详解虚拟存储技术及其应用
浅析虚拟存储技术及其在视频网络中的应用

境 下 的交 互 性操 作 , 高 存储 效 率 , 化存 储 管 理 的 提 简
复杂 性 , 降低存 储管 理和运 行成 本 。
个大 容量存 储 系统集 中管理 的手 段 , 由网络 中 的一
磁 盘 阵列 系统都 可使用 热备 份 的功能 。 谓热备 份是 所 在 建立 磁盘 阵列 系统 的时 候 , 其 中一磁 盘 指定 为后 将 备磁盘 , 此磁 盘 在 平 常并 不操 作 , 若 阵 列 中某 一 磁 但
20 0 7年 第 8期 ( 第 2 ) 总 2期 1
维普资讯
有 线 电视 技 术
个 环节进 行 统一 管理 , 避免 了由于存 储设 备 扩充 所 带
来 的管 理方 面 的麻 烦 。
电视节目制作与播出
(t p 的访 问权 限 ( Sr ) i 可写 、 可读 、 禁止 访 问 ) 。当主机要
很好 地解 决 了因发生磁 盘 故 障所 引起 的种 种 不便 。 我 台经 过 改 造 后 ( 2 整 个 新 闻 中心 所 用 的存 图 ) 储 空 间 达 到 4 B, T 网络 带 宽 达 到 I b s 每 秒 可 处 理 G p, 高达 3 0 5 MB的资料 。传统 模式 中数 据 比较分 散 , 管理 和 备 份都 相 当困难 而 且容 易 损 坏 和 丢 失 的 问题 也 得 到 了 解决 ,在提 高 工作 效 率 的 同时 也 降低 了系 统 成 本 。此成 功改 造方案 可供 兄弟 台借 鉴 。A
拟 存储 技术 及 其 在 视频 网络 中的 应 用 。 关键 词 : 拟 存 储 虚 虚 拟存 储 技 术 视 频 网络
1 前
言
2 虚 拟 存 储 的概 念 和 特 点
所 谓 虚拟存 储 , 就是 把 多个存 储 介质 模块 通过 一
虚拟存储器的管理和技术有哪些

Word 文档1 / 1虚拟存储器的管理和技术有哪些我们很多的人应当都听说过虚拟存储器,今日,学习啦我为大家带来的是虚拟存储器管理方面的学问,虚拟存储器管理是怎么样的,它又有哪些类型呢。
一、分区式存储管理1、这类型的存储管理方法管理起来不冗杂比较的简洁,它的缺乏之处就会会对于内存空间造成大量的浪费,早期的单一用户以及单一任务的把握装置,把内存空间进行划分,形成两个分区,为我们的用户区域以及系统区域。
我们的操作系统则接受的是系统区域;应用程序则使用的是我们的用户区域,同时的可以对用户区域的全部的空间进行利用。
2、为了到达多个程序同时的一起被执行,在我们现代的把握系统里面则加入了分区式的存储方法管理,将内存划分为很多个区域,操作系统使用里面的其中一个区域,全部的剩下的区域则由应用程序进行利用,各个应用程序占据里面的一个或者是几个区域。
3、依据划分区域的空间有没有固定,又能够吧分区式的存储管理划分成为固定区域以及动态区域两个区域。
二、交换技术和分区技术1、依据程序的部分性的为原理,在一个不是很长的时间端里面,程序进行访问的存储器位置占有比较大的比例集聚在存储器位置比较少的空间里面。
交换技术则是接受了程序的部分性原理到达多个任务同时的进行环境存储管理工作。
2、交换的进程里面通过换入以及换出这两个进程构成,换入的进程把外村交换区的数据以及程序代码进行交换到内存里面,换出的进程则是把内存里面的数据进行交换到外村交换里面中去。
