,0,1A B =-.故选A .【名师点睛】本题考查了集合交集的求法,是基础题.4.【2019年高考天津理数】设集合{1,1,2,3,5},{2,3,4},{|13}A B C x x =-==∈≤<R ,则()A C B =A .{}2B .{}2,3C .{}1,2,3-D .{}1,2,3,4【答案】D 【解析】因为{1,2}A C =,所以(){1,2,3,4}A C B =.故选D.【名师点睛】集合的运算问题,一般要先研究集合中元素的构成,能化简的要先化简,同时注意数形结合,即借助数轴、坐标系、韦恩图等进行运算.5.【2019年高考浙江】已知全集{}1,0,1,2,3U =-,集合{}0,1,2A =,{}1,0,1B =-,则()UA B =A .{}1-B .{}0,1C .{}1,2,3-D .{}1,0,1,3-【答案】A 【解析】∵{1,3}UA =-,∴(){1}U A B =-.故选A.【名师点睛】注意理解补集、交集的运算.6.【2019年高考浙江】若a >0,b >0,则“a +b ≤4”是“ab ≤4”的 A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】A【解析】当0, 0a >b >时,a b +≥,则当4a b +≤时,有4a b ≤+≤,解得4ab ≤,充分性成立;当=1, =4a b 时,满足4ab ≤,但此时=5>4a+b ,必要性不成立, 综上所述,“4a b +≤”是“4ab ≤”的充分不必要条件. 故选A.【名师点睛】易出现的错误:一是基本不等式掌握不熟练,导致判断失误;二是不能灵活地应用“赋值法”,通过取,a b 的特殊值,从假设情况下推出合理结果或矛盾结果. 7.【2019年高考天津理数】设x ∈R ,则“250x x -<”是“|1|1x -<”的 A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件【答案】B【解析】由250x x -<可得05x <<,由|1|1x -<可得02x <<, 易知由05x <<推不出02x <<, 由02x <<能推出05x <<,故05x <<是02x <<的必要而不充分条件,即“250x x -<”是“|1|1x -<”的必要而不充分条件. 故选B.【名师点睛】本题考查充分必要条件,解题的关键是由所给的不等式得到x 的取值范围. 8.【2019年高考全国Ⅱ卷理数】设α,β为两个平面,则α∥β的充要条件是 A .α内有无数条直线与β平行 B .α内有两条相交直线与β平行 C .α,β平行于同一条直线 D .α,β垂直于同一平面【答案】B【解析】由面面平行的判定定理知:α内有两条相交直线都与β平行是αβ∥的充分条件;由面面平行的性质定理知,若αβ∥,则α内任意一条直线都与β平行,所以α内有两条相交直线都与β平行是αβ∥的必要条件.故α∥β的充要条件是α内有两条相交直线与β平行. 故选B .【名师点睛】面面平行的判定问题要紧扣面面平行的判定定理,最容易犯的错误为定理记不住,凭主观臆断.9.【2019年高考北京理数】设点A ,B ,C 不共线,则“AB 与AC 的夹角为锐角”是“||||AB AC BC +>”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C【解析】∵A 、B 、C 三点不共线,∴|AB +AC |>|BC |⇔|AB +AC |>|AC -AB |⇔|AB +AC |2>|AC -AB |2AB ⇔·AC >0AB ⇔与AC 的夹角为锐角,故“AB 与AC 的夹角为锐角”是“|AB +AC |>|BC |”的充分必要条件. 故选C.【名师点睛】本题考查充要条件的概念与判断、平面向量的模、夹角与数量积,同时考查了转化与化归的数学思想.10.【2018年高考浙江】已知全集U ={1,2,3,4,5},A ={1,3},则=UAA .∅B .{1,3}C .{2,4,5}D .{1,2,3,4,5}【答案】C【解析】因为全集U ={1,2,3,4,5},U ={1,3}, 所以根据补集的定义得∁U U ={2,4,5}. 故选C .【名师点睛】若集合的元素已知,则求集合的交集、并集、补集时,可根据交集、并集、补集的定义求解.11.【2018年高考全国Ⅰ卷理数】已知集合{}220A x x x =-->,则A =RA .{}12x x -<< B .{}12x x -≤≤ C .}{}{|1|2x x x x <->D .}{}{|1|2x x x x ≤-≥【答案】B【解析】解不等式U 2−U −2>0得U <−1或U >2,所以U ={U |U <−1或U >2}, 所以可以求得{}|12A x x =-≤≤R.故选B .【名师点睛】该题考查的是有关一元二次不等式的解法以及集合的补集的求解问题,在解题的过程中,需要明确一元二次不等式的解集的形式以及补集中元素的特征,从而求得结果.12.【2018年高考全国Ⅲ卷理数】已知集合{}|10A x x =-≥,{}012B =,,,则A B =A .{}0B .{}1C .{}12,D .{}012,, 【答案】C【解析】易得集合{|1}A x x =≥, 所以{}1,2AB =.故选C .【名师点睛】本题主要考查交集的运算,属于基础题.13.【2018年高考天津理数】设全集为R ,集合{02}A x x =<<,{1}B x x =≥,则()=R ABA .{01}x x <≤B .{01}x x <<C .{12}x x ≤<D .{02}x x <<【答案】B【解析】由题意可得:B R={U |U <1}, 结合交集的定义可得:()=R A B {0<U <1}.故选B.【名师点睛】本题主要考查交集的运算法则,补集的运算法则等知识,意在考查学生的转化能力和计算求解能力.14.【2018年高考全国Ⅱ卷理数】已知集合(){}223A x y xy x y =+∈∈Z Z ,≤,,,则A 中元素的个数为A .9B .8C .5D .4【答案】A【解析】∵U 2+U 2≤3,∴U 2≤3,∵U ∈U ,∴U =−1,0,1,当U=−1时,U=−1,0,1;当U=0时,U=−1,0,1;当U=−1时,U=−1,0,1,所以共有9个元素.选A.【名师点睛】本题考查集合与元素的关系,点与圆的位置关系,考查学生对概念的理解与识别. 15.【2018年高考北京理数】已知集合A={x||x|<2},B={–2,0,1,2},则A B= A.{0,1} B.{–1,0,1}C.{–2,0,1,2} D.{–1,0,1,2}【答案】A【解析】∵|U|<2,∴−2<U<2,因此A∩B=(−2,2)∩{−2,0,1,2}={0,1}.故选A.【名师点睛】解决集合问题时,认清集合中元素的属性(是点集、数集或其他情形)和化简集合是正确求解的两个先决条件.16.【2018年高考浙江】已知平面α,直线m,n满足m⊄α,n⊂α,则“m∥n”是“m∥α”的A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A【解析】因为U⊄U,U⊂U,U//U,所以根据线面平行的判定定理得U//U.由U//U不能得出U与U内任一直线平行,所以U//U是U//U的充分不必要条件.故选A.【名师点睛】充分、必要条件的三种判断方法:(1)定义法:直接判断“若U则U”、“若U则U”的真假.并注意和图示相结合,例如“U⇒U”为真,则U是U的充分条件.(2)等价法:利用U⇒U与非U⇒非U,U⇒U与非U⇒非U,U⇔U与非U⇔非U的等价关系,对于条件或结论是否定式的命题,一般运用等价法.(3)集合法:若U ⊆U ,则U 是U 的充分条件或U 是U 的必要条件;若U =U ,则U 是U 的充要条件. 17.【2018年高考天津理数】设x ∈R ,则“11||22x -<”是“31x <”的 A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分也不必要条件【答案】A【解析】绝对值不等式|U −12|<12⇔−12<U −12<12⇔0<U <1, 由U 3<1⇔U <1.据此可知|U −12|<12是U 3<1的充分而不必要条件. 故选A.【名师点睛】本题主要考查绝对值不等式的解法、充分不必要条件的判断等知识,意在考查学生的转化能力和计算求解能力.18.【2018年高考北京理数】设a ,b 均为单位向量,则“33-=+a b a b ”是“a ⊥b ”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C【解析】2222223333699+6-=+⇔-=+⇔-⋅+=⋅+a b a b a b a b a a b b a a b b , 因为a ,b 均为单位向量,所以2222699+60=-⋅+=⋅+⇔⋅⇔a a b b a a b b a b ⊥a b , 即“33-=+a b a b ”是“a ⊥b ”的充分必要条件. 故选C.【名师点睛】充分、必要条件的三种判断方法:1.定义法:直接判断“若U 则U ”、“若U 则U ”的真假.并注意和图示相结合,例如“U ⇒U ”为真,则U 是U 的充分条件.2.等价法:利用U ⇒U 与非U ⇒非U ,U ⇒U 与非U ⇒非U ,U ⇔U 与非U ⇔非U 的等价关系,对于条件或结论是否定式的命题,一般运用等价法.3.集合法:若U ⊆U ,则U 是U 的充分条件或U 是U 的必要条件;若U =U ,则U 是U 的充要条件. 19.【2017年高考全国Ⅰ卷理数】已知集合A ={x |x <1},B ={x |31x <},则A .{|0}AB x x =< B .A B =RC .{|1}AB x x =>D .AB =∅【答案】A【解析】由31x <可得033x <,则0x <,即{|0}B x x =<, 所以{|1}{|0}AB x x x x =<<{|0}x x =<,{|1}{|0}{|1}A B x x x x x x =<<=<.故选A .【名师点睛】对于集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图处理. 20.【2017年高考全国Ⅱ卷理数】设集合{}1,2,4A =,{}240B x x x m =-+=.若{}1AB =,则B =A .{}1,3-B .{}1,0C .{}1,3D .{}1,5【答案】C 【解析】由{}1AB =得1B ∈,即1x =是方程240x x m -+=的根,所以140,3m m -+==,{}1,3B =.故选C .【名师点睛】集合中元素的三个特性中的互异性对解题影响较大,特别是含有字母的集合,在求出字母的值后,要注意检验集合中的元素是否满足互异性.两个防范:①不要忽视元素的互异性;②保证运算的准确性.21.【2017年高考全国Ⅲ卷理数】已知集合A ={}22(,)1x y x y +=│,B ={}(,)x y y x =│,则A B 中元素的个数为 A .3 B .2 C .1D .0【答案】B【解析】集合中的元素为点集,由题意,可知集合A 表示以()0,0为圆心,1为半径的单位圆上所有点组成的集合, 集合B 表示直线y x =上所有的点组成的集合,又圆221x y +=与直线y x =相交于两点22⎛⎫ ⎪ ⎪⎝⎭,22⎛⎫-- ⎪ ⎪⎝⎭,则A B 中有2个元素.故选B.【名师点睛】求集合的基本运算时,要认清集合元素的属性(是点集、数集或其他情形)和化简集合,这是正确求解集合运算的两个先决条件.集合中元素的三个特性中的互异性对解题影响较大,特别是含有字母的集合,在求出字母的值后,要注意检验集合中的元素是否满足互异性. 22.【2017年高考北京理数】若集合A ={x |–2<x <1},B ={x |x <–1或x >3},则AB =A .{x |–2<x <–1}B .{x |–2<x <3}C .{x |–1<x <1}D .{x |1<x <3}【答案】A【解析】利用数轴可知{}21A B x x =-<<-.故选A.【名师点睛】集合分为有限集合和无限集合,若集合个数比较少时可以用列举法表示;若集合是无限集合就用描述法表示,并注意代表元素是什么.集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图进行处理.23.【2017年高考浙江】已知集合{|11}P x x =-<<,{02}Q x =<<,那么PQ =A .(1,2)-B .(0,1)C .(1,0)-D .(1,2) 【答案】A【解析】利用数轴,取,P Q 中的所有元素,得P Q =(1,2)-.故选A.【名师点睛】对于集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图处理. 24.【2017年高考天津理数】设集合{1,2,6},{2,4},{|15}A B C x x ===∈-≤≤R ,则()AB C =A .{2}B .{1,2,4}C .{1,2,4,6}D .{|15}x x ∈-≤≤R【答案】B 【解析】(){1,2,4,6}[1,5]{1,2,4}A B C =-=.故选B .【名师点睛】集合的运算问题,一般要先研究集合中元素的构成,能化简的要先化简,同时注意数形结合,即借助数轴、坐标系、韦恩图等进行运算.25.【2017年高考山东理数】设函数y =A ,函数ln(1)y x =-的定义域为B ,则A B =A .(1,2)B .(1,2]C .(-2,1)D .[-2,1)【答案】D【解析】由240x -≥得22x -≤≤, 由10x ->得1x <, 故{|22}{|1}{|21}A B x x x x x x =-≤≤<=-≤<.选D.【名师点睛】集合的交、并、补运算问题,应把集合先化简再计算,常借助数轴或韦恩图进行求解. 26.【2017年高考浙江】已知等差数列{a n }的公差为d ,前n 项和为S n ,则“d >0”是“S 4 + S 6>2S 5”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C【解析】由46511210212(510)S S S a d a d d +-=+-+=, 可知当0d >时,有46520S S S +->,即4652S S S +>,反之,若4652S S S +>,则0d >,所以“d >0”是“S 4 + S 6>2S 5”的充分必要条件.故选C .【名师点睛】本题考查等差数列的前n 项和公式,通过套入公式与简单运算,可知4652S S S d +-=,结合充分必要性的判断,若p q ⇒,则p 是q 的充分条件,若p q ⇐,则p 是q 的必要条件,该题“0d >”⇔“46520S S S +->”,故互为充要条件.27.【2017年高考北京理数】设m ,n 为非零向量,则“存在负数λ,使得λ=m n ”是“0<⋅m n ”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 【答案】A【解析】若0λ∃<,使λ=m n ,则两向量,m n 反向,夹角是180︒, 那么cos1800⋅=︒=-<m n m n m n ;若0⋅<m n ,那么两向量的夹角为(]90,180︒︒,并不一定反向,即不一定存在负数λ,使得λ=m n ,所以“存在负数λ,使得λ=m n ”是“0<⋅m n ”的充分而不必要条件.故选A.【名师点睛】本题考查平面向量的知识及充分必要条件的判断,若p q ⇒,则p 是q 的充分条件,若p q ⇐,则p 是q 的必要条件.28.【2017年高考山东理数】已知命题p :0,ln(1)0x x ∀>+>;命题q :若a >b ,则22a b >,下列命题为真命题的是A .p q ∧B .p q ∧⌝C .p q ⌝∧D .p q ⌝∧⌝【答案】B【解析】由0x >时11,x +>得ln(1)0x +>,知p 是真命题.由12,->-但22(2)(1)->-可知q 是假命题,则p q ∧⌝是真命题.故选B.【名师点睛】解答有关逻辑联结词的相关问题,首先要明确各命题的真假,利用或、且、非的真值表,进一步作出判断.29.【2017年高考全国Ⅰ卷理数】设有下面四个命题1p :若复数z 满足1z∈R ,则z ∈R ; 2p :若复数z 满足2z ∈R ,则z ∈R ;3p :若复数12,z z 满足12z z ∈R ,则12z z =;4p :若复数z ∈R ,则z ∈R .其中的真命题为A .13,p pB .14,p pC .23,p pD .24,p p 【答案】B【解析】令i(,)z a b a b =+∈R ,则由2211i i a b z a b a b -==∈++R 得0b =,所以z ∈R ,故1p 正确; 当i z =时,因为22i 1z ==-∈R ,而i z =∉R 知,故2p 不正确;当12i z z ==时,满足121z z ⋅=-∈R ,但12z z ≠,故3p 不正确;对于4p ,因为实数的共轭复数是它本身,也属于实数,故4p 正确.故选B.【名师点睛】分式形式的复数,分子、分母同乘以分母的共轭复数,化简成i(,)z a b a b =+∈R 的形式进行判断,共轭复数只需实部不变,虚部变为原来的相反数即可.30.【2019年高考江苏】已知集合{1,0,1,6}A =-,{|0,}B x x x =>∈R ,则AB =▲. 【答案】{1,6}【解析】由题意利用交集的定义求解交集即可.由题意知,{1,6}A B =.【名师点睛】本题主要考查交集的运算,属于基础题.31.【2018年高考江苏】已知集合U ={0,1,2,8},U ={−1,1,6,8},那么U ∩U =________.【答案】{1,8}【解析】由题设和交集的定义可知:U ∩U ={1,8}.【名师点睛】本题考查交集及其运算,考查基础知识,难度较小.32.【2017年高考江苏】已知集合{1,2}A =,2{,3}B a a =+,若{1}A B =,则实数a 的值为 ▲ .【答案】1【解析】由题意1B ∈,显然233a +≥,所以1a =,此时234a +=,满足题意.故答案为1.【名师点睛】(1)认清元素的属性.解决集合问题时,认清集合中元素的属性(是点集、数集或其他情形)和化简集合是正确求解的两个先决条件.(2)注意元素的互异性.在解决含参数的集合问题时,要注意检验集合中元素的互异性,否则很可能会因为不满足“互异性”而导致错误.(3)防范空集.在解决有关,AB A B =∅⊆等集合问题时,往往容易忽略空集的情况,一定要先考虑∅时是否成立,以防漏解.33.【2018年高考北京理数】能说明“若f (x )>f (0)对任意的x ∈(0,2]都成立,则f (x )在[0,2]上是增函数”为假命题的一个函数是__________. 【答案】23()()2f x x =--(答案不唯一) 【解析】对于23()()2f x x =--,其图象的对称轴为32x =, 则f (x )>f (0)对任意的x ∈(0,2]都成立,但f (x )在[0,2]上不是单调函数.【名师点睛】解题本题需掌握充分必要条件和函数的性质,举出反例即可.。
三年高考高考数学真题分项汇编专题01集合与常用逻辑用语理含解析

三年高考高考数学真题分项汇编专题01集合与常用逻辑用语理含解析1.【2019年高考全国Ⅰ卷理数】已知集合2|42{|60}{},M x x N x x x =-<<=--<,则M N =A .}{43x x -<<B .}42{x x -<<-C .}{22x x -<<D .}{23x x <<【答案】C【解析】由题意得2|42,{|60}{}|23}{M x x N x x x x x =-<<=--<=-<<, 则{|22}MN x x =-<<.故选C .【名师点睛】注意区分交集与并集的不同,交集取公共部分,并集包括二者所有的部分. 2.【2019年高考全国Ⅱ卷理数】设集合A ={x |x 2–5x +6>0},B ={x |x –1<0},则A ∩B = A .(–∞,1) B .(–2,1)C .(–3,–1)D .(3,+∞)【答案】A【解析】由题意得,2{560|}{2|A x x x x x =-+><=或3}x >,{10}{1|}|B x x x x =-<=<,则{|1}(,1)A B x x =<=-∞.故选A .【名师点睛】本题考点为集合的运算,为基础题目.3.【2019年高考全国Ⅲ卷理数】已知集合2{1,0,1,2},{|1}A B x x =-=≤,则A B =A .{}1,0,1-B .{}0,1C .{}1,1-D .{}0,1,2【答案】A【解析】∵21,x ≤∴11x -≤≤,∴{}11B x x =-≤≤,又{1,0,1,2}A =-,∴{}1,0,1A B =-.故选A .【名师点睛】本题考查了集合交集的求法,是基础题.4.【2019年高考天津理数】设集合{1,1,2,3,5},{2,3,4},{|13}A B C x x =-==∈≤<R ,则()A C B =A .{}2B .{}2,3C .{}1,2,3-D .{}1,2,3,4【答案】D 【解析】因为{1,2}A C =,所以(){1,2,3,4}A C B =.故选D.【名师点睛】集合的运算问题,一般要先研究集合中元素的构成,能化简的要先化简,同时注意数形结合,即借助数轴、坐标系、韦恩图等进行运算.5.【2019年高考浙江】已知全集{}1,0,1,2,3U =-,集合{}0,1,2A =,{}1,0,1B =-,则()UA B =A .{}1-B .{}0,1C .{}1,2,3-D .{}1,0,1,3-【答案】A 【解析】∵{1,3}UA =-,∴(){1}U A B =-.故选A.【名师点睛】注意理解补集、交集的运算.6.【2019年高考浙江】若a >0,b >0,则“a +b ≤4”是“ab ≤4”的 A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】A【解析】当0, 0a >b >时,a b +≥,则当4a b +≤时,有4a b ≤+≤,解得4ab ≤,充分性成立;当=1, =4a b 时,满足4ab ≤,但此时=5>4a+b ,必要性不成立, 综上所述,“4a b +≤”是“4ab ≤”的充分不必要条件. 故选A.【名师点睛】易出现的错误:一是基本不等式掌握不熟练,导致判断失误;二是不能灵活地应用“赋值法”,通过取,a b 的特殊值,从假设情况下推出合理结果或矛盾结果. 7.【2019年高考天津理数】设x ∈R ,则“250x x -<”是“|1|1x -<”的 A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件【答案】B【解析】由250x x -<可得05x <<,由|1|1x -<可得02x <<, 易知由05x <<推不出02x <<, 由02x <<能推出05x <<,故05x <<是02x <<的必要而不充分条件,即“250x x -<”是“|1|1x -<”的必要而不充分条件. 故选B.【名师点睛】本题考查充分必要条件,解题的关键是由所给的不等式得到x 的取值范围. 8.【2019年高考全国Ⅱ卷理数】设α,β为两个平面,则α∥β的充要条件是 A .α内有无数条直线与β平行 B .α内有两条相交直线与β平行 C .α,β平行于同一条直线 D .α,β垂直于同一平面【答案】B【解析】由面面平行的判定定理知:α内有两条相交直线都与β平行是αβ∥的充分条件;由面面平行的性质定理知,若αβ∥,则α内任意一条直线都与β平行,所以α内有两条相交直线都与β平行是αβ∥的必要条件.故α∥β的充要条件是α内有两条相交直线与β平行. 故选B .【名师点睛】面面平行的判定问题要紧扣面面平行的判定定理,最容易犯的错误为定理记不住,凭主观臆断.9.【2019年高考北京理数】设点A ,B ,C 不共线,则“AB 与AC 的夹角为锐角”是“||||AB AC BC +>”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C【解析】∵A 、B 、C 三点不共线,∴|AB +AC |>|BC |⇔|AB +AC |>|AC -AB |⇔|AB +AC |2>|AC -AB |2AB ⇔·AC >0AB ⇔与AC 的夹角为锐角,故“AB 与AC 的夹角为锐角”是“|AB +AC |>|BC |”的充分必要条件. 故选C.【名师点睛】本题考查充要条件的概念与判断、平面向量的模、夹角与数量积,同时考查了转化与化归的数学思想.10.【2018年高考浙江】已知全集U ={1,2,3,4,5},A ={1,3},则=UAA .∅B .{1,3}C .{2,4,5}D .{1,2,3,4,5}【答案】C【解析】因为全集U ={1,2,3,4,5},U ={1,3}, 所以根据补集的定义得∁U U ={2,4,5}. 故选C .【名师点睛】若集合的元素已知,则求集合的交集、并集、补集时,可根据交集、并集、补集的定义求解.11.【2018年高考全国Ⅰ卷理数】已知集合{}220A x x x =-->,则A =RA .{}12x x -<< B .{}12x x -≤≤ C .}{}{|1|2x x x x <->D .}{}{|1|2x x x x ≤-≥【答案】B【解析】解不等式U 2−U −2>0得U <−1或U >2,所以U ={U |U <−1或U >2}, 所以可以求得{}|12A x x =-≤≤R.故选B .【名师点睛】该题考查的是有关一元二次不等式的解法以及集合的补集的求解问题,在解题的过程中,需要明确一元二次不等式的解集的形式以及补集中元素的特征,从而求得结果.12.【2018年高考全国Ⅲ卷理数】已知集合{}|10A x x =-≥,{}012B =,,,则A B =A .{}0B .{}1C .{}12,D .{}012,, 【答案】C【解析】易得集合{|1}A x x =≥, 所以{}1,2AB =.故选C .【名师点睛】本题主要考查交集的运算,属于基础题.13.【2018年高考天津理数】设全集为R ,集合{02}A x x =<<,{1}B x x =≥,则()=R ABA .{01}x x <≤B .{01}x x <<C .{12}x x ≤<D .{02}x x <<【答案】B【解析】由题意可得:B R={U |U <1}, 结合交集的定义可得:()=R A B {0<U <1}.故选B.【名师点睛】本题主要考查交集的运算法则,补集的运算法则等知识,意在考查学生的转化能力和计算求解能力.14.【2018年高考全国Ⅱ卷理数】已知集合(){}223A x y xy x y =+∈∈Z Z ,≤,,,则A 中元素的个数为A .9B .8C .5D .4【答案】A【解析】∵U 2+U 2≤3,∴U 2≤3,∵U ∈U ,∴U =−1,0,1, 当U =−1时,U =−1,0,1; 当U =0时,U =−1,0,1; 当U =−1时,U =−1,0,1, 所以共有9个元素. 选A .【名师点睛】本题考查集合与元素的关系,点与圆的位置关系,考查学生对概念的理解与识别.15.【2018年高考北京理数】已知集合A={x||x|<2},B={–2,0,1,2},则A B= A.{0,1} B.{–1,0,1}C.{–2,0,1,2} D.{–1,0,1,2}【答案】A【解析】∵|U|<2,∴−2<U<2,因此A∩B=(−2,2)∩{−2,0,1,2}={0,1}.故选A.【名师点睛】解决集合问题时,认清集合中元素的属性(是点集、数集或其他情形)和化简集合是正确求解的两个先决条件.16.【2018年高考浙江】已知平面α,直线m,n满足m⊄α,n⊂α,则“m∥n”是“m∥α”的A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A【解析】因为U⊄U,U⊂U,U//U,所以根据线面平行的判定定理得U//U.由U//U不能得出U与U内任一直线平行,所以U//U是U//U的充分不必要条件.故选A.【名师点睛】充分、必要条件的三种判断方法:(1)定义法:直接判断“若U则U”、“若U则U”的真假.并注意和图示相结合,例如“U⇒U”为真,则U是U的充分条件.(2)等价法:利用U⇒U与非U⇒非U,U⇒U与非U⇒非U,U⇔U与非U⇔非U的等价关系,对于条件或结论是否定式的命题,一般运用等价法.(3)集合法:若U⊆U,则U是U的充分条件或U是U的必要条件;若U=U,则U是U的充要条件.17.【2018年高考天津理数】设x∈R,则“11||22x-<”是“31x<”的A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件【答案】A【解析】绝对值不等式|U−12|<12⇔−12<U−12<12⇔0<U<1,由U 3<1⇔U <1.据此可知|U −12|<12是U 3<1的充分而不必要条件. 故选A.【名师点睛】本题主要考查绝对值不等式的解法、充分不必要条件的判断等知识,意在考查学生的转化能力和计算求解能力.18.【2018年高考北京理数】设a ,b 均为单位向量,则“33-=+a b a b ”是“a ⊥b ”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C【解析】2222223333699+6-=+⇔-=+⇔-⋅+=⋅+a b a b a b a b a a b b a a b b , 因为a ,b 均为单位向量,所以2222699+60=-⋅+=⋅+⇔⋅⇔a a b b a a b b a b ⊥a b , 即“33-=+a b a b ”是“a ⊥b ”的充分必要条件. 故选C.【名师点睛】充分、必要条件的三种判断方法:1.定义法:直接判断“若U 则U ”、“若U 则U ”的真假.并注意和图示相结合,例如“U ⇒U ”为真,则U 是U 的充分条件.2.等价法:利用U ⇒U 与非U ⇒非U ,U ⇒U 与非U ⇒非U ,U ⇔U 与非U ⇔非U 的等价关系,对于条件或结论是否定式的命题,一般运用等价法.3.集合法:若U ⊆U ,则U 是U 的充分条件或U 是U 的必要条件;若U =U ,则U 是U 的充要条件. 19.【2017年高考全国Ⅰ卷理数】已知集合A ={x |x <1},B ={x |31x <},则A .{|0}AB x x =< B .A B =RC .{|1}AB x x =>D .AB =∅【答案】A【解析】由31x <可得033x <,则0x <,即{|0}B x x =<,所以{|1}{|0}A B x x x x =<<{|0}x x =<,{|1}{|0}{|1}A B x x x x x x =<<=<.故选A .【名师点睛】对于集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图处理. 20.【2017年高考全国Ⅱ卷理数】设集合{}1,2,4A =,{}240B x x x m =-+=.若{}1AB =,则B =A .{}1,3-B .{}1,0C .{}1,3D .{}1,5【答案】C 【解析】由{}1AB =得1B ∈,即1x =是方程240x x m -+=的根,所以140,3m m -+==,{}1,3B =.故选C .【名师点睛】集合中元素的三个特性中的互异性对解题影响较大,特别是含有字母的集合,在求出字母的值后,要注意检验集合中的元素是否满足互异性.两个防范:①不要忽视元素的互异性;②保证运算的准确性.21.【2017年高考全国Ⅲ卷理数】已知集合A ={}22(,)1x y x y +=│,B ={}(,)x y y x =│,则A B 中元素的个数为 A .3 B .2 C .1 D .0【答案】B【解析】集合中的元素为点集,由题意,可知集合A 表示以()0,0为圆心,1为半径的单位圆上所有点组成的集合, 集合B 表示直线y x =上所有的点组成的集合,又圆221x y +=与直线y x =相交于两点22⎛⎫ ⎪ ⎪⎝⎭,22⎛⎫-- ⎪ ⎪⎝⎭,则A B 中有2个元素.故选B.【名师点睛】求集合的基本运算时,要认清集合元素的属性(是点集、数集或其他情形)和化简集合,这是正确求解集合运算的两个先决条件.集合中元素的三个特性中的互异性对解题影响较大,特别是含有字母的集合,在求出字母的值后,要注意检验集合中的元素是否满足互异性.22.【2017年高考北京理数】若集合A ={x |–2<x <1},B ={x |x <–1或x >3},则AB =A .{x |–2<x <–1}B .{x |–2<x <3}C .{x |–1<x <1}D .{x |1<x <3}【答案】A【解析】利用数轴可知{}21A B x x =-<<-.故选A.【名师点睛】集合分为有限集合和无限集合,若集合个数比较少时可以用列举法表示;若集合是无限集合就用描述法表示,并注意代表元素是什么.集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图进行处理.23.【2017年高考浙江】已知集合{|11}P x x =-<<,{02}Q x =<<,那么PQ =A .(1,2)-B .(0,1)C .(1,0)-D .(1,2)【答案】A【解析】利用数轴,取,P Q 中的所有元素,得P Q =(1,2)-.故选A.【名师点睛】对于集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图处理. 24.【2017年高考天津理数】设集合{1,2,6},{2,4},{|15}A B C x x ===∈-≤≤R ,则()AB C =A .{2}B .{1,2,4}C .{1,2,4,6}D .{|15}x x ∈-≤≤R【答案】B 【解析】(){1,2,4,6}[1,5]{1,2,4}A B C =-=.故选B .【名师点睛】集合的运算问题,一般要先研究集合中元素的构成,能化简的要先化简,同时注意数形结合,即借助数轴、坐标系、韦恩图等进行运算.25.【2017年高考山东理数】设函数y =A ,函数ln(1)y x =-的定义域为B ,则A B =A .(1,2)B .(1,2]C .(-2,1)D .[-2,1)【答案】D【解析】由240x -≥得22x -≤≤, 由10x ->得1x <, 故{|22}{|1}{|21}A B x x x x x x =-≤≤<=-≤<.选D.【名师点睛】集合的交、并、补运算问题,应把集合先化简再计算,常借助数轴或韦恩图进行求解. 26.【2017年高考浙江】已知等差数列{a n }的公差为d ,前n 项和为S n ,则“d >0”是“S 4 + S 6>2S 5”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C【解析】由46511210212(510)S S S a d a d d +-=+-+=, 可知当0d >时,有46520S S S +->,即4652S S S +>, 反之,若4652S S S +>,则0d >,所以“d >0”是“S 4 + S 6>2S 5”的充分必要条件. 故选C .【名师点睛】本题考查等差数列的前n 项和公式,通过套入公式与简单运算,可知4652S S S d +-=,结合充分必要性的判断,若p q ⇒,则p 是q 的充分条件,若p q ⇐,则p 是q 的必要条件,该题“0d >”⇔“46520S S S +->”,故互为充要条件.27.