3、操作把握装置不会马上的执行程序代码在外存里面进行保存的工作,同时的把这些过程排到过程请求中的长期调度里面中去,队列里面的一些过程被调进主存里面进行执行,当因为输入以及输出等操作而造成存储器里面没有过程处于预备就绪的状况时,操作装置就会把一些进程交换到外存里面来,同时的排进中期里面中去。
4、交换技术的优势则是将同时运行的进程的数量加大。
缺乏之处则是换入以及换出的工作把处理机的时间开销加长同时交换的单位是全部的进程地址的容积,并无思索程序运行的进程里面地址访问进行统计的功能。
操作系统-存储管理(4)段页式虚拟存储

操作系统-存储管理(4)段页式虚拟存储物理地址:⼜称绝对地址,即程序执⾏所使⽤的地址空间(处理器执⾏指令时按照物理地址进⾏)逻辑地址:⼜称相对地址,即⽤户编程所使⽤的地址空间,从0开始编号,有两种形式:⼀维逻辑地址(地址)⼆维逻辑地址(段号:段内地址)主存储器空间的分配与去配:分配:进程装⼊主存时,存储管理软件进⾏具体的主存分配操作,并设置⼀个表格记录主存空间的分配情况去配:当某个进程撤离或主动归还主存资源时,存储管理软件要收回它所占⽤的全部或者部分存储空间,调整主存分配表信息主存储器空间的共享:多个进程共享主存储器资源:多道程序设计技术使若⼲个程序同时进⼊主存储器,各⾃占⽤⼀定数量的存储空间,共同使⽤⼀个主存储器多个进程共享主存储器的某些区域:若⼲个协作进程有共同的主存程序块或者主存数据块多道程序设计需要复⽤主存:按照分区复⽤:主存划分为多个固定/可变尺⼨的分区,⼀个程序/程序段占⽤⼀个分区按照页架复⽤:主存划分成多个固定⼤⼩的页架,⼀个程序/程序段占⽤多个页架装载程序/加载器(loader)把可执⾏程序装⼊内存的⽅式有:绝对装载可重定位装载动态运⾏时装载地址转换:⼜称重定位,即把可执⾏程序逻辑地址转换成绝对地址,可分为:静态地址重定位:由装载程序实现装载代码模块的加载和地址转换(⽆需硬件⽀持),把它装⼊分配给进程的内存指定区域,其中所有指令代码和数据的逻辑地址在执⾏前⼀次全部修改为内存物理地址。
早期单任务单⽤户OS使⽤。
动态地址重地位:由装载程序实现装载代码模块的加载,把它装⼊进程的内存在指定区域,但对链接程序处理过的应⽤程序逻辑地址不做修改,程序内存起始地址被置⼊重定位寄存器(基址寄存器)。
程序执⾏过程中每当CPU访问程序和数据引⽤内存地址时,由硬件地址转换机构截取此逻辑地址并加上重定位寄存器的值。
运⾏时链接地址重定位存储保护:为避免主存中的多个进程相互⼲扰,必须对主存中的程序和数据进⾏保护。
虚拟存储和高速缓冲存储器

在实际应用中,虚拟文件系统存储方案以非对称式拓扑结构 为表现形式。
第十一页,共49页
虚拟存储的特点:
虚拟存储提供了一个大容量存储系统集中管理的手段,由网络中 的一个环节(如服务器)进行统一管理,避免了由于存储设备扩 充所带来的管理方面的麻烦。
虚拟存储对于视频网络系统最有价值的特点是:可以大大提高 存储系统整体访问带宽。
第十八页,共49页
三级缓存的性能影响
❖ 在游戏方面,提升三级缓存的容量对游戏的性能影响很大, 如果是网吧机提升三级缓存的容量,会有显著的性能提升的。
❖ 对PC机来说,三级缓存其实只是做了个辅助的作用,除了服务器 ,其实对大多数家庭机没什么用的, 对于家庭机内存是最重要的 。
第十九页,共49页
高速存储器的工作原理图:
地址总线
LRU管理逻辑
CAM
相联存储图表
主
CPU
页式虚拟存储器的工作原理

页式虚拟存储器的工作原理页式虚拟存储器是一种通过将磁盘空间作为内存的扩展来增加计算机可用内存的技术。