【2017年高考北京理数】设m ,n 为非零向量,则“存在负数λ,使得λ=m n ”是“0<⋅m n ”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 【答案】A【解析】若0λ∃<,使λ=m n ,则两向量,m n 反向,夹角是180︒, 那么cos1800⋅=︒=-<m n m n m n ;若0⋅<m n ,那么两向量的夹角为(]90,180︒︒,并不一定反向,即不一定存在负数λ,使得λ=m n ,所以“存在负数λ,使得λ=m n ”是“0<⋅m n ”的充分而不必要条件.故选A.【名师点睛】本题考查平面向量的知识及充分必要条件的判断,若p q ⇒,则p 是q 的充分条件,若p q ⇐,则p 是q 的必要条件.28.【2017年高考山东理数】已知命题p :0,ln(1)0x x ∀>+>;命题q :若a >b ,则22a b >,下列命题为真命题的是A .p q ∧B .p q ∧⌝C .p q ⌝∧D .p q ⌝∧⌝【答案】B【解析】由0x >时11,x +>得ln(1)0x +>,知p 是真命题.由12,->-但22(2)(1)->-可知q 是假命题,则p q ∧⌝是真命题.故选B.【名师点睛】解答有关逻辑联结词的相关问题,首先要明确各命题的真假,利用或、且、非的真值表,进一步作出判断.29.【2017年高考全国Ⅰ卷理数】设有下面四个命题 1p :若复数z 满足1z∈R ,则z ∈R ; 2p :若复数z 满足2z ∈R ,则z ∈R ;3p :若复数12,z z 满足12z z ∈R ,则12z z =;4p :若复数z ∈R ,则z ∈R .其中的真命题为A .13,p pB .14,p pC .23,p pD .24,p p 【答案】B【解析】令i(,)z a b a b =+∈R ,则由2211i i a b z a b a b -==∈++R 得0b =,所以z ∈R ,故1p 正确;当i z =时,因为22i 1z ==-∈R ,而i z =∉R 知,故2p 不正确;当12i z z ==时,满足121z z ⋅=-∈R ,但12z z ≠,故3p 不正确;对于4p ,因为实数的共轭复数是它本身,也属于实数,故4p 正确.故选B.【名师点睛】分式形式的复数,分子、分母同乘以分母的共轭复数,化简成i(,)z a b a b =+∈R 的形式进行判断,共轭复数只需实部不变,虚部变为原来的相反数即可.30.【2019年高考江苏】已知集合{1,0,1,6}A =-,{|0,}B x x x =>∈R ,则AB =▲. 【答案】{1,6}【解析】由题意利用交集的定义求解交集即可.由题意知,{1,6}A B =.【名师点睛】本题主要考查交集的运算,属于基础题.31.【2018年高考江苏】已知集合U ={0,1,2,8},U ={−1,1,6,8},那么U ∩U =________.【答案】{1,8}【解析】由题设和交集的定义可知:U ∩U ={1,8}.【名师点睛】本题考查交集及其运算,考查基础知识,难度较小.32.【2017年高考江苏】已知集合{1,2}A =,2{,3}B a a =+,若{1}A B =,则实数a 的值为 ▲ .【答案】1【解析】由题意1B ∈,显然233a +≥,所以1a =,此时234a +=,满足题意.故答案为1.【名师点睛】(1)认清元素的属性.解决集合问题时,认清集合中元素的属性(是点集、数集或其他情形)和化简集合是正确求解的两个先决条件.(2)注意元素的互异性.在解决含参数的集合问题时,要注意检验集合中元素的互异性,否则很可能会因为不满足“互异性”而导致错误.(3)防范空集.在解决有关,AB A B =∅⊆等集合问题时,往往容易忽略空集的情况,一定要先考虑∅时是否成立,以防漏解.33.【2018年高考北京理数】能说明“若f (x )>f (0)对任意的x ∈(0,2]都成立,则f (x )在[0,2]上是增函数”为假命题的一个函数是__________. 【答案】23()()2f x x =--(答案不唯一) 【解析】对于23()()2f x x =--,其图象的对称轴为32x =,则f (x )>f (0)对任意的x ∈(0,2]都成立,但f (x )在[0,2]上不是单调函数.【名师点睛】解题本题需掌握充分必要条件和函数的性质,举出反例即可.。
2019年高考真题和模拟题分项汇编数学(理):专题01 集合与常用逻辑用语(含解析)

专题01 集合与常用逻辑用语1.【2019年高考全国Ⅰ卷理数】已知集合2|42{|60}{},M x x N x x x =-<<=--<,则M N =A .}{43x x -<<B .}42{x x -<<-C .}{22x x -<<D .}{23x x <<【答案】C【解析】由题意得2|42,{|60}{}|23}{M x x N x x x x x =-<<=--<=-<<, 则{|22}MN x x =-<<.故选C .【名师点睛】注意区分交集与并集的不同,交集取公共部分,并集包括二者所有的部分. 2.【2019年高考全国Ⅱ卷理数】设集合A ={x |x 2–5x +6>0},B ={x |x –1<0},则A ∩B = A .(–∞,1) B .(–2,1)C .(–3,–1)D .(3,+∞)【答案】A【解析】由题意得,2{560|}{2|A x x x x x =-+><=或3}x >,{10}{1|}|B x x x x =-<=<,则{|1}(,1)A B x x =<=-∞.故选A .【名师点睛】本题考点为集合的运算,为基础题目.3.【2019年高考全国Ⅲ卷理数】已知集合2{1,0,1,2},{|1}A B x x =-=≤,则A B =A .{}1,0,1-B .{}0,1C .{}1,1-D .{}0,1,2【答案】A【解析】∵21,x ≤∴11x -≤≤,∴{}11B x x =-≤≤,又{1,0,1,2}A =-,∴{}1,0,1A B =-.故选A .【名师点睛】本题考查了集合交集的求法,是基础题.4.【2019年高考天津理数】设集合{1,1,2,3,5},{2,3,4},{|13}A B C x x =-==∈≤<R ,则()A C B =A .{}2B .{}2,3C .{}1,2,3-D .{}1,2,3,4【答案】D 【解析】因为{1,2}A C =,所以(){1,2,3,4}A C B =.故选D .【名师点睛】集合的运算问题,一般要先研究集合中元素的构成,能化简的要先化简,同时注意数形结合,即借助数轴、坐标系、韦恩图等进行运算.5.【2019年高考浙江】已知全集{}1,0,1,2,3U =-,集合{}0,1,2A =,{}1,0,1B =-,则()U A B ð=A .{}1-B .{}0,1C .{}1,2,3-D .{}1,0,1,3-【答案】A【解析】∵{1,3}U A =-ð,∴(){1}U A B =-ð.故选A.【名师点睛】注意理解补集、交集的运算.6.【2019年高考浙江】若a >0,b >0,则“a +b ≤4”是 “ab ≤4”的 A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】A【解析】当0, 0a >b >时,a b +≥,则当4a b +≤时,有4a b ≤+≤,解得4ab ≤,充分性成立;当=1, =4a b 时,满足4ab ≤,但此时=5>4a+b ,必要性不成立, 综上所述,“4a b +≤”是“4ab ≤”的充分不必要条件. 故选A.【名师点睛】易出现的错误:一是基本不等式掌握不熟练,导致判断失误;二是不能灵活地应用“赋值法”,通过取,a b 的特殊值,从假设情况下推出合理结果或矛盾结果.7.【2019年高考天津理数】设x ∈R ,则“250x x -<”是“|1|1x -<”的A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件【答案】B【解析】由250x x -<可得05x <<,由|1|1x -<可得02x <<, 易知由05x <<推不出02x <<, 由02x <<能推出05x <<,故05x <<是02x <<的必要而不充分条件,即“250x x -<”是“|1|1x -<”的必要而不充分条件. 故选B.【名师点睛】本题考查充分必要条件,解题的关键是由所给的不等式得到x 的取值范围. 8.【2019年高考全国Ⅱ卷理数】设α,β为两个平面,则α∥β的充要条件是 A .α内有无数条直线与β平行 B .α内有两条相交直线与β平行 C .α,β平行于同一条直线 D .α,β垂直于同一平面【答案】B【解析】由面面平行的判定定理知:α内有两条相交直线都与β平行是αβ∥的充分条件;由面面平行的性质定理知,若αβ∥,则α内任意一条直线都与β平行,所以α内有两条相交直线都与β平行是αβ∥的必要条件.故α∥β的充要条件是α内有两条相交直线与β平行. 故选B .【名师点睛】面面平行的判定问题要紧扣面面平行的判定定理,最容易犯的错误为定理记不住,凭主观臆断. 9.【2019年高考北京理数】设点A ,B ,C 不共线,则“AB 与AC 的夹角为锐角”是“||||AB AC BC +>”的 A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件【答案】C【解析】∵A 、B 、C 三点不共线,∴|AB +AC |>|BC |⇔|AB +AC |>|AC -AB |⇔|AB +AC |2>|AC -AB |2AB ⇔·AC >0AB ⇔与AC 的夹角为锐角,故“AB 与AC 的夹角为锐角”是“|AB +AC |>|BC |”的充分必要条件. 故选C.【名师点睛】本题考查充要条件的概念与判断、平面向量的模、夹角与数量积,同时考查了转化与化归的数学思想. 10.【2019年高考江苏】已知集合{1,0,1,6}A =-,{|0,}B x x x =>∈R ,则A B = ▲ .【答案】{1,6}【解析】由题意利用交集的定义求解交集即可. 由题意知,{1,6}AB =.【名师点睛】本题主要考查交集的运算,属于基础题.11.【辽宁省沈阳市2019届高三教学质量监测(三)数学】已知集合{(,)|2,,}A x y x y x y =+≤∈N ,则A 中元素的个数为 A .1 B .5 C .6D .无数个【答案】C【解析】由题得{(0,0),(0,1),(0,2),(1,0),(1,1),(2,0)}A =, 所以A 中元素的个数为6. 故选C.【名师点睛】本题主要考查集合的表示和化简,意在考查学生对这些知识的理解掌握水平和分析推理能力.12.【云南省玉溪市第一中学2019届高三上学期第二次调研考试数学】命题“2000,10x x x ∃∈++<R ”的否定为A .2000,10x x x ∃∈++≥RB .2000,10x x x ∃∈++≤RC .2000,10x x x ∀∈++≥R D .2000,10x x x ∀∉++≥R【答案】C【解析】由题意得原命题的否定为2000,10x x x ∀∈++≥R .故选C.【名师点睛】本题考查含有一个量词的命题的否定,全称命题的否定是特称命题,特称命题的否定是全称命题. 13.【黑龙江省大庆市第一中学2019届高三下学期第四次模拟(最后一卷)考试】已知集合{|1}A x x =<,{|31}x B x =<,则A .{}1AB x x => B .A B =RC .{|0}AB x x =<D .AB =∅【答案】C【解析】集合{|31}x B x =<,即{}0B x x =<, 而{|1}A x x =<, 所以{}1A B x x =<,{}0A B x x =<.故选C.【名师点睛】本题考查集合的交集、并集运算,属于简单题.14.【北京市通州区2019届高三三模数学】已知集合{}0,1,2P =,{|2}Q x x =<,则PQ =A .{}0B .{0,1}C .{}1,2D .{0,2}【答案】B【解析】因为集合{0,1,2}P =,{|2}Q x x =<,所以{0,1}P Q =.故选B.【名师点睛】本题主要考查集合的交集运算,熟记概念即可,属于基础题型.15.【北京市昌平区2019届高三5月综合练习(二模)数学】已知全集U =R ,集合2{|1}A x x =≤,则U A =ðA .(,1)(1,)-∞-+∞B .(,1][1,)-∞-+∞C .(1,1)-D .[1,1]-【答案】A【解析】因为2{|1}A x x =≤={|11}x x -≤≤, 所以U A =ð{|1x x <-或1}x >, 表示为区间形式即(,1)(1,)-∞-+∞.故选A.【名师点睛】本题主要考查集合的表示方法,补集的定义与运算等知识,意在考查学生的转化能力和计算求解能力.16.【福建省龙岩市(漳州市)2019届高三5月月考数学】已知集合}1|{≥=x x A ,{|230}B x x =->,则AB =A .[0,)+∞B .[1,)+∞C .3,2⎛⎫+∞⎪⎝⎭D .30,2⎡⎫⎪⎢⎣⎭【答案】B【解析】因为{|230}B x x =->=}23|{>x x ,}1|{≥=x x A , 所以A B =[1,)+∞.故选B.【名师点睛】本题考查并集其运算,考查了不等式的解法,是基础题.17.【陕西省2019年高三第三次教学质量检测】设集合{|12,}A x x x =-≤≤∈N ,集合{2,3}B =,则B A 等于A .{1,0,1,2,3}-B .{0,1,2,3}C .}3,2,1{D .{2}【答案】B【解析】因为集合{|12,}{0,1,2}A x x x =-≤≤∈=N ,{2,3}B =, 所以0,1,3}2,{AB =.故选B .【名师点睛】本题主要考查了集合的表示方法,以及集合的并集运算,其中正确求解集合A ,熟练应用集合并集的运算是解答的关键,着重考查了运算与求解能力,属于基础题.18.【湖北省安陆一中2019年5月高二摸底调考数学】已知集合{0,1,2}A =,{,2}B a =,若B A ⊆,则a =A .0B .0或1C .2D .0或1或2【答案】B【解析】由B A ⊆,可知{0,2}B =或{1,2}B =, 所以0a =或1. 故选B.【名师点睛】本小题主要考查子集的概念,考查集合中元素的互异性,属于基础题. 19.【天津市第一中学2019届高三下学期第五次月考数学】设x ∈R ,则“31x <”是“1122x -<”的 A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分也不必要条件【答案】B 【解析】由31x <可得1x <,由1122x -<可得01x <<, 据此可知“31x <”是“1122x -<”的必要而不充分条件. 故选B .【名师点睛】本题主要考查不等式的解法,充分性与必要性的判定等知识,意在考查学生的转化能力和计算求解能力.20.【福建省龙岩市(漳州市)2019届高三5月月考数学】若1a >,则“y x a a >”是“log log a a x y >”的A .必要不充分条件B .充分不必要条件C .充要条件D .既不充分也不必要条件【答案】A【解析】由a >1,得y x a a >等价为x >y ;log log a a x y >等价为x >y >0,故“y x a a >”是“log log a a x y >”的必要不充分条件. 故选A.【名师点睛】本题主要考查充分条件和必要条件的判断,指数函数和对数函数的单调性,掌握充分条件和必要条件的定义是解决本题的关键.21.【河南省郑州市2019届高三第三次质量检测数学】“02m <<”是“方程2212x y m m+=-表示椭圆”的A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件【答案】C【解析】方程2212x ym m +=-表示椭圆,即020022m m m m m>⎧⎪->⇒<<⎨⎪≠-⎩且1m ≠,所以“02m <<”是“方程2212x y m m+=-表示椭圆”的必要不充分条件.故选C.【名师点睛】本题考查了椭圆的概念,充分条件和必要条件的判断,容易遗漏椭圆中2m m ≠-,属于基础题. 22.【四川省宜宾市2019届高三第三次诊断性考试数学】设 是空间两条直线,则“ 不平行”是“ 是异面直线”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】B【解析】由 是异面直线⇒ 不平行.反之,若直线 不平行,也可能相交,不一定是异面直线. 所以“ 不平行”是“ 是异面直线”的必要不充分条件. 故选B .【名师点睛】本题考查了异面直线的性质、充分必要条件的判定方法,属于基础题.23.【北京市人大附中2019年高考信息卷(三)】设a ,b 为非零向量,则“a ∥b ”是“a 与b 方向相同”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 【答案】B【解析】因为a ,b 为非零向量,所以a ∥b 时,a 与b 方向相同或相反, 因此“a ∥b ”是“a 与b 方向相同”的必要而不充分条件. 故选B .【名师点睛】本题考查充要条件和必要条件的判断,属基础题.24.【江西省名校(临川一中、南昌二中)2019届高三5月联合考试数学】已知集合{}2230,A x x x =+-≤{}2B =<,则A B =A .{}31x x -≤≤ B .{}01x x ≤≤ C .{}31x x -≤< D .{}10x x -≤≤【答案】B【解析】因为{}{}31,04A x x B x x =-≤≤=≤<, 所以A B ={}01x x ≤≤.故选B.【名师点睛】本题主要考查集合的化简和交集运算,意在考查学生对这些知识的理解掌握水平和分析推理能力.25.【广东省深圳市高级中学2019届高三适应性考试(6月)数学】已知集合{|A x y ==,2{|log 1}B x x =≤,则A B =A .1{|}3x x ≤≤-B .{|01}x x <≤C .{|32}-≤≤x xD .{|2}x x ≤【答案】B【解析】由二次根式有意义的条件,可得(1)(3)0x x -+≥, 解得31x -≤≤,所以{|A x y ={|31}x x =-≤≤. 由对数函数的性质可得22log log 2x ≤, 解得02x <≤,所以2{|log 1}B x x =≤{|02}x x =<≤, 所以AB ={|01}x x <≤.故选B .【名师点睛】研究集合问题,一定要抓住元素,看元素应满足的属性.研究两集合的关系时,关键是将两集合的关系转化为元素间的关系,本题实质是求满足属于集合A 且属于集合B 的元素的集合.26.【山东省烟台市2019届高三5月适应性练习(二)数学】设集合{|A x y ==,{|2,x B y y ==3}x ≤,则集合()A B =R I ð A .}3|{<x xB .{|3}x x ≤C .{|03}x x <<D .{|03}x x <≤【答案】C【解析】因为{}{|3A x y x x ===≥,所以{}3A x x =<R ð,又{}{}|2,3|08xB y y x y y ==≤=<≤,所以(){}03A B x x =<<R ð.故选C .【名师点睛】本题考查了集合的交集运算、补集运算,正确求出函数3-=x y 的定义域,函数2,3x y x =≤的值域是解题的关键.27.【辽宁省沈阳市2019届高三教学质量监测(三)】“k =是“直线:(2)l y k x =+与圆221x y +=相切”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A【解析】因为直线:(2)l y k x =+与圆221x y +=相切,1,=则3k =±.所以“3k =”是“直线:(2)l y k x =+与圆221x y +=相切”的充分不必要条件. 故选A.【名师点睛】本题主要考查直线和圆的位置关系和充分不必要条件的判定,意在考查学生对这些知识的理解掌握水平和分析推理能力.28.【北京市朝阳区2019届高三第二次(5月)综合练习(二模)数学】已知等差数列{}n a 的首项为1a ,公差0d ≠,则“139,,a a a 成等比数列” 是“1a d =”的 A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分也不必要条件【答案】C【解析】若139,,a a a 成等比数列,则2319a a a =, 即2111(2)(8)a d a a d +=+,变形可得1a d =,则“139,,a a a 成等比数列”是“1a d =”的充分条件;若1a d =,则3123a a d d =+=,9189a a d d =+=,则有2319a a a =,则“139,,a a a 成等比数列”是“1a d =”的必要条件. 综合可得:“139,,a a a 成等比数列”是“1a d =”的充要条件. 故选C .【名师点睛】本题考查等差数列的通项公式、等比数列的性质,充分必要条件的定义与判断,属于基础题. 29.【江西省新八校2019届高三第二次联考数学】若“3x >”是“x m >”的必要不充分条件,则m 的取值范围是________. 【答案】(3,)+∞【解析】因为“3x >”是“x m >”的必要不充分条件,所以(),m +∞是()3,+∞的真子集,所以3m >,故答案为(3,)+∞.【名师点睛】本题考查根据必要不充分条件求参数的值,由题意得到(),m +∞是()3,+∞的真子集是解答的关键,属于基础题.30.【甘肃省酒泉市敦煌中学2019届高三一诊数学】设集合 则=__________.【答案】【解析】求解绝对值不等式 可得 ,求解函数 的值域可得 ,由交集的定义可知: .故答案为 .【名师点睛】本题主要考查绝对值不等式的解法,函数的值域,交集的定义及其应用等知识,意在考查学生的转化能力和计算求解能力.31.【河北省衡水市2019届高三下学期第三次质量检测数学】设 为两个不同平面,直线 ,则“ ”是“ ”的__________条件.【答案】充分不必要【解析】根据题意,α,β表示两个不同的平面,直线m α⊂,当α∥β时,根据面面平行的性质定理可知,α中任何一条直线都平行于另一个平面,得 ,所以α∥β ⇒ ; 当 且m α⊂时,α∥β或α与β相交,所以“ ”是“ ”的充分不必要条件.故答案为充分不必要.【名师点睛】本题主要考查了面面平行的性质定理,面面的位置关系,充分条件和必要条件定义的理解,属于基础题.32.【安徽省江淮十校2019届高三第三次联考数学】若命题“ , ”的否定是假命题,则实数 的取值范围是__________.【答案】【解析】因为命题的否定是假命题,所以原命题为真命题,即不等式 对 恒成立,又 在 上为增函数,所以,即.故实数的取值范围是:.【名师点睛】本题考查命题否定的真假以及不等式恒成立问题,考查基本分析能力和转化求解能力,属中档题.。
2019高考数学文真题分项解析:专题01 集合与常用逻辑用语

第一章 集合与常用逻辑用语1.【2019高考新课标Ⅰ,文2】已知集合{}{}{}1,2,3,4,5,6,72,3,4,52,3,6,7U A B ===,,,则C U B A IA. {}1,6B. {}1,7C. {}6,7D. {}1,6,7 【答案】C【解析】【分析】先求U A ð,再求U B A ⋂ð.【详解】由已知得{}1,6,7U C A =,所以U B C A ⋂={6,7},故选C .【点睛】本题主要考查交集、补集的运算.渗透了直观想象素养.使用补集思想得出答案.2.【2019高考新课标Ⅱ,文1】已知集合={|1}A x x >-,{|2}B x x =<,则A ∩B =A. (–1,+∞)B. (–∞,2)C. (–1,2)D. ∅ 【答案】C【解析】【分析】本题借助于数轴,根据交集的定义可得.【详解】由题知,(1,2)A B =-I ,故选C .【点睛】本题主要考查交集运算,容易题,注重了基础知识、基本计算能力的考查.易错点是理解集合的概念及交集概念有误,不能借助数轴解题.3.【2019高考新课标Ⅲ,文1】已知集合{}{}21,0,1,21A B x x ,=-=≤,则A B =I ( ) A. {}1,0,1-B. {}0,1C. {}1,1-D. {}0,1,2【答案】A【解析】【分析】先求出集合B 再求出交集.【详解】21,x ≤∴Q 11x -≤≤, ∴{}11B x x =-≤≤,则{}1,0,1A B =-I ,故选A .【点睛】本题考查了集合交集的求法,是基础题.4.【2019高考北京卷,文1】已知集合A ={x |–1<x <2},B ={x |x >1},则A ∪B =A. (–1,1)B. (1,2)C. (–1,+∞)D. (1,+∞) 【答案】C【解析】【分析】根据并集的求法直接求出结果.【详解】∵{|12},{|1}A x x B x =-<<=> ,∴(1,)A B ⋃=+∞ ,故选C.【点睛】考查并集的求法,属于基础题.5.【2019高考天津卷,文1】设集合{}1,1,2,3,5A =-,{}2,3,4B = ,{|13}C x R x =∈<… ,则()A C B =I UA. {2}B. {2,3}C. {-1,2,3}D. {1,2,3,4}【答案】D【解析】【分析】先求A C I ,再求()A C B I U 。
2019-2017高考理科数学真题集训专题01:集合与常用逻辑用语(解析附后)

2019-2017高考真题集训专题01:集合与常用逻辑用语(解析附后)1.【2019年高考全国Ⅰ卷理数】已知集合2|42{|60}{},M x x N x x x =-<<=--<,则M N =( )A .}{43x x -<<B .}42{x x -<<-C .}{22x x -<<D .}{23x x <<2.【2019年高考全国Ⅱ卷理数】设集合A ={x |x 2–5x +6>0},B ={x |x –1<0},则A ∩B =( ) A .(–∞,1) B .(–2,1) C .(–3,–1) D .(3,+∞)3.【2019年高考全国Ⅲ卷理数】已知集合2{1,0,1,2},{|1}A B x x =-=≤,则A B =( )A .{}1,0,1-B .{}0,1C .{}1,1-D .{}0,1,24.【2019年高考天津理数】设集合{1,1,2,3,5},{2,3,4},{|13}A B C x x =-==∈≤<R ,则()A C B =( )A .{}2B .{}2,3C .{}1,2,3-D .{}1,2,3,45.【2019年高考浙江】已知全集{}1,0,1,2,3U =-,集合{}0,1,2A =,{}1,0,1B =-,则()U A Bð=( )A .{}1-B .{}0,1C .{}1,2,3-D .{}1,0,1,3-6.【2019年高考浙江】若a >0,b >0,则“a +b ≤4”是 “ab ≤4”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件7.【2019年高考天津理数】设x ∈R ,则“250x x -<”是“|1|1x -<”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件 8.【2019年高考全国Ⅱ卷理数】设α,β为两个平面,则α∥β的充要条件是( )A .α内有无数条直线与β平行B .α内有两条相交直线与β平行C .α,β平行于同一条直线D .α,β垂直于同一平面9.【2019年高考北京理数】设点A ,B ,C 不共线,则“AB 与AC 的夹角为锐角”是“||||AB AC BC +>”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件10.【2018年高考浙江】已知全集U={1,2,3,4,5},A={1,3},则=U A ð( ) A .∅ B .{1,3} C .{2,4,5} D .{1,2,3,4,5}11.【2018年高考全国Ⅰ卷理数】已知集合{}220A x x x =-->,则A =R ð( ) A .{}12x x -<< B .{}12x x -≤≤C .}{}{|1|2x x x x <->D .}{}{|1|2x x x x ≤-≥12.【2018年高考全国Ⅲ卷理数】已知集合{}|10A x x =-≥,{}012B =,,,则A B =( ) A .{}0 B .{}1 C .{}12, D .{}012,, 13.【2018年高考天津理数】设全集为R ,集合{02}A x x =<<,{1}B x x =≥,则()=R I A B ðA .{01}x x <≤B .{01}x x <<C .{12}x x ≤<D .{02}x x <<14.【2018年高考全国Ⅱ卷理数】已知集合(){}223A x y x y x y =+∈∈Z Z ,≤,,,则A 中元素的个数为( )A .9B .8C .5D .415.【2018年高考北京理数】已知集合A ={x ||x |<2},B ={–2,0,1,2},则A B =( )A .{0,1}B .{–1,0,1}C .{–2,0,1,2}D .{–1,0,1,2}16.【2018年高考浙江】已知平面α,直线m ,n 满足m ⊄α,n ⊂α,则“m ∥n”是“m ∥α”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件17.【2018年高考天津理数】设x ∈R ,则“11||22x -<”是“31x <”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分也不必要条件 18.【2018年高考北京理数】设a ,b 均为单位向量,则“33-=+a b a b ”是“a ⊥b ”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件19.【2017年高考全国Ⅰ卷理数】已知集合A ={x |x <1},B ={x |31x <},则( )A .{|0}AB x x =< B .A B =RC .{|1}A B x x =>D .A B =∅20.【2017年高考全国Ⅱ卷理数】设集合{}1,2,4A =,{}240B x x x m =-+=.若{}1AB =,则B =( )A .{}1,3-B .{}1,0C .{}1,3D .{}1,5 21.【2017年高考全国Ⅲ卷理数】已知集合A ={}22(,)1x y x y +=│,B ={}(,)x y y x =│,则A B 中元素的个数为( )A .3B .2C .1D .022.【2017年高考北京理数】若集合A ={x |–2<x <1},B ={x |x <–1或x >3},则AB =( ) A .{x |–2<x <–1} B .{x |–2<x <3}C .{x |–1<x <1}D .{x |1<x <3}23.【2017年高考浙江】已知集合{|11}P x x =-<<,{02}Q x =<<,那么PQ =( )A .(1,2)-B .(0,1)C .(1,0)-D .(1,2)24.【2017年高考天津理数】设集合{1,2,6},{2,4},{|15}A B C x x ===∈-≤≤R ,则()A B C =( )A .{2}B .{1,2,4}C .{1,2,4,6}D .{|15}x x ∈-≤≤R25.【2017年高考山东理数】设函数y =的定义域为A ,函数ln(1)y x =-的定义域为B ,则A B =( )A .(1,2)B .(1,2]C .(-2,1)D .[-2,1)26.【2017年高考浙江】已知等差数列{a n }的公差为d ,前n 项和为S n ,则“d >0”是“S 4 + S 6>2S 5”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 27.【2017年高考北京理数】设m ,n 为非零向量,则“存在负数λ,使得λ=m n ”是“0<⋅m n ”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件28.【2017年高考山东理数】已知命题p :0,ln(1)0x x ∀>+>;命题q :若a >b ,则22a b >,下列命题为真命题的是( )A .p q ∧B .p q ∧⌝C .p q ⌝∧D .p q ⌝∧⌝29.【2017年高考全国Ⅰ卷理数】设有下面四个命题1p :若复数z 满足1z∈R ,则z ∈R ; 2p :若复数z 满足2z ∈R ,则z ∈R ;3p :若复数12,z z 满足12z z ∈R ,则12z z =;4p :若复数z ∈R ,则z ∈R .其中的真命题为( )A .13,p pB .14,p pC .23,p pD .24,p p30.【2019年高考江苏】已知集合{1,0,1,6}A =-,{|0,}B x x x =>∈R ,则A B = ▲ .31.【2018年高考江苏】已知集合 , ,那么 ________.32.【2017年高考江苏】已知集合{1,2}A =,2{,3}B a a =+,若{1}A B =,则实数a 的值为 ▲ .33.【2018年高考北京理数】能说明“若f (x )>f (0)对任意的x ∈(0,2]都成立,则f (x )在[0,2]上是增函数”为假命题的一个函数是__________.2019-2017高考真题集训专题01:集合与常用逻辑用语(解析)1.【2019年高考全国Ⅰ卷理数】已知集合2|42{|60}{},M x x N x x x =-<<=--<,则M N = A .}{43x x -<< B .}42{x x -<<- C .}{22x x -<< D .}{23x x <<【答案】C【解析】由题意得2|42,{|60}{}|23}{M x x N x x x x x =-<<=--<=-<<,则{|22}M N x x =-<<.故选C .2.【2019年高考全国Ⅱ卷理数】设集合A ={x |x 2–5x +6>0},B ={x |x –1<0},则A ∩B = A .(–∞,1) B .(–2,1)C .(–3,–1)D .(3,+∞)【答案】A【解析】由题意得,2{560|}{2|A x x x x x =-+><=或3}x >,{10}{1|}|B x x x x =-<=<,则{|1}(,1)A B x x =<=-∞.故选A .3.【2019年高考全国Ⅲ卷理数】已知集合2{1,0,1,2},{|1}A B x x =-=≤,则A B =A .{}1,0,1-B .{}0,1C .{}1,1-D .{}0,1,2【答案】A【解析】∵21,x ≤∴11x -≤≤,∴{}11B x x =-≤≤, 又{1,0,1,2}A =-,∴{}1,0,1AB =-.故选A . 4.【2019年高考天津理数】设集合{1,1,2,3,5},{2,3,4},{|13}A B C x x =-==∈≤<R ,则()A C B =A .{}2B .{}2,3C .{}1,2,3-D .{}1,2,3,4【答案】D【解析】因为{1,2}A C =,所以(){1,2,3,4}A C B =.故选D .5.