它允许计算机运行比物理内存更大的程序,并且可以在需要时将数据从磁盘移动到内存中。
在本文中,我们将探讨页式虚拟存储器的工作原理和实现方式。
一、页式虚拟存储器的概念页式虚拟存储器是指一种采用分页技术管理内存和磁盘的技术。
它分为内存页和磁盘页两部分,内存页是为了进程运行而存在的,磁盘页是为了在内存不够的时候将其置换到磁盘上而存在的。
当程序需要访问某一部分数据的时候,CPU会根据页表将数据从磁盘移动到内存中,然后再访问内存中的数据。
这种技术可以有效地增加计算机的可用内存,并且可以提高程序的运行效率。
二、页式虚拟存储器的工作原理1.内存页和磁盘页内存页是虚拟存储器中的一个概念,它用来表示物理内存中的一个固定大小的数据块。
通常情况下,内存页的大小是2的幂次方,比如4KB或者8KB。
磁盘页是虚拟存储器中的另一个概念,它用来表示在磁盘上的一个固定大小的数据块,通常情况下,磁盘页的大小和内存页的大小相同。
2.页表页表是虚拟存储器的核心数据结构,它用来将虚拟地址映射到物理地址。
当程序运行时,CPU会根据虚拟地址访问内存中的数据,而页表会将虚拟地址转换成物理地址。
如果所需的数据不在内存中,CPU会引发一个缺页中断,操作系统会根据页表将数据从磁盘移动到内存中,然后再由CPU访问内存中的数据。
3.页式置换算法页式虚拟存储器采用了页式置换算法来管理内存和磁盘之间的数据移动。
当内存不够时,操作系统会根据一定的置换算法将内存中的某些数据移到磁盘上,从而给新的数据腾出空间。
常用的页式置换算法包括最近最少使用(LRU)、先进先出(FIFO)、时钟置换算法等。
4.缺页中断处理当程序需要访问内存中的数据但是数据不在内存中时,CPU会引发一个缺页中断,操作系统会根据页表将数据从磁盘移动到内存中。
这是页式虚拟存储器的核心操作之一,它保证了程序在内存不够的情况下也能正常运行。
虚拟化-存储虚拟化

虚拟化-存储虚拟化随着存储的需求呈螺旋式向上增长,公司内的存储服务器和阵列都⽆⼀例外地随之成倍增长。
对于这种存储管理困境的⼀种解决办法便是存储虚拟化。
存储虚拟化可以使管理程序员将不同的存储作为单个集合的资源来进⾏识别、配置和管理。
存储虚拟化是存储整合的⼀个重要组成部分,它能减少管理问题,⽽且能够提⾼存储利⽤率,这样可以降低新增存储的费⽤。
权威机构S N I A(存储⽹络⼯业协会)给出的定义“通过将存储系统/⼦系统的内部功能从应⽤程序、计算服务器、⽹络资源中进⾏抽象、隐藏或隔离,实现独⽴于应⽤程序、⽹络的存储与数据管理”。
存储虚拟化技术将底层存储设备进⾏抽象化统⼀管理,向服务器层屏蔽存储设备硬件的特殊性,⽽只保留其统⼀的逻辑特性,从⽽实现了存储系统的集中、统⼀、⽅便的管理。
与传统存储的⽐较与传统存储相⽐,虚拟化存储的优点主要体现在:磁盘利⽤率⾼,传统存储技术的磁盘利⽤率⼀般只有30-70%,⽽采⽤虚拟化技术后的磁盘利⽤率⾼达70-90%;存储灵活,可以适应不同⼚商、不同类别的异构存储平台,为存储资源管理提供了更好的灵活性;管理⽅便,提供了⼀个⼤容量存储系统集中管理的⼿段,避免了由于存储设备扩充所带来的管理⽅⾯的⿇烦;性能更好,虚拟化存储系统可以很好地进⾏负载均衡,把每⼀次数据访问所需的带宽合理地分配到各个存储模块上,提⾼了系统的整体访问带宽。
分类虚拟化存储有多种分类⽅法,从⼤的⽅⾯可以分为:根据在I/O路径中实现虚拟化的位置不同进⾏分类;根据控制路径和数据路径的不同进⾏分类。