【2019年高考浙江】已知全集{}1,0,1,2,3U =-,集合{}0,1,2A =,{}1,0,1B =-,则()U A B ð=A .{}1-B .{}0,1C .{}1,2,3-D .{}1,0,1,3-【答案】A【解析】∵{1,3}U A =-ð,∴(){1}U A B =-ð.故选A.6.【2019年高考浙江】若a >0,b >0,则“a +b ≤4”是 “ab ≤4”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】A【解析】当0, 0a >b >时,a b +≥,则当4a b +≤时,有4a b ≤+≤,解得4ab ≤,充分性成立;当=1, =4a b 时,满足4ab ≤,但此时=5>4a+b ,必要性不成立,综上所述,“4a b +≤”是“4ab ≤”的充分不必要条件.故选A.7.【2019年高考天津理数】设x ∈R ,则“250x x -<”是“|1|1x -<”的A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件【答案】B【解析】由250x x -<可得05x <<,由|1|1x -<可得02x <<,易知由05x <<推不出02x <<,由02x <<能推出05x <<,故05x <<是02x <<的必要而不充分条件,即“250x x -<”是“|1|1x -<”的必要而不充分条件.故选B.8.【2019年高考全国Ⅱ卷理数】设α,β为两个平面,则α∥β的充要条件是A .α内有无数条直线与β平行B .α内有两条相交直线与β平行C .α,β平行于同一条直线D .α,β垂直于同一平面【答案】B【解析】由面面平行的判定定理知:α内有两条相交直线都与β平行是αβ∥的充分条件;由面面平行的性质定理知,若αβ∥,则α内任意一条直线都与β平行,所以α内有两条相交直线都与β平行是αβ∥的必要条件.故α∥β的充要条件是α内有两条相交直线与β平行.故选B .9.【2019年高考北京理数】设点A ,B ,C 不共线,则“AB 与AC 的夹角为锐角”是“||||AB AC BC +>”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C【解析】∵A 、B 、C 三点不共线,∴|AB +AC |>|BC |⇔|AB +AC |>|AC -AB |⇔|AB +AC |2>|AC -AB |2AB ⇔·AC >0AB ⇔与AC 的夹角为锐角, 故“AB 与AC 的夹角为锐角”是“|AB +AC |>|BC |”的充分必要条件.故选C.10.【2018年高考浙江】已知全集U={1,2,3,4,5},A={1,3},则=U A ðA .∅B .{1,3}C .{2,4,5}D .{1,2,3,4,5}【答案】C【解析】因为全集 , ,所以根据补集的定义得 .故选C .11.【2018年高考全国Ⅰ卷理数】已知集合{}220A x x x =-->,则A =R ð A .{}12x x -<< B .{}12x x -≤≤C .}{}{|1|2x x x x <-> D .}{}{|1|2x x x x ≤-≥【答案】B【解析】解不等式 得 或 ,所以 或 , 所以可以求得{}|12A x x =-≤≤R ð.故选B .12.【2018年高考全国Ⅲ卷理数】已知集合{}|10A x x =-≥,{}012B =,,,则A B = A .{}0 B .{}1C .{}12,D .{}012,, 【答案】C【解析】易得集合{|1}A x x =≥,所以{}1,2A B =.故选C .13.【2018年高考天津理数】设全集为R ,集合{02}A x x =<<,{1}B x x =≥,则()=R I A B ðA .{01}x x <≤B .{01}x x <<C .{12}x x ≤<D .{02}x x <<【答案】B【解析】由题意可得:B R ð ,结合交集的定义可得:()=R I A B ð .故选B.14.【2018年高考全国Ⅱ卷理数】已知集合(){}223A x y x y x y =+∈∈Z Z ,≤,,,则A 中元素的个数为A .9B .8C .5D .4【答案】A【解析】 ,当 时, ;当 时, ;当 时, ,所以共有9个元素. 选A .15.【2018年高考北京理数】已知集合A ={x ||x |<2},B ={–2,0,1,2},则A B =A .{0,1}B .{–1,0,1}C .{–2,0,1,2}D .{–1,0,1,2}【答案】A【解析】 , ,因此A B = .故选A.16.【2018年高考浙江】已知平面α,直线m ,n 满足m ⊄α,n ⊂α,则“m ∥n”是“m ∥α”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】A【解析】因为 ,所以根据线面平行的判定定理得 .由 不能得出 与 内任一直线平行,所以 是 的充分不必要条件.故选A.【方法指导】充分、必要条件的三种判断方法:(1)定义法:直接判断“若 则 ”、“若 则 ”的真假.并注意和图示相结合,例如“ ⇒ ”为真,则 是 的充分条件.(2)等价法:利用 ⇒ 与非 ⇒非 , ⇒ 与非 ⇒非 , ⇔ 与非 ⇔非 的等价关系,对于条件或结论是否定式的命题,一般运用等价法.(3)集合法:若 ⊆ ,则 是 的充分条件或 是 的必要条件;若 = ,则 是 的充要条件.17.【2018年高考天津理数】设x ∈R ,则“11||22x -<”是“31x <”的 A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分也不必要条件【答案】A【解析】绝对值不等式 ,由 .据此可知是 的充分而不必要条件. 故选A.18.【2018年高考北京理数】设a ,b 均为单位向量,则“33-=+a b a b ”是“a ⊥b ”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【解析】2222223333699+6-=+⇔-=+⇔-⋅+=⋅+a b a b a b a b a a b b a a b b ,因为a ,b 均为单位向量,所以2222699+60=-⋅+=⋅+⇔⋅⇔a a b b a a b b a b ⊥a b , 即“33-=+a b a b ”是“a ⊥b ”的充分必要条件.故选C.19.【2017年高考全国Ⅰ卷理数】已知集合A ={x |x <1},B ={x |31x <},则A .{|0}AB x x =< B .A B =RC .{|1}A B x x =>D .A B =∅【答案】A【解析】由31x <可得033x <,则0x <,即{|0}B x x =<,所以{|1}{|0}A B x x x x =<<{|0}x x =<,{|1}{|0}{|1}A B x x x x x x =<<=<.故选A .20.【2017年高考全国Ⅱ卷理数】设集合{}1,2,4A =,{}240B x x x m =-+=.若{}1AB =,则B =A .{}1,3-B .{}1,0C .{}1,3D .{}1,5【答案】C【解析】由{}1A B =得1B ∈,即1x =是方程240x x m -+=的根,所以140,3m m -+==,故选C .【名师点睛】集合中元素的三个特性中的互异性对解题影响较大,特别是含有字母的集合,在求出字母的值后,要注意检验集合中的元素是否满足互异性.两个防范:①不要忽视元素的互异性;②保证运算的准确性.21.【2017年高考全国Ⅲ卷理数】已知集合A ={}22(,)1x y x y +=│,B ={}(,)x y y x =│,则A B中元素的个数为A .3B .2C .1D .0【答案】B【解析】集合中的元素为点集,由题意,可知集合A 表示以()0,0为圆心,1为半径的单位圆上所有点组成的集合,集合B 表示直线y x =上所有的点组成的集合,又圆221x y +=与直线y x =相交于两点⎝⎭,⎛ ⎝⎭, 则A B 中有2个元素.故选B.【名师点睛】求集合的基本运算时,要认清集合元素的属性(是点集、数集或其他情形)和化简集合,这是正确求解集合运算的两个先决条件.集合中元素的三个特性中的互异性对解题影响较大,特别是含有字母的集合,在求出字母的值后,要注意检验集合中的元素是否满足互异性.22.【2017年高考北京理数】若集合A ={x |–2<x <1},B ={x |x <–1或x >3},则AB =A .{x |–2<x <–1}B .{x |–2<x <3}C .{x |–1<x <1}D .{x |1<x <3}【解析】利用数轴可知{}21AB x x =-<<-. 故选A.23.【2017年高考浙江】已知集合{|11}P x x =-<<,{02}Q x =<<,那么PQ = A .(1,2)- B .(0,1) C .(1,0)- D .(1,2)【答案】A【解析】利用数轴,取,P Q 中的所有元素,得PQ =(1,2)-. 故选A.24.【2017年高考天津理数】设集合{1,2,6},{2,4},{|15}A B C x x ===∈-≤≤R ,则()A B C =A .{2}B .{1,2,4}C .{1,2,4,6}D .{|15}x x ∈-≤≤R【答案】B【解析】(){1,2,4,6}[1,5]{1,2,4}AB C =-=.故选B .25.【2017年高考山东理数】设函数y =的定义域为A ,函数ln(1)y x =-的定义域为B ,则A B = A .(1,2) B .(1,2] C .(-2,1) D .[-2,1)【答案】D【解析】由240x -≥得22x -≤≤,由10x ->得1x <,故{|22}{|1}{|21}AB x x x x x x =-≤≤<=-≤<. 选D.26.【2017年高考浙江】已知等差数列{a n }的公差为d ,前n 项和为S n ,则“d >0”是“S 4 + S 6>2S 5”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C【解析】由46511210212(510)S S S a d a d d +-=+-+=,可知当0d >时,有46520S S S +->,即4652S S S +>,反之,若4652S S S +>,则0d >,所以“d >0”是“S 4 + S 6>2S 5”的充分必要条件.故选C .27.【2017年高考北京理数】设m ,n 为非零向量,则“存在负数λ,使得λ=m n ”是“0<⋅m n ”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】A【解析】若0λ∃<,使λ=m n ,则两向量,m n 反向,夹角是180︒, 那么cos1800⋅=︒=-<m n m n m n ;若0⋅<m n ,那么两向量的夹角为(]90,180︒︒,并不一定反向,即不一定存在负数λ,使得λ=m n ,所以“存在负数λ,使得λ=m n ”是“0<⋅m n ”的充分而不必要条件.故选A.28.【2017年高考山东理数】已知命题p :0,ln(1)0x x ∀>+>;命题q :若a >b ,则22a b >,下列命题为真命题的是A .p q ∧B .p q ∧⌝C .p q ⌝∧D .p q ⌝∧⌝【答案】B【解析】由0x >时11,x +>得ln(1)0x +>,知p 是真命题.由12,->-但22(2)(1)->-可知q 是假命题,则p q ∧⌝是真命题.故选B.29.【2017年高考全国Ⅰ卷理数】设有下面四个命题1p :若复数z 满足1z∈R ,则z ∈R ; 2p :若复数z 满足2z ∈R ,则z ∈R ;3p :若复数12,z z 满足12z z ∈R ,则12z z =;4p :若复数z ∈R ,则z ∈R .其中的真命题为A .13,p pB .14,p pC .23,p pD .24,p p【答案】B【解析】令i(,)z a b a b =+∈R ,则由2211i i a b z a b a b-==∈++R 得0b =,所以z ∈R ,故1p 正确; 当i z =时,因为22i 1z ==-∈R ,而i z =∉R 知,故2p 不正确;当12i z z ==时,满足121z z ⋅=-∈R ,但12z z ≠,故3p 不正确;对于4p ,因为实数的共轭复数是它本身,也属于实数,故4p 正确.故选B.30.【2019年高考江苏】已知集合{1,0,1,6}A =-,{|0,}B x x x =>∈R ,则AB = ▲ . 【答案】{1,6}【解析】由题意利用交集的定义求解交集即可.由题意知,{1,6}A B =.31.【2018年高考江苏】已知集合 , ,那么 ________.【答案】{1,8}【解析】由题设和交集的定义可知: .32.【2017年高考江苏】已知集合{1,2}A =,2{,3}B a a =+,若{1}A B =,则实数a 的值为 ▲ .【答案】1【解析】由题意1B ∈,显然233a +≥,所以1a =,此时234a +=,满足题意.故答案为1.33.【2018年高考北京理数】能说明“若f (x )>f (0)对任意的x ∈(0,2]都成立,则f (x )在[0,2]上是增函数”为假命题的一个函数是__________. 【答案】23()()2f x x =-- (答案不唯一)【解析】对于23()()2f x x =--,其图象的对称轴为32x =, 则f (x )>f (0)对任意的x ∈(0,2]都成立, 但f (x )在[0,2]上不是单调函数.。
2019年高考真题和模拟题分项汇编数学(理):专题01 集合与常用逻辑用语(解析版)【汇编】

2019年高考真题和模拟题分项汇编数学(理):专题01 集合与常用逻辑用语(解析版)专题01 集合与常用逻辑用语1.【2019年高考全国Ⅰ卷理数】已知集合2|42{|60}{},M x x N x x x =-<<=--<,则MN =A .}{43x x -<<B .}42{x x -<<-C .}{22x x -<<D .}{23x x <<【答案】C【解析】由题意得2|42,{|60}{}|23}{M x x N x x x x x =-<<=--<=-<<, 则{|22}MN x x =-<<.故选C .【名师点睛】注意区分交集与并集的不同,交集取公共部分,并集包括二者所有的部分. 2.【2019年高考全国Ⅱ卷理数】设集合A ={x |x 2–5x +6>0},B ={x |x –1<0},则A ∩B = A .(–∞,1) B .(–2,1)C .(–3,–1)D .(3,+∞)【答案】A【解析】由题意得,2{560|}{2|A x x x x x =-+><=或3}x >,{10}{1|}|B x x x x =-<=<,则{|1}(,1)A B x x =<=-∞.故选A .【名师点睛】本题考点为集合的运算,为基础题目.3.【2019年高考全国Ⅲ卷理数】已知集合2{1,0,1,2},{|1}A B x x =-=≤,则A B =A .{}1,0,1-B .{}0,1C .{}1,1-D .{}0,1,2【答案】A【解析】∵21,x ≤∴11x -≤≤,∴{}11B x x =-≤≤,又{1,0,1,2}A =-,∴{}1,0,1A B =-.故选A .【名师点睛】本题考查了集合交集的求法,是基础题.4.【2019年高考天津理数】设集合{1,1,2,3,5},{2,3,4},{|13}A B C x x =-==∈≤<R ,则()AC B =A .{}2B .{}2,3C .{}1,2,3-D .{}1,2,3,4【答案】D 【解析】因为{1,2}A C =,所以(){1,2,3,4}A C B =.故选D .【名师点睛】集合的运算问题,一般要先研究集合中元素的构成,能化简的要先化简,同时注意数形结合,即借助数轴、坐标系、韦恩图等进行运算.5.【2019年高考浙江】已知全集{}1,0,1,2,3U =-,集合{}0,1,2A =,{}1,0,1B =-,则()U A B ð=A .{}1-B .{}0,1C .{}1,2,3-D .{}1,0,1,3-【答案】A【解析】∵{1,3}U A =-ð,∴(){1}U A B =-ð.故选A.【名师点睛】注意理解补集、交集的运算.6.【2019年高考浙江】若a >0,b >0,则“a +b ≤4”是 “ab ≤4”的 A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】A【解析】当0, 0a >b >时,a b +≥,则当4a b +≤时,有4a b ≤+≤,解得4ab ≤,充分性成立;当=1, =4a b 时,满足4ab ≤,但此时=5>4a+b ,必要性不成立, 综上所述,“4a b +≤”是“4ab ≤”的充分不必要条件. 故选A.【名师点睛】易出现的错误:一是基本不等式掌握不熟练,导致判断失误;二是不能灵活地应用“赋值法”,通过取,a b 的特殊值,从假设情况下推出合理结果或矛盾结果.7.【2019年高考天津理数】设x ∈R ,则“250x x -<”是“|1|1x -<”的A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件【答案】B【解析】由250x x -<可得05x <<,由|1|1x -<可得02x <<, 易知由05x <<推不出02x <<,由02x <<能推出05x <<,故05x <<是02x <<的必要而不充分条件,即“250x x -<”是“|1|1x -<”的必要而不充分条件. 故选B.【名师点睛】本题考查充分必要条件,解题的关键是由所给的不等式得到x 的取值范围. 8.【2019年高考全国Ⅱ卷理数】设α,β为两个平面,则α∥β的充要条件是 A .α内有无数条直线与β平行 B .α内有两条相交直线与β平行 C .α,β平行于同一条直线 D .α,β垂直于同一平面【答案】B【解析】由面面平行的判定定理知:α内有两条相交直线都与β平行是αβ∥的充分条件;由面面平行的性质定理知,若αβ∥,则α内任意一条直线都与β平行,所以α内有两条相交直线都与β平行是αβ∥的必要条件. 故α∥β的充要条件是α内有两条相交直线与β平行. 故选B .【名师点睛】面面平行的判定问题要紧扣面面平行的判定定理,最容易犯的错误为定理记不住,凭主观臆断.9.【2019年高考北京理数】设点A ,B ,C 不共线,则“AB 与AC 的夹角为锐角”是“||||AB AC BC +>”的 A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件【答案】C【解析】∵A 、B 、C 三点不共线,∴|AB +AC |>|BC |⇔|AB +AC |>|AC -AB |⇔|AB +AC |2>|AC -AB |2AB ⇔·AC >0AB ⇔与AC 的夹角为锐角,故“AB 与AC 的夹角为锐角”是“|AB +AC |>|BC |”的充分必要条件. 故选C.【名师点睛】本题考查充要条件的概念与判断、平面向量的模、夹角与数量积,同时考查了转化与化归的数学思想.10.【2019年高考江苏】已知集合{1,0,1,6}A =-,{|0,}B x x x =>∈R ,则AB =▲ . 【答案】{1,6}【解析】由题意利用交集的定义求解交集即可.由题意知,{1,6}A B =.【名师点睛】本题主要考查交集的运算,属于基础题.11.【辽宁省沈阳市2019届高三教学质量监测(三)数学】已知集合{(,)|2,,}A x y x y x y =+≤∈N ,则A 中元素的个数为A .1B .5C .6D .无数个【答案】C【解析】由题得{(0,0),(0,1),(0,2),(1,0),(1,1),(2,0)}A =, 所以A 中元素的个数为6. 故选C.【名师点睛】本题主要考查集合的表示和化简,意在考查学生对这些知识的理解掌握水平和分析推理能力.12.【云南省玉溪市第一中学2019届高三上学期第二次调研考试数学】命题“2000,10x x x ∃∈++<R ”的否定为 A .2000,10x x x ∃∈++≥RB .2000,10x x x ∃∈++≤RC .2000,10x x x ∀∈++≥R D .2000,10x x x ∀∉++≥R【答案】C【解析】由题意得原命题的否定为2000,10x x x ∀∈++≥R .故选C.【名师点睛】本题考查含有一个量词的命题的否定,全称命题的否定是特称命题,特称命题的否定是全称命题.13.【黑龙江省大庆市第一中学2019届高三下学期第四次模拟(最后一卷)考试】已知集合{|1}A x x =<,{|31}x B x =<,则A .{}1AB x x => B .A B =RC .{|0}AB x x =<D .AB =∅【答案】C【解析】集合{|31}xB x =<,即{}0B x x =<,而{|1}A x x =<, 所以{}1A B x x =<,{}0A B x x =<.故选C.【名师点睛】本题考查集合的交集、并集运算,属于简单题.14.【北京市通州区2019届高三三模数学】已知集合{}0,1,2P =,{|2}Q x x =<,则PQ =A .{}0B .{0,1}C .{}1,2D .{0,2}【答案】B【解析】因为集合{0,1,2}P =,{|2}Q x x =<,所以{0,1}P Q =.故选B.【名师点睛】本题主要考查集合的交集运算,熟记概念即可,属于基础题型. 15.【北京市昌平区2019届高三5月综合练习(二模)数学】已知全集U =R ,集合2{|1}A x x =≤,则U A =ðA .(,1)(1,)-∞-+∞B .(,1][1,)-∞-+∞C .(1,1)-D .[1,1]-【答案】A【解析】因为2{|1}A x x =≤={|11}x x -≤≤, 所以U A =ð{|1x x <-或1}x >, 表示为区间形式即(,1)(1,)-∞-+∞.故选A.【名师点睛】本题主要考查集合的表示方法,补集的定义与运算等知识,意在考查学生的转化能力和计算求解能力.16.【福建省龙岩市(漳州市)2019届高三5月月考数学】已知集合}1|{≥=x x A ,{|230}B x x =->,则A B =A .[0,)+∞B .[1,)+∞C .3,2⎛⎫+∞⎪⎝⎭D .30,2⎡⎫⎪⎢⎣⎭【答案】B【解析】因为{|230}B x x =->=}23|{>x x ,}1|{≥=x x A , 所以A B =[1,)+∞.故选B.【名师点睛】本题考查并集其运算,考查了不等式的解法,是基础题.17.【陕西省2019年高三第三次教学质量检测】设集合{|12,}A x x x =-≤≤∈N ,集合{2,3}B =,则B A 等于A .{1,0,1,2,3}-B .{0,1,2,3}C .}3,2,1{D .{2}【答案】B【解析】因为集合{|12,}{0,1,2}A x x x =-≤≤∈=N ,{2,3}B =, 所以0,1,3}2,{A B =.故选B .【名师点睛】本题主要考查了集合的表示方法,以及集合的并集运算,其中正确求解集合A ,熟练应用集合并集的运算是解答的关键,着重考查了运算与求解能力,属于基础题.18.【湖北省安陆一中2019年5月高二摸底调考数学】已知集合{0,1,2}A =,{,2}B a =,若B A ⊆,则a =A .0B .0或1C .2D .0或1或2【答案】B【解析】由B A ⊆,可知{0,2}B =或{1,2}B =, 所以0a =或1. 故选B.【名师点睛】本小题主要考查子集的概念,考查集合中元素的互异性,属于基础题. 19.【天津市第一中学2019届高三下学期第五次月考数学】设x ∈R ,则“31x <”是“1122x -<”的 A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分也不必要条件【答案】B 【解析】由31x <可得1x <,由1122x -<可得01x <<, 据此可知“31x <”是“1122x -<”的必要而不充分条件. 故选B .【名师点睛】本题主要考查不等式的解法,充分性与必要性的判定等知识,意在考查学生的转化能力和计算求解能力.20.【福建省龙岩市(漳州市)2019届高三5月月考数学】若1a >,则“y x a a >”是“log log a a x y >”的A .必要不充分条件B .充分不必要条件C .充要条件D .既不充分也不必要条件【答案】A【解析】由a >1,得y x a a >等价为x >y ;log log a a x y >等价为x >y >0,故“y x a a >”是“log log a a x y >”的必要不充分条件. 故选A.【名师点睛】本题主要考查充分条件和必要条件的判断,指数函数和对数函数的单调性,掌握充分条件和必要条件的定义是解决本题的关键.21.【河南省郑州市2019届高三第三次质量检测数学】“02m <<”是“方程2212x y m m+=-表示椭圆”的A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件【答案】C【解析】方程2212x ym m +=-表示椭圆,即020022m m m m m>⎧⎪->⇒<<⎨⎪≠-⎩且1m ≠,所以“02m <<”是“方程2212x y m m+=-表示椭圆”的必要不充分条件.故选C.【名师点睛】本题考查了椭圆的概念,充分条件和必要条件的判断,容易遗漏椭圆中2m m ≠-,属于基础题.22.【四川省宜宾市2019届高三第三次诊断性考试数学】设是空间两条直线,则“不平行”是“是异面直线”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】B 【解析】由是异面直线⇒不平行.反之,若直线不平行,也可能相交,不一定是异面直线.所以“不平行”是“是异面直线”的必要不充分条件.故选B .【名师点睛】本题考查了异面直线的性质、充分必要条件的判定方法,属于基础题. 23.【北京市人大附中2019年高考信息卷(三)】设a ,b 为非零向量,则“a ∥b ”是“a 与b 方向相同”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】B【解析】因为a ,b 为非零向量,所以a ∥b 时,a 与b 方向相同或相反, 因此“a ∥b ”是“a 与b 方向相同”的必要而不充分条件. 故选B .【名师点睛】本题考查充要条件和必要条件的判断,属基础题.24.【江西省名校(临川一中、南昌二中)2019届高三5月联合考试数学】已知集合{}2230,A x x x =+-≤{}2B =<,则A B =A .{}31x x -≤≤B .{}01x x ≤≤ C .{}31x x -≤< D .{}10x x -≤≤【答案】B【解析】因为{}{}31,04A x x B x x =-≤≤=≤<, 所以A B ={}01x x ≤≤.故选B.【名师点睛】本题主要考查集合的化简和交集运算,意在考查学生对这些知识的理解掌握水平和分析推理能力.25.【广东省深圳市高级中学2019届高三适应性考试(6月)数学】已知集合{|A x y ==,2{|log 1}B x x =≤,则A B =A .1{|}3x x ≤≤-B .{|01}x x <≤C .{|32}-≤≤x xD .{|2}x x ≤【答案】B【解析】由二次根式有意义的条件,可得(1)(3)0x x -+≥, 解得31x -≤≤,所以{|A x y =={|31}x x =-≤≤.由对数函数的性质可得22log log 2x ≤, 解得02x <≤,所以2{|log 1}B x x =≤{|02}x x =<≤, 所以A B ={|01}x x <≤.故选B .【名师点睛】研究集合问题,一定要抓住元素,看元素应满足的属性.研究两集合的关系时,关键是将两集合的关系转化为元素间的关系,本题实质是求满足属于集合A 且属于集合B 的元素的集合.26.【山东省烟台市2019届高三5月适应性练习(二)数学】设集合{|A x y ==,{|2,x B y y ==3}x ≤,则集合()A B =R I ðA .}3|{<x xB .{|3}x x ≤C .{|03}x x <<D .{|03}x x <≤ 【答案】C【解析】因为{}{|3A x y x x ===≥,所以{}3A x x =<R ð,又{}{}|2,3|08xB y y x y y ==≤=<≤,所以(){}03A B x x =<<R ð.故选C .【名师点睛】本题考查了集合的交集运算、补集运算,正确求出函数3-=x y 的定义域,函数2,3xy x =≤的值域是解题的关键.27.【辽宁省沈阳市2019届高三教学质量监测(三)】“3k =”是“直线:(2)l y k x =+与圆221x y +=相切”的 A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】A【解析】因为直线:(2)l y k x =+与圆221x y +=相切,1,=则k =.所以“3k =”是“直线:(2)l y k x =+与圆221x y +=相切”的充分不必要条件. 故选A.【名师点睛】本题主要考查直线和圆的位置关系和充分不必要条件的判定,意在考查学生对这些知识的理解掌握水平和分析推理能力.28.【北京市朝阳区2019届高三第二次(5月)综合练习(二模)数学】已知等差数列{}n a 的首项为1a ,公差0d ≠,则“139,,a a a 成等比数列” 是“1a d =”的 A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分也不必要条件【答案】C【解析】若139,,a a a 成等比数列,则2319a a a =,即2111(2)(8)a d a a d +=+,变形可得1a d =,则“139,,a a a 成等比数列”是“1a d =”的充分条件;若1a d =,则3123a a d d =+=,9189a a d d =+=,则有2319a a a =,则“139,,a a a 成等比数列”是“1a d =”的必要条件. 综合可得:“139,,a a a 成等比数列”是“1a d =”的充要条件. 故选C .【名师点睛】本题考查等差数列的通项公式、等比数列的性质,充分必要条件的定义与判断,属于基础题.29.【江西省新八校2019届高三第二次联考数学】若“3x >”是“x m >”的必要不充分条件,则m 的取值范围是________. 【答案】(3,)+∞【解析】因为“3x >”是“x m >”的必要不充分条件, 所以(),m +∞是()3,+∞的真子集,所以3m >, 故答案为(3,)+∞.【名师点睛】本题考查根据必要不充分条件求参数的值,由题意得到(),m +∞是()3,+∞的真子集是解答的关键,属于基础题.30.【甘肃省酒泉市敦煌中学2019届高三一诊数学】设集合则=__________.【答案】【解析】求解绝对值不等式可得, 求解函数的值域可得,由交集的定义可知:.故答案为.【名师点睛】本题主要考查绝对值不等式的解法,函数的值域,交集的定义及其应用等知识,意在考查学生的转化能力和计算求解能力.31.【河北省衡水市2019届高三下学期第三次质量检测数学】设为两个不同平面,直线,则“”是“”的__________条件.【答案】充分不必要⊂,【解析】根据题意,α,β表示两个不同的平面,直线mα当α∥β时,根据面面平行的性质定理可知,α中任何一条直线都平行于另一个平面,得,所以α∥β;⊂时,α∥β或α与β相交,当且mα所以“”是“”的充分不必要条件.故答案为充分不必要.【名师点睛】本题主要考查了面面平行的性质定理,面面的位置关系,充分条件和必要条件定义的理解,属于基础题.32.【安徽省江淮十校2019届高三第三次联考数学】若命题“,”的否定是假命题,则实数的取值范围是__________.【答案】【解析】因为命题的否定是假命题,所以原命题为真命题,即不等式对恒成立,又在上为增函数,所以,即.故实数的取值范围是:.【名师点睛】本题考查命题否定的真假以及不等式恒成立问题,考查基本分析能力和转化求解能力,属中档题.2020年高考真题和模拟题分项汇编数学(理):专题04 立体几何专题04 立体几何1.【2019年高考全国Ⅰ卷理数】已知三棱锥P −ABC 的四个顶点在球O 的球面上,PA =PB =PC ,△ABC 是边长为2的正三角形,E ,F 分别是PA ,AB 的中点,∠CEF =90°,则球O 的体积为A .B .C .D【答案】D 【解析】解法一:,PA PB PC ABC ==△为边长为2的等边三角形,P ABC ∴-为正三棱锥,PB AC ∴⊥,又E ,F 分别为PA ,AB 的中点,EF PB ∴∥,EF AC ∴⊥,又EF CE ⊥,,CEAC C EF =∴⊥平面PAC ,∴PB ⊥平面PAC ,APB PA PB PC ∴∠=90︒,∴===P ABC ∴-为正方体的一部分,2R ==344π33R V R =∴=π==,故选D .解法二:设2PA PB PC x ===,,E F 分别为,PA AB 的中点,EF PB ∴∥,且12EF PB x ==,ABC △为边长为2的等边三角形,CF ∴=,又90CEF ∠=︒,12CE AE PA x ∴===, AEC △中,由余弦定理可得()2243cos 22x x EAC x+--∠=⨯⨯,作PD AC ⊥于D ,PA PC =,D \为AC 的中点,1cos 2AD EAC PA x∠==,2243142x x x x+-+∴=,22121222x x x ∴+=∴==,,,PA PB PC ∴===又===2AB BC AC ,,,PA PB PC ∴两两垂直,2R ∴==2R ∴=,344338V R ∴=π=π⨯=,故选D.【名师点睛】本题主要考查学生的空间想象能力,补体法解决外接球问题.可通过线面垂直定理,得到三棱两两互相垂直关系,快速得到侧棱长,进而补体成正方体解决. 2.【2019年高考全国Ⅱ卷理数】设α,β为两个平面,则α∥β的充要条件是 A .α内有无数条直线与β平行 B .α内有两条相交直线与β平行 C .α,β平行于同一条直线 D .α,β垂直于同一平面【答案】B【解析】由面面平行的判定定理知:α内两条相交直线都与β平行是αβ∥的充分条件,由面面平行性质定理知,若αβ∥,则α内任意一条直线都与β平行,所以α内两条相交直线都与β平行是αβ∥的必要条件,故选B .【名师点睛】本题考查了空间两个平面的判定与性质及充要条件,渗透直观想象、逻辑推理素养,利用面面平行的判定定理与性质定理即可作出判断.面面平行的判定问题要紧扣面面平行判定定理,最容易犯的错误为定理记不住,凭主观臆断,如:“若,,a b a b αβ⊂⊂∥,则αβ∥”此类的错误.3.【2019年高考全国Ⅲ卷理数】如图,点N 为正方形ABCD 的中心,△ECD 为正三角形,平面ECD ⊥平面ABCD ,M 是线段ED 的中点,则A .BM =EN ,且直线BM ,EN 是相交直线B .BM ≠EN ,且直线BM ,EN 是相交直线C .BM =EN ,且直线BM ,EN 是异面直线D .BM ≠EN ,且直线BM ,EN 是异面直线 【答案】B【解析】如图所示,作EO CD ⊥于O ,连接ON ,BD ,易得直线BM ,EN 是三角形EBD 的中线,是相交直线.