根据在I/O路径中实现虚拟化的位置不同,虚拟化存储可以分为主机的虚拟存储⽹络的虚拟存储存储设备的虚拟存储根据控制路径和数据路径的不同,虚拟化存储分为对称虚拟化不对称虚拟化优缺点优点:存储虚拟化也能够改进可⽤性。
如果⼀个应⽤程序与某些特定的存储资源相联,那么任何对于这些资源的中断都将会降低该应⽤的可⽤性。
通过存储虚拟化,应⽤程序就不会再与某个物理性的存储程序相联系了。
超融合存储关键技术及应用

超融合存储关键技术及应用超融合存储技术是一种全新的企业级数据存储架构,是由计算、网络和存储三部分组成。
在存储方面,超融合存储技术拥有高效的、可扩展的、可靠的存储系统,同时也具备超高密度的存储空间以及更低的能耗。
在云计算、大数据及虚拟化技术等需要大量计算和存储资源的应用中,超融合存储技术越来越受到企业的欢迎。
本文将介绍超融合存储的关键技术以及应用领域。
1. 存储虚拟化技术存储虚拟化技术是超融合存储技术的核心基础技术。
通过存储虚拟化技术可以将多个物理存储设备集成为一个存储池,便于管理和维护。
超融合存储技术利用存储虚拟化技术将物理存储设备虚拟化为多个逻辑存储设备,用户可以便捷地分配存储资源,并且可以实现存储资源的共享和池化。
2. 数据重复删除与压缩技术数据重复删除与压缩技术能够将存储数据压缩或者删除掉重复的数据,减少存储空间的占用。
这项技术能大幅度提高存储效率,进行定期的数据压缩和删除,能够减少数据存储空间,提高存储效率和数据管理效率。
3. 数据安全技术数据安全技术是超融合存储技术的必要组成部分。
通过数据加密、数据备份、数据恢复等技术,可以确保数据的安全性和完整性。
此外,数据的审计、访问控制和数据保护也是超融合存储系统安全保障的重要措施。
超融合存储技术还需要具备自动化的管理,能够实现数据存储、备份以及管理等一系列自动化的流程。
通过数据治理技术能够确定哪些数据需要备份、存储、归档以及密度的问题。
添加元数据技术,可以将数据和其元数据密切联系,便于按需管理和使用数据。
5. 可靠性和高可用性技术超融合存储技术最终要实现的目的是保证数据的安全和可靠性。
因此,可靠性和高可用性技术是超融合存储技术不可缺少的一部分。
采用数据冗余、镜像等技术,可以提供数据冗余和备份,在硬件出现故障时保证数据的可用性。
同时,高可用性技术如故障自动迁移、负载均衡等技术,也是保证数据系统长久稳定性的重要保证。
1. 云计算超融合存储技术在云计算领域的应用非常广泛。
虚拟化技术的概念与应用

虚拟化技术的概念与应用随着云计算的发展和应用,虚拟化技术逐渐成为大众熟知的技术。
虚拟化技术是一种将计算机硬件资源(如CPU、内存、硬盘等)抽象出来的技术,从而使多个操作系统和应用程序可以共享同一物理服务器的资源。
本文将介绍虚拟化技术的概念、分类和应用。
一、虚拟化技术的概念虚拟化技术是一种软件技术,可以通过一定的方式将硬件资源进行抽象和复用。
虚拟化技术可以将一台物理计算机划分成多台虚拟计算机,每台虚拟计算机可以运行不同的操作系统和应用程序,相互之间互不干扰,就好比在一台物理机上建立了多个独立的“容器”。
虚拟化技术可以实现不同操作系统和软件之间的互相隔离,从而提高了计算资源的利用率和安全性。
虚拟化技术的实现有很多种方式,最常见的方式是利用Hypervisor软件创建虚拟化环境。
Hypervisor软件是一种允许多个虚拟机共享物理资源的中间软件层。
虚拟化技术的产生源于“服务器冗余”问题。