过M 作MF OD ⊥于F ,连接BF ,平面CDE ⊥平面ABCD ,,EO CD EO ⊥⊂平面CDE ,EO ∴⊥平面ABCD ,MF ⊥平面ABCD ,MFB ∴△与EON △均为直角三角形.设正方形边长为2,易知12EO ON EN ===,,5,,22MF BF BM ==∴=BM EN ∴≠,故选B .【名师点睛】本题考查空间想象能力和计算能力,解答本题的关键是构造直角三角形.解答本题时,先利用垂直关系,再结合勾股定理进而解决问题.4.【2019年高考浙江卷】祖暅是我国南北朝时代的伟大科学家,他提出的“幂势既同,则积不容异”称为祖暅原理,利用该原理可以得到柱体的体积公式V柱体=Sh ,其中S 是柱体的底面积,h 是柱体的高.若某柱体的三视图如图所示(单位:cm ),则该柱体的体积(单位:cm 3)是A .158B .162C .182D .324【答案】B【解析】由三视图得该棱柱的高为6,底面可以看作是由两个直角梯形组合而成的,其中一个上底为4,下底为6,高为3,另一个的上底为2,下底为6,高为3,则该棱柱的体积为264633616222++⎛⎫⨯+⨯⨯= ⎪⎝⎭. 故选B.【名师点睛】本题首先根据三视图,还原得到几何体——棱柱,根据题目给定的数据,计算几何体的体积,常规题目.难度不大,注重了基础知识、视图用图能力、基本计算能力的考查.易错点有二,一是不能正确还原几何体;二是计算体积有误.为避免出错,应注重多观察、细心算.5.【2019年高考浙江卷】设三棱锥V –ABC 的底面是正三角形,侧棱长均相等,P 是棱VA 上的点(不含端点).记直线PB 与直线AC 所成的角为α,直线PB 与平面ABC 所成的角为β,二面角P –AC –B 的平面角为γ,则 A .β<γ,α<γB .β<α,β<γC .β<α,γ<αD .α<β,γ<β【答案】B【解析】如图,G 为AC 中点,连接VG ,V 在底面ABC 的投影为O ,则P 在底面的投影D 在线段AO 上,过D 作DE 垂直于AC 于E ,连接PE ,BD ,易得PE VG ∥,过P 作PF AC ∥交VG 于F ,连接BF ,过D 作DH AC ∥,交BG 于H ,则,,BPF PBD PED αβγ=∠=∠=∠,结合△PFB ,△BDH ,△PDB 均为直角三角形,可得cos cos PF EG DH BDPB PB PB PBαβ===<=,即αβ>; 在Rt △PED 中,tan tan PD PDED BDγβ=>=,即γβ>,综上所述,答案为B.【名师点睛】本题以三棱锥为载体,综合考查异面直线所成的角、直线与平面所成的角、二面角的概念,以及各种角的计算.解答的基本方法是通过明确各种角,应用三角函数知识求解,而后比较大小.而充分利用图形特征,则可事倍功半.常规解法下易出现的错误有,不能正确作图得出各种角,未能想到利用“特殊位置法”,寻求简便解法.6.【2019年高考全国Ⅲ卷理数】学生到工厂劳动实践,利用3D 打印技术制作模型.如图,该模型为长方体1111ABCD A B C D -挖去四棱锥O —EFGH 后所得的几何体,其中O 为长方体的中心,E ,F ,G ,H 分别为所在棱的中点,16cm 4cm AB =BC =, AA =,3D打印所用原料密度为0.9 g/cm 3,不考虑打印损耗,制作该模型所需原料的质量为___________g.【答案】118.8【解析】由题意得,214642312cm 2EFGH S =⨯-⨯⨯⨯=四边形, ∵四棱锥O −EFGH 的高为3cm , ∴3112312cm 3O EFGH V -=⨯⨯=. 又长方体1111ABCD A B C D -的体积为32466144cm V =⨯⨯=,所以该模型体积为3214412132cm O EFGH V V V -=-=-=,其质量为0.9132118.8g ⨯=.【名师点睛】本题考查几何体的体积问题,理解题中信息联系几何体的体积和质量关系,从而利用公式求解.根据题意可知模型的体积为长方体体积与四棱锥体积之差进而求得模型的体积,再求出模型的质量即可.7.【2019年高考北京卷理数】某几何体是由一个正方体去掉一个四棱柱所得,其三视图如图所示.如果网格纸上小正方形的边长为1,那么该几何体的体积为__________.【答案】40【解析】如图所示,在棱长为4的正方体中,三视图对应的几何体为正方体去掉棱柱1111MPD A NQC B -之后余下的几何体,则几何体的体积()3142424402V =-⨯+⨯⨯=. 【名师点睛】本题首先根据三视图,还原得到几何体,再根据题目给定的数据,计算几何体的体积.属于中等题.(1)求解以三视图为载体的空间几何体的体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应体积公式求解;(2)若所给几何体的体积不能直接利用公式得出,则常用等积法、分割法、补形法等方法进行求解.8.【2019年高考北京卷理数】已知l ,m 是平面α外的两条不同直线.给出下列三个论断:①l ⊥m ;②m ∥α;③l ⊥α.以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题:__________.【答案】如果l ⊥α,m ∥α,则l ⊥m .【解析】将所给论断,分别作为条件、结论,得到如下三个命题: (1)如果l ⊥α,m ∥α,则l ⊥m ,正确;(2)如果l ⊥α,l ⊥m ,则m ∥α,不正确,有可能m 在平面α内; (3)如果l ⊥m ,m ∥α,则l ⊥α,不正确,有可能l 与α斜交、l ∥α. 故答案为:如果l ⊥α,m ∥α,则l ⊥m.【名师点睛】本题主要考查空间线面的位置关系、命题、逻辑推理能力及空间想象能力.将所给论断,分别作为条件、结论加以分析即可.9.【2019年高考天津卷理数】的正方形,若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为_____________. 【答案】π4【解析】由题意,的正方形,,借助勾股定理,2=.若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,一个底面的圆心为四棱锥底面的中心,故圆柱的高为1,圆柱的底面半径为12, 故圆柱的体积为21ππ124⎛⎫⨯⨯= ⎪⎝⎭. 【名师点睛】根据棱锥的结构特点,确定所求的圆柱的高和底面半径.注意本题中圆柱的底面半径是棱锥底面对角线长度的一半、不是底边棱长的一半.10.【2019年高考江苏卷】如图,长方体1111ABCD A B C D -的体积是120,E 为1CC 的中点,则三棱锥E −BCD 的体积是 ▲ .【答案】10【解析】因为长方体1111ABCD A B C D -的体积为120,所以1120AB BC CC ⋅⋅=, 因为E 为1CC 的中点,所以112CE CC =, 由长方体的性质知1CC ⊥底面ABCD ,所以CE 是三棱锥E BCD -的底面BCD 上的高, 所以三棱锥E BCD -的体积1132V AB BC CE =⨯⋅⋅=111111201032212AB BC CC =⨯⋅⋅=⨯=.【名师点睛】本题蕴含“整体和局部”的对立统一规律.在几何体面积或体积的计算问题中,往往需要注意理清整体和局部的关系,灵活利用“割”与“补”的方法解题.由题意结合几何体的特征和所给几何体的性质可得三棱锥的体积.的正弦值. 【解析】(1)连结B 1C ,ME . 因为M ,E 分别为BB 1,BC 的中点, 所以ME ∥B 1C ,且ME =12B 1C . 又因为N 为A 1D 的中点,所以ND =12A 1D . 由题设知A 1B 1=DC ,可得B 1C =A 1D ,故ME =ND , 因此四边形MNDE 为平行四边形,MN ∥ED . 又MN ⊄平面EDC 1,所以MN ∥平面C 1DE . (2)由已知可得DE ⊥DA .以D 为坐标原点,DA 的方向为x 轴正方向,建立如图所示的空间直角坐标系D −xyz ,则(2,0,0)A ,A 1(2,0,4),2)M ,(1,0,2)N ,1(0,0,4)A A =-,1(12)A M =--,1(1,0,2)A N =--,(0,MN =.设(,,)x y z =m 为平面A 1MA 的法向量,则1100A M A A ⎧⋅=⎪⎨⋅=⎪⎩m m ,所以2040x z z ⎧-+-=⎪⎨-=⎪⎩,.可取=m .设(,,)p q r =n 为平面A 1MN 的法向量,则100MN A N ⎧⋅=⎪⎨⋅=⎪⎩,.n n所以020p r ⎧=⎪⎨--=⎪⎩,.可取(2,0,1)=-n .于是cos ,||⋅〈〉===‖m n m n m n , 所以二面角1A MA N --【名师点睛】本题考查线面平行关系的证明、空间向量法求解二面角的问题.求解二面角的关键是能够利用垂直关系建立空间直角坐标系,从而通过求解法向量夹角的余弦值来得到二面角的正弦值,属于常规题型.12.【2019年高考全国Ⅱ卷理数】如图,长方体ABCD –A 1B 1C 1D 1的底面ABCD 是正方形,点E 在棱AA 1上,BE ⊥EC 1.(1)证明:BE ⊥平面EB 1C 1;(2)若AE =A 1E ,求二面角B –EC –C 1的正弦值.【答案】(1)证明见解析;(2【解析】(1)由已知得,11B C ⊥平面11ABB A ,BE ⊂平面11ABB A , 故11B C ⊥BE .又1BE EC ⊥,所以BE ⊥平面11EB C .(2)由(1)知190BEB ∠=︒.由题设知Rt ABE △≌11Rt A B E △,所以45AEB ∠=︒, 故AE AB =,12AA AB =.以D 为坐标原点,DA 的方向为x 轴正方向,||DA 为单位长,建立如图所示的空间直角坐标系D –xyz ,则C (0,1,0),B (1,1,0),1C (0,1,2),E (1,0,1),(1,0,0)CB =,(1,1,1)CE =-,1(0,0,2)CC =.设平面EBC 的法向量为n =(x ,y ,x ),则0,0,CB CE ⎧⋅=⎪⎨⋅=⎪⎩n n 即0,0,x x y z =⎧⎨-+=⎩所以可取n =(0,1,1)--.设平面1ECC 的法向量为m =(x ,y ,z ),则10,0,CC CE ⎧⋅=⎪⎨⋅=⎪⎩m m 即20,0.z x y z =⎧⎨-+=⎩ 所以可取m =(1,1,0). 于是1cos ,||||2⋅<>==-n m n m n m .所以,二面角1B EC C --. 【名师点睛】本题考查了利用线面垂直的性质定理证明线线垂直以及线面垂直的判定,考查了利用空间向量求二角角的余弦值,以及同角的三角函数关系,考查了数学运算能力.13.【2019年高考全国Ⅲ卷理数】图1是由矩形ADEB ,Rt △ABC 和菱形BFGC 组成的一个平面图形,其中AB =1,BE =BF =2,∠FBC =60°,将其沿AB ,BC 折起使得BE 与BF 重合,连结DG ,如图2.(1)证明:图2中的A ,C ,G ,D 四点共面,且平面ABC ⊥平面BCGE ; (2)求图2中的二面角B −CG −A 的大小.【答案】(1)见解析;(2)30.【解析】(1)由已知得AD BE ,CG BE ,所以AD CG ,故AD ,CG 确定一个平面,从而A ,C ,G ,D 四点共面.由已知得AB ⊥BE ,AB ⊥BC ,故AB ⊥平面BCGE . 又因为AB ⊂平面ABC ,所以平面ABC ⊥平面BCGE .(2)作EH ⊥BC ,垂足为H .因为EH ⊂平面BCGE ,平面BCGE ⊥平面ABC ,所以EH ⊥平面ABC .由已知,菱形BCGE 的边长为2,∠EBC =60°,可求得BH =1,EH以H 为坐标原点,HC 的方向为x 轴的正方向,建立如图所示的空间直角坐标系H –xyz ,则A (–1,1,0),C (1,0,0),G (2,0CG =(1,0),AC =(2,–1,0).设平面ACGD 的法向量为n =(x ,y ,z ),则0,0,CG AC ⎧⋅=⎪⎨⋅=⎪⎩n n即0,20.x x y ⎧+=⎪⎨-=⎪⎩ 所以可取n =(3,6,又平面BCGE 的法向量可取为m =(0,1,0),所以cos ,||||⋅〈〉==n m n m n m . 因此二面角B –CG –A 的大小为30°.【名师点睛】本题是很新颖的立体几何考题,首先是多面体折叠问题,考查考生在折叠过程中哪些量是不变的,再者折叠后的多面体不是直棱柱,最后通过建系的向量解法将求二面角转化为求二面角的平面角问题,突出考查考生的空间想象能力.14.【2019年高考北京卷理数】如图,在四棱锥P –ABCD 中,PA ⊥平面ABCD ,AD ⊥CD ,AD ∥BC ,PA =AD =CD =2,BC =3.E 为PD 的中点,点F 在PC 上,且13PF PC =. (1)求证:CD ⊥平面PAD ; (2)求二面角F –AE –P 的余弦值; (3)设点G 在PB 上,且23PG PB =.判断直线AG 是否在平面AEF 内,说明理由.【答案】(1)见解析;(2(3)见解析. 【解析】(1)因为PA ⊥平面ABCD ,所以PA ⊥CD . 又因为AD ⊥CD ,所以CD ⊥平面PAD . (2)过A 作AD 的垂线交BC 于点M .因为PA ⊥平面ABCD ,所以PA ⊥AM ,PA ⊥AD .如图建立空间直角坐标系A −xyz ,则A (0,0,0),B (2,-1,0),C (2,2,0),D (0,2,0),P (0,0,2). 因为E 为PD 的中点,所以E (0,1,1). 所以(0,1,1),(2,2,2),(0,0,2)AE PC AP ==-=.所以1222224,,,,,3333333PF PC AF AP PF ⎛⎫⎛⎫==-=+= ⎪ ⎪⎝⎭⎝⎭.设平面AEF 的法向量为n =(x ,y ,z ),则0,0,AE AF ⎧⋅=⎪⎨⋅=⎪⎩n n 即0,2240.333y z x y z +=⎧⎪⎨++=⎪⎩ 令z =1,则1,1y x =-=-.于是=(1,1,1)--n .又因为平面PAD 的法向量为p =(1,0,0),所以cos ,||3⋅〈〉==-‖n p n p n p . 由题知,二面角F −AE −P(3)直线AG 在平面AEF 内. 因为点G 在PB 上,且2,(2,1,2)3PG PB PB ==--,所以2424422,,,,,3333333PG PB AG AP PG ⎛⎫⎛⎫==--=+=- ⎪ ⎪⎝⎭⎝⎭. 由(2)知,平面AEF 的法向量=(1,1,1)--n . 所以4220333AG ⋅=-++=n . 所以直线AG 在平面AEF 内.【名师点睛】(1)由题意利用线面垂直的判定定理即可证得题中的结论;(2)建立空间直角坐标系,结合两个半平面的法向量即可求得二面角F −AE −P 的余弦值;(3)首先求得点G 的坐标,然后结合平面AEF 的法向量和直线AG 的方向向量即可判断直线是否在平面内.15.【2019年高考天津卷理数】如图,AE ⊥平面ABCD ,,CF AE AD BC ∥∥,,1,2AD AB AB AD AE BC ⊥====.(1)求证:BF ∥平面ADE ;(2)求直线CE 与平面BDE 所成角的正弦值; (3)若二面角E BD F --的余弦值为13,求线段CF 的长.【答案】(1)见解析;(2)49;(3)87. 【解析】依题意,可以建立以A 为原点,分别以AB AD AE ,,的方向为x 轴,y 轴,z轴正方向的空间直角坐标系(如图),可得(0,0,0),(1,0,0),(1,2,0),(0,1,0)A B C D ,(0,0,2)E .设(0)CF h h =>>,则()1,2,F h .(1)依题意,(1,0,0)AB =是平面ADE 的法向量,又(0,2,)BF h =,可得0BF AB ⋅=,又因为直线BF ⊄平面ADE ,所以BF ∥平面ADE .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题01 集合与常用逻辑用语1.【2019年高考全国Ⅰ卷理数】已知集合2|42{|60}{},M x x N x x x =-<<=--<,则M N =A .}{43x x -<<B .}42{x x -<<-C .}{22x x -<<D .}{23x x <<【答案】C由题意得2|42,{|60}{}|23}{M x x N x x x x x =-<<=--<=-<<, 则{|22}MN x x =-<<.故选C .【名师点睛】注意区分交集与并集的不同,交集取公共部分,并集包括二者所有的部分. 2.【2019年高考全国Ⅱ卷理数】设集合A ={x |x 2–5x +6>0},B ={x |x –1<0},则A ∩B = A .(–∞,1) B .(–2,1)C .(–3,–1)D .(3,+∞)【答案】A由题意得,2{560|}{2|A x x x x x =-+><=或3}x >,{10}{1|}|B x x x x =-<=<,则{|1}(,1)A B x x =<=-∞.故选A .【名师点睛】本题考点为集合的运算,为基础题目.3.【2019年高考全国Ⅲ卷理数】已知集合2{1,0,1,2},{|1}A B x x =-=≤,则A B =A .{}1,0,1-B .{}0,1C .{}1,1-D .{}0,1,2【答案】A∵21,x ≤∴11x -≤≤,∴{}11B x x =-≤≤,又{1,0,1,2}A =-,∴{}1,0,1A B =-.故选A .【名师点睛】本题考查了集合交集的求法,是基础题.4.【2019年高考天津理数】设集合{1,1,2,3,5},{2,3,4},{|13}A B C x x =-==∈≤<R ,则()A C B =A .{}2B .{}2,3C .{}1,2,3-D .