在过去,为了保证应用程序高可用性,通常会在每台服务器上安装相同的操作系统和应用程序,从而增加了维护成本和硬件购置成本。
而虚拟化技术的应用,可以将多个服务器的负载合并到一个或几个物理服务器上,这样可以提高服务器的利用率,降低维护成本和硬件成本。
二、虚拟化技术的分类虚拟化技术可以分为以下几类:1.操作系统虚拟化:这种虚拟化方式是最简单的,它是通过在一个物理机上运行多个操作系统实例来实现的。
每个操作系统实例都像一个独立的虚拟机,它们彼此之间互相隔离,可以独立运行、独立配置和管理。
2.应用程序虚拟化:这种虚拟化方式是通过软件层技术实现的。
应用程序虚拟化可以将应用程序与其相关依赖项打包在一起,形成一个独立的容器,从而使应用程序可以像一个独立的应用程序一样运行。
应用程序虚拟化可以降低应用程序的部署和运维成本,同时提高应用程序的可移植性和安全性。
3.存储虚拟化:存储虚拟化是通过将物理存储设备进行抽象,创建虚拟存储设备来提供存储资源。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
详解虚拟存储技术及其应用 随着围绕数字化、网络化开展的各种多媒体处理业务的不断增加,存储系统网络平台已经成为一个核心平台,同时各种应用对平台的要求也越来越高,不光是在存储容量上,还包括数据访问性能、数据传输性能、数据管理能力、存储扩展能力等等多个方面。可以说,存储网络平台的综合性能的优劣,将直接影响到整个系统的正常运行。
为达到这些要求,一种新兴的技术正越来越受到大家的关注,即虚拟存储技术。
其实虚拟化技术并不是一件很新的技术,它的发展,应该说是随着计算机技术的发展而发展起来的,最早是始于70年代。由于当时的存储容量,特别是内存容量成本非常高、容量也很小,对于大型应用程序或多程序应用就受到了很大的限制。为了克服这样的限制,人们就采用了虚拟存储的技术,最典型的应用就是虚拟内存技术。随着计算机技术以及相关信息处理技术的不断发展,人们对存储的需求越来越大。这样的需求刺激了各种新技术的出现,比如磁盘性能越来越好、容量越来越大。但是在大量的大中型信息处理系统中,单个磁盘是不能满足需要,这样的情况下存储虚拟化技术就发展起来了。在这个发展过程中也由几个阶段和几种应用。首先是磁盘条带集(RAID,可带容错)技术,将多个物理磁盘通过一定的逻辑关系集合起来,成为一个大容量的虚拟磁盘。而随着数据量不断增加和对数据可用性要求的不断提高,又一种新的存储技术应运而生,那就是存储区域网络(SAN)技术。SAN的广域化则旨在将存储设备实现成为一种公用设施,任何人员、任何主机都可以随时随地获取各自想要的数据。目前讨论比较多的包括iSCSI、FC Over IP等技术,由于一些相关的标准还没有最终确定,但是存储设备公用化、存储网络广域化是一个不可逆转的潮流。
一、虚拟存储的概念 所谓虚拟存储,就是把多个存储介质模块(如硬盘、RAID)通过一定的手段集中管理起来,所有的存储模块在一个存储池(Storage Pool)中得到统一管理,从主机和工作站的角度,看到就不是多个硬盘,而是一个分区或者卷,就好象是一个超大容量(如1T以上)的硬盘。这种可以将多种、多个存储设备统一管理起来,为使用者提供大容量、高数据传输性能的存储系统,就称之为虚拟存储。