{}1,2,3,4【答案】D 因为{1,2}A C =,所以(){1,2,3,4}A C B =.故选D .【名师点睛】集合的运算问题,一般要先研究集合中元素的构成,能化简的要先化简,同时注意数形结合,即借助数轴、坐标系、韦恩图等进行运算.5.【2019年高考浙江】已知全集{}1,0,1,2,3U =-,集合{}0,1,2A =,{}1,0,1B =-,则()U A B ð=A .{}1-B .{}0,1C .{}1,2,3-D .{}1,0,1,3-【答案】A∵{1,3}U A =-ð,∴(){1}U A B =-ð.故选A.【名师点睛】注意理解补集、交集的运算.6.【2019年高考浙江】若a >0,b >0,则“a +b ≤4”是 “ab ≤4”的 A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】A当0, 0a >b >时,a b +≥,则当4a b +≤时,有4a b ≤+≤,解得4ab ≤,充分性成立; 当=1, =4a b 时,满足4ab ≤,但此时=5>4a+b ,必要性不成立, 综上所述,“4a b +≤”是“4ab ≤”的充分不必要条件. 故选A.【名师点睛】易出现的错误:一是基本不等式掌握不熟练,导致判断失误;二是不能灵活地应用“赋值法”,通过取,a b 的特殊值,从假设情况下推出合理结果或矛盾结果. 7.【2019年高考天津理数】设x ∈R ,则“250x x -<”是“|1|1x -<”的A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件【答案】B由250x x -<可得05x <<,由|1|1x -<可得02x <<, 易知由05x <<推不出02x <<, 由02x <<能推出05x <<,故05x <<是02x <<的必要而不充分条件,即“250x x -<”是“|1|1x -<”的必要而不充分条件. 故选B.【名师点睛】本题考查充分必要条件,解题的关键是由所给的不等式得到x 的取值范围. 8.【2019年高考全国Ⅱ卷理数】设α,β为两个平面,则α∥β的充要条件是 A .α内有无数条直线与β平行 B .α内有两条相交直线与β平行 C .α,β平行于同一条直线 D .α,β垂直于同一平面【答案】B由面面平行的判定定理知:α内有两条相交直线都与β平行是αβ∥的充分条件;由面面平行的性质定理知,若αβ∥,则α内任意一条直线都与β平行,所以α内有两条相交直线都与β平行是αβ∥的必要条件.故α∥β的充要条件是α内有两条相交直线与β平行. 故选B .【名师点睛】面面平行的判定问题要紧扣面面平行的判定定理,最容易犯的错误为定理记不住,凭主观臆断.9.【2019年高考北京理数】设点A ,B ,C 不共线,则“AB 与AC 的夹角为锐角”是“||||AB AC BC +>”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C∵A 、B 、C 三点不共线,∴|AB +AC |>|BC |⇔|AB +AC |>|AC -AB |⇔|AB +AC |2>|AC -AB |2AB ⇔·AC >0AB ⇔与AC 的夹角为锐角,故“AB 与AC 的夹角为锐角”是“|AB +AC |>|BC |”的充分必要条件. 故选C.【名师点睛】本题考查充要条件的概念与判断、平面向量的模、夹角与数量积,同时考查了转化与化归的数学思想.10.【2018年高考浙江】已知全集U ={1,2,3,4,5},A ={1,3},则=U A ðA .∅B .{1,3}C .{2,4,5}D .{1,2,3,4,5}【答案】C因为全集 , , 所以根据补集的定义得 . 故选C .【名师点睛】若集合的元素已知,则求集合的交集、并集、补集时,可根据交集、并集、补集的定义求解.11.【2018年高考全国Ⅰ卷理数】已知集合{}220A x x x =-->,则A =R ðA .{}12x x -<< B .{}12x x -≤≤ C .}{}{|1|2x x x x <-> D .}{}{|1|2x x x x ≤-≥【答案】B解不等式 得 或 ,所以 或 , 所以可以求得{}|12A x x =-≤≤R ð. 故选B .【名师点睛】该题考查的是有关一元二次不等式的解法以及集合的补集的求解问题,在解题的过程中,需要明确一元二次不等式的解集的形式以及补集中元素的特征,从而求得结果.12.【2018年高考全国Ⅲ卷理数】已知集合{}|10A x x =-≥,{}012B =,,,则A B =A .{}0B .{}1C .{}12,D .{}012,,【答案】C易得集合{|1}A x x =≥, 所以{}1,2AB =.故选C .【名师点睛】本题主要考查交集的运算,属于基础题.13.【2018年高考天津理数】设全集为R ,集合{02}A x x =<<,{1}B x x =≥,则()=R I A B ðA .{01}x x <≤B .{01}x x <<C .{12}x x ≤<D .{02}x x <<【答案】B由题意可得:B R ð ,结合交集的定义可得:()=R I A B ð . 故选B.【名师点睛】本题主要考查交集的运算法则,补集的运算法则等知识,意在考查学生的转化能力和计算求解能力.14.【2018年高考全国Ⅱ卷理数】已知集合(){}223A x y xy x y =+∈∈Z Z ,≤,,,则A 中元素的个数为A .9B .8C .5D .4【答案】A, 当 时, ; 当 时, ; 当 时, , 所以共有9个元素. 选A .【名师点睛】本题考查集合与元素的关系,点与圆的位置关系,考查学生对概念的理解与识别. 15.【2018年高考北京理数】已知集合A ={x ||x |<2},B ={–2,0,1,2},则AB =A .{0,1}B .{–1,0,1}C.{–2,0,1,2} D.{–1,0,1,2}【答案】A,,因此A B=.故选A.【名师点睛】解决集合问题时,认清集合中元素的属性(是点集、数集或其他情形)和化简集合是正确求解的两个先决条件.16.【2018年高考浙江】已知平面α,直线m,n满足m⊄α,n⊂α,则“m∥n”是“m∥α”的A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A因为,所以根据线面平行的判定定理得.由不能得出与内任一直线平行,所以是的充分不必要条件.故选A.【名师点睛】充分、必要条件的三种判断方法:(1)定义法:直接判断“若则”、“若则”的真假.并注意和图示相结合,例如“ ⇒ ”为真,则是的充分条件.(2)等价法:利用 ⇒ 与非 ⇒非, ⇒ 与非 ⇒非, ⇔ 与非 ⇔非的等价关系,对于条件或结论是否定式的命题,一般运用等价法.(3)集合法:若 ⊆ ,则是的充分条件或是的必要条件;若=,则是的充要条件.17.【2018年高考天津理数】设x∈R,则“11||22x-<”是“31x<”的A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件【答案】A绝对值不等式⇔⇔,由⇔.据此可知是的充分而不必要条件.故选A.【名师点睛】本题主要考查绝对值不等式的解法、充分不必要条件的判断等知识,意在考查学生的转化能力和计算求解能力.18.【2018年高考北京理数】设a ,b 均为单位向量,则“33-=+a b a b ”是“a ⊥b ”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C2222223333699+6-=+⇔-=+⇔-⋅+=⋅+a b a b a b a b a a b b a a b b ,因为a ,b 均为单位向量,所以2222699+60=-⋅+=⋅+⇔⋅⇔a a b b a a b b a b ⊥a b , 即“33-=+a b a b ”是“a ⊥b ”的充分必要条件. 故选C.【名师点睛】充分、必要条件的三种判断方法:1.定义法:直接判断“若 则 ”、“若 则 ”的真假.并注意和图示相结合,例如“ ⇒ ”为真,则 是 的充分条件.2.等价法:利用 ⇒ 与非 ⇒非 , ⇒ 与非 ⇒非 , ⇔ 与非 ⇔非 的等价关系,对于条件或结论是否定式的命题,一般运用等价法.3.集合法:若 ⊆ ,则 是 的充分条件或 是 的必要条件;若 = ,则 是 的充要条件. 19.【2017年高考全国Ⅰ卷理数】已知集合A ={x |x <1},B ={x |31x<},则A .{|0}AB x x =< B .A B =RC .{|1}AB x x =>D .AB =∅【答案】A由31x<可得033x<,则0x <,即{|0}B x x =<, 所以{|1}{|0}AB x x x x =<<{|0}x x =<,{|1}{|0}{|1}A B x x x x x x =<<=<.故选A .【名师点睛】对于集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图处理. 20.【2017年高考全国Ⅱ卷理数】设集合{}1,2,4A =,{}240B x x x m =-+=.若{}1AB =,则B =A .{}1,3-B .{}1,0C .{}1,3D .{}1,5【答案】C 由{}1AB =得1B ∈,即1x =是方程240x x m -+=的根,所以140,3m m -+==,{}1,3B =.故选C .【名师点睛】集合中元素的三个特性中的互异性对解题影响较大,特别是含有字母的集合,在求出字母的值后,要注意检验集合中的元素是否满足互异性.两个防范:①不要忽视元素的互异性;②保证运算的准确性.21.【2017年高考全国Ⅲ卷理数】已知集合A ={}22(,)1x y x y +=│,B ={}(,)x y y x =│,则A B 中元素的个数为 A .3 B .2 C .1 D .0【答案】B集合中的元素为点集,由题意,可知集合A 表示以()0,0为圆心,1为半径的单位圆上所有点组成的集合, 集合B 表示直线y x =上所有的点组成的集合,又圆221x y +=与直线y x =相交于两点,22⎛ ⎝⎭,22⎛-- ⎝⎭, 则AB 中有2个元素.故选B.【名师点睛】求集合的基本运算时,要认清集合元素的属性(是点集、数集或其他情形)和化简集合,这是正确求解集合运算的两个先决条件.集合中元素的三个特性中的互异性对解题影响较大,特别是含有字母的集合,在求出字母的值后,要注意检验集合中的元素是否满足互异性. 22.【2017年高考北京理数】若集合A ={x |–2<x <1},B ={x |x <–1或x >3},则AB =A .{x |–2<x <–1}B .{x |–2<x <3}C .{x |–1<x <1}D .{x |1<x <3}【答案】A 利用数轴可知{}21A B x x =-<<-.故选A.【名师点睛】集合分为有限集合和无限集合,若集合个数比较少时可以用列举法表示;若集合是无限集合就用描述法表示,并注意代表元素是什么.集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图进行处理.23.【2017年高考浙江】已知集合{|11}P x x =-<<,{02}Q x =<<,那么PQ =A .(1,2)-B .(0,1)C .(1,0)-D .(1,2)【答案】A利用数轴,取,P Q 中的所有元素,得P Q =(1,2)-.故选A.【名师点睛】对于集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图处理. 24.【2017年高考天津理数】设集合{1,2,6},{2,4},{|15}A B C x x ===∈-≤≤R ,则()AB C =A .{2}B .{1,2,4}C .{1,2,4,6}D .{|15}x x ∈-≤≤R 【答案】B(){1,2,4,6}[1,5]{1,2,4}A B C =-=.故选B .【名师点睛】集合的运算问题,一般要先研究集合中元素的构成,能化简的要先化简,同时注意数形结合,即借助数轴、坐标系、韦恩图等进行运算.25.【2017年高考山东理数】设函数y =A ,函数ln(1)y x =-的定义域为B ,则A B =A .(1,2)B .(1,2]C .(-2,1)D .[-2,1)【答案】D由240x -≥得22x -≤≤,由10x ->得1x <, 故{|22}{|1}{|21}A B x x x x x x =-≤≤<=-≤<.选D.【名师点睛】集合的交、并、补运算问题,应把集合先化简再计算,常借助数轴或韦恩图进行求解. 26.【2017年高考浙江】已知等差数列{a n }的公差为d ,前n 项和为S n ,则“d >0”是“S 4 + S 6>2S 5”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C由46511210212(510)S S S a d a d d +-=+-+=, 可知当0d >时,有46520S S S +->,即4652S S S +>, 反之,若4652S S S +>,则0d >,所以“d >0”是“S 4 + S 6>2S 5”的充分必要条件. 故选C .【名师点睛】本题考查等差数列的前n 项和公式,通过套入公式与简单运算,可知4652S S S d +-=, 结合充分必要性的判断,若p q ⇒,则p 是q 的充分条件,若p q ⇐,则p 是q 的必要条件,该题“0d >”⇔“46520S S S +->”,故互为充要条件.27.【2017年高考北京理数】设m ,n 为非零向量,则“存在负数λ,使得λ=m n ”是“0<⋅m n ”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】A若0λ∃<,使λ=m n ,则两向量,m n 反向,夹角是180︒, 那么cos1800⋅=︒=-<m n m n m n ;若0⋅<m n ,那么两向量的夹角为(]90,180︒︒,并不一定反向, 即不一定存在负数λ,使得λ=m n ,所以“存在负数λ,使得λ=m n ”是“0<⋅m n ”的充分而不必要条件. 故选A.【名师点睛】本题考查平面向量的知识及充分必要条件的判断,若p q ⇒,则p 是q 的充分条件,若p q ⇐,则p 是q 的必要条件.28.【2017年高考山东理数】已知命题p :0,ln(1)0x x ∀>+>;命题q :若a >b ,则22a b >,下列命题为真命题的是A .p q ∧B .p q ∧⌝C .p q ⌝∧D .p q ⌝∧⌝【答案】B由0x >时11,x +>得ln(1)0x +>,知p 是真命题.由12,->-但22(2)(1)->-可知q 是假命题,则p q ∧⌝是真命题.故选B.【名师点睛】解答有关逻辑联结词的相关问题,首先要明确各命题的真假,利用或、且、非的真值表,进一步作出判断.29.【2017年高考全国Ⅰ卷理数】设有下面四个命题 1p :若复数z 满足1z∈R ,则z ∈R ; 2p :若复数z 满足2z ∈R ,则z ∈R ;3p :若复数12,z z 满足12z z ∈R ,则12z z =;4p :若复数z ∈R ,则z ∈R .其中的真命题为A .13,p pB .14,p pC .23,p pD .24,p p 【答案】B令i(,)z a b a b =+∈R ,则由2211i i a b z a b a b -==∈++R 得0b =,所以z ∈R ,故1p 正确; 当i z =时,因为22i 1z ==-∈R ,而i z =∉R 知,故2p 不正确;当12i z z ==时,满足121z z ⋅=-∈R ,但12z z ≠,故3p 不正确;对于4p ,因为实数的共轭复数是它本身,也属于实数,故4p 正确.故选B.【名师点睛】分式形式的复数,分子、分母同乘以分母的共轭复数,化简成i(,)z a b a b =+∈R 的形式进行判断,共轭复数只需实部不变,虚部变为原来的相反数即可.30.【2019年高考江苏】已知集合{1,0,1,6}A =-,{|0,}B x x x =>∈R ,则AB = ▲ . 【答案】{1,6}由题意利用交集的定义求解交集即可.由题意知,{1,6}A B =.【名师点睛】本题主要考查交集的运算,属于基础题.31.【2018年高考江苏】已知集合 , ,那么 ________.【答案】{1,8}由题设和交集的定义可知: .【名师点睛】本题考查交集及其运算,考查基础知识,难度较小.32.【2017年高考江苏】已知集合{1,2}A =,2{,3}B a a =+,若{1}A B =,则实数a 的值为 ▲ .【答案】1由题意1B ∈,显然233a +≥,所以1a =,此时234a +=,满足题意.故答案为1.【名师点睛】(1)认清元素的属性.解决集合问题时,认清集合中元素的属性(是点集、数集或其他情形)和化简集合是正确求解的两个先决条件.(2)注意元素的互异性.在解决含参数的集合问题时,要注意检验集合中元素的互异性,否则很可能会因为不满足“互异性”而导致错误.(3)防范空集.在解决有关,AB A B =∅⊆等集合问题时,往往容易忽略空集的情况,一定要先考虑∅时是否成立,以防漏解.33.【2018年高考北京理数】能说明“若f (x )>f (0)对任意的x ∈(0,2]都成立,则f (x )在[0,2]上是增函数”为假命题的一个函数是__________. 【答案】23()()2f x x =-- (答案不唯一)对于23()()2f x x =--,其图象的对称轴为32x =, 则f (x )>f (0)对任意的x ∈(0,2]都成立,但f (x )在[0,2]上不是单调函数.【名师点睛】解题本题需掌握充分必要条件和函数的性质,举出反例即可.。