二、虚拟存储的分类 目前虚拟存储的发展尚无统一标准,从虚拟化存储的拓扑结构来讲主要有两种方式:即对称式与非对称式。对称式虚拟存储技术是指虚拟存储控制设备与存储软件系统、交换设备集成为一个整体,内嵌在网络数据传输路径中;非对称式虚拟存储技术是指虚拟存储控制设备独立于数据传输路径之外。从虚拟化存储的实现原理来讲也有两种方式;即数据块虚拟与虚拟文件系统。具体如下:
1.对称式虚拟存储 图1 图1对称式虚拟存储解决方案的示意图 在图1所示的对称式虚拟存储结构图中,存储控制设备High Speed Traffic Directors(HSTD)与存储池子系统Storage Pool集成在一起,组成SAN Appliance。可以看到在该方案中存储控制设备HSTD在主机与存储池数据交换的过程中起到核心作用。该方案的虚拟存储过程是这样的:由HSTD内嵌的存储管理系统将存储池中的物理硬盘虚拟为逻辑存储单元(LUN),并进行端口映射(指定某一个LUN能被哪些端口所见),主机端将各可见的存储单元映射为操作系统可识别的盘符。当主机向SAN Appliance写入数据时,用户只需要将数据写入位置指定为自己映射的盘符(LUN),数据经过HSTD的高速并行端口,先写入高速缓存,HSTD中的存储管理系统自动完成目标位置由LUN到物理硬盘的转换,在此过程中用户见到的只是虚拟逻辑单元,而不关心每个LUN的具体物理组织结构。该方案具有以下主要特点:
(1)采用大容量高速缓存,显著提高数据传输速度。 缓存是存储系统中广泛采用的位于主机与存储设备之间的I/O路径上的中间介质。当主机从存储设备中读取数据时,会把与当前数据存储位置相连的数据读到缓存中,并把多次调用的数据保留在缓存中;当主机读数据时,在很大几率上能够从缓存中找到所需要的数据。直接从缓存上读出。而从缓存读取数据时的速度只受到电信号传播速度的影响(等于光速),因此大大高于从硬盘读数据时盘片机械转动的速度。当主机向存储设备写入数据时,先把数据写入缓存中,待主机端写入动作停止,再从缓存中将数据写入硬盘,同样高于直接写入硬盘的速度
(2)多端口并行技术,消除了I/O瓶颈。 传统的FC存储设备中控制端口与逻辑盘之间是固定关系,访问一块硬盘只能通过控制它的控制器端口。在对称式虚拟存储设备中,SAN Appliance的存储端口与LUN的关系是虚拟的,也就是说多台主机可以通过多个存储端口(最多8个)并发访问同一个LUN;在光纤通道100MB/带宽的大前提下,并行工作的端口数量越多,数据带宽就越高。
(3)逻辑存储单元提供了高速的磁盘访问速度。 在视频应用环境中,应用程序读写数据时以固定大小的数据块为单位(从512byte到1MB之间)。而存储系统为了保证应用程序的带宽需求,往往设计为传输512byte以上的数据块大小时才能达到其最佳I/O性能。在传统SAN结构中,当容量需求增大时,唯一的解决办法是多块磁盘(物理或逻辑的)绑定为带区集,实现大容量LUN。在对称式虚拟存储系统中,为主机提供真正的超大容量、高性能LUN,而不是用带区集方式实现的性能较差的逻辑卷。与带区集相比,Power LUN具有很多优势,如大块的I/O block会真正被存储系统所接受,有效提高数据传输速度;并且由于没有带区集的处理过程,主机CPU可以解除很大负担,提高了主机的性能。
(4)成对的HSTD系统的容错性能。 在对称式虚拟存储系统中,HSTD是数据I/O的必经之地,存储池是数据存放地。由于存储池中的数据具有容错机制保障安全,因此用户自然会想到HSTD是否有容错保护。象许多大型存储系统一样,在成熟的对称式虚拟存储系统中,HSTD是成对配制的,每对HSTD之间是通过SAN Appliance内嵌的网络管理服务实现缓存数据一致和相互通信的。 (5)在SAN Appliance之上可方便的连接交换设备,实现超大规模Fabric结构的SAN。
因为系统保持了标准的SAN结构,为系统的扩展和互连提供了技术保障,所以在SAN Appliance之上可方便的连接交换设备,实现超大规模Fabric结构的SAN。
2.非对称式虚拟存储系统 图2 图2非对称式虚拟存储系统示意图 在图2所示的非对称式虚拟存储系统结构图中,网络中的每一台主机和虚拟存储管理设备均连接到磁盘阵列,其中主机的数据路径通过FC交换设备到达磁盘阵列;虚拟存储设备对网络上连接的磁盘阵列进行虚拟化操作,将各存储阵列中的LUN虚拟为逻辑带区集(Strip),并对网络上的每一台主机指定对每一个Strip的访问权限(可写、可读、禁止访问)。当主机要访问某个Strip时,首先要访问虚拟存储设备,读取Strip信息和访问权限,然后再通过交换设备访问实际的Strip中的数据。在此过程中,主机只会识别到逻辑的Strip,而不会直接识别到物理硬盘。这种方案具有如下特点:
(1)将不同物理硬盘阵列中的容量进行逻辑组合,实现虚拟的带区集,将多个阵列控制器端口绑定,在一定程度上提高了系统的可用带宽。
(2)在交换机端口数量足够的情况下,可在一个网络内安装两台虚拟存储设备,实现Strip信息和访问权限的冗余。
但是该方案存在如下一些不足: (1)该方案本质上是带区集--磁盘阵列结构,一旦带区集中的某个磁盘阵列控制器损坏,或者这个阵列到交换机路径上的铜缆、GBIC损坏,都会导致一个虚拟的LUN离线,而带区集本身是没有容错能力的,一个LUN的损坏就意味着整个Strip里面数据的丢失。 (2)由于该方案的带宽提高是通过阵列端口绑定来实现的,而普通光纤通道阵列控制器的有效带宽仅在40MB/S左右,因此要达到几百兆的带宽就意味着要调用十几台阵列,这样就会占用几十个交换机端口,在只有一两台交换机的中小型网络中,这是不可实现的。
(3)由于各种品牌、型号的磁盘阵列其性能不完全相同,如果出于虚拟化的目的将不同品牌、型号的阵列进行绑定,会带来一个问题:即数据写入或读出时各并发数据流的速度不同,这就意味着原来的数据包顺序在传输完毕后被打乱,系统需要占用时间和资源去重新进行数据包排序整理,这会严重影响系统性能。
3.数据块虚拟与虚拟文件系统 以上从拓扑结构角度分析了对称式与非对称式虚拟存储方案的异同,实际从虚拟化存储的实现原理来讲也有两种方式;即数据块虚拟与虚拟文件系统。
数据块虚拟存储方案着重解决数据传输过程中的冲突和延时问题。在多交换机组成的大型Fabric结构的SAN中,由于多台主机通过多个交换机端口访问存储设备,延时和数据块冲突问题非常严重。数据块虚拟存储方案利用虚拟的多端口并行技术,为多台客户机提供了极高的带宽,最大限度上减少了延时与冲突的发生,在实际应用中,数据块虚拟存储方案以对称式拓扑结构为表现形式。
虚拟文件系统存储方案着重解决大规模网络中文件共享的安全机制问题。通过对不同的站点指定不同的访问权限,保证网络文件的安全。在实际应用中,虚拟文件系统存储方案以非对称式拓扑结构为表现形式。
三、虚拟存储技术的实现方式 目前实现虚拟存储主要分为如下几种: 1.在服务器端的虚拟存储 服务器厂商会在服务器端实施虚拟存储。同样,软件厂商也会在服务器平台上实施虚拟存储。这些虚拟存储的实施都是通过服务器端将镜像映射到外围