枣庄市滕州市级索中学2015届中考数学模拟试卷含答案
2015年中考数学模拟试卷分类汇编:操作探究(含答案)

( 1)小明很快就想到了一条分割直线, 而且用尺规作图作出 . 请你帮小明在图 1 中作出这条 “等
分积周线 ”,从而平分蛋糕.
( 2) 小华觉得小明的方法很好,所以模仿着在自己的蛋糕(图
2)中画了一条直线 EF 分别
交 AD 、 BC 于点 E、 F .你觉得小华会成功吗?如能成功,说出确定的方法;如不能成功,请
( 1)当 r= 4 2 时,
①在 P1( 0,-3), P2(4,6), P3( 4 2 ,2)中可以成为正方形 ABCD 的 “等距圆 ”的圆
心的是 _______________ ;
②若点 P 在直线 y x 2 上,且⊙ P 是正方形 ABCD 的 “等距圆 ”,则点 P 的坐标为
_______________; (2)如图 2,在正方形 ABCD 所在平面直角坐标系 xOy 中,正方形 EFGH 的顶点 F 的坐标
①当直线分别交 AD 、AB 于 E、F 时
有 S△ AEF≤S△ ABD , 又∵ S△ ABD =6< 9,∴不可能 同理,当直线分别交 AD 、CD 于 E 、F 时 S△ AEF≤S△ ACD < 9,
∴不可能
②当直线分别交 AB 、BC 于 E、F 时
设 BE =x,则 BF =9- x
由直线平分梯形面积得:
AH 2=HN 2+ AN2, HN2=15a2, 4
则 DM 2= FQ2 = HN2 =15a2, 4
A a C MEQ G N I
AD 2=AM 2+DM 2 =6a2,AF 2= AQ2+FQ 2= 10a2 ,
新三角形三边长为 4a、 6a、 10a. ∵AH2 = AD 2+AF 2 ∴新三角形为直角三角形.
2015年山东省枣庄市中考数学模拟试题3-2(无答案)

2015.5中考数学模拟试题3-2一 、选择题1. (2014 山东省烟台市) 如图是一个正方体截去一角后得到的几何体,它的主视图是2. (2014 浙江省杭州市) 已知边长为a 的正方形面积为8,则下列关于a 的说法中,错误的是( )A. a 是无理数B. a 是方程280x -=的解C. a 是8的算术平方根D. a 满足不等式组3040a a ->⎧⎨-<⎩3. (2014 山东省枣庄市) x 1,x 2是一二次方程3(x-1)2=15的两个解,且x 1<x 2,下列说法正确的是( )A .x 1小于-1,x 2大于3B .x 1小于-2,x 2大于3C .x 1,x 2 在-1和3之间D .x 1,x 2都小于3 A . 4 B . 5C . 6D . 75. (2014 黑龙江省大庆市) 已知反比例函数的图象2y x=-上有两点A (11,x y ),B (22,x y ),若12y y >,则12x x -的值是( )A .正数B .负数C .非正数D .不能确定6. (2014 天津市) 要组织一次排球邀请赛,参赛的每个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛.设比赛组织者应邀请x 个队参赛,则x 满足的关系式为( ) A .x (x+1)=28B .x (x ﹣1)=28C . x (x+1)=28D . x (x ﹣1)=287. (2014 广西玉林市) 一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是( ) A .12 B .14 C .16 D .1128. (2014 贵州省毕节地区) 如图,函数y =2x 和y =ax +4的图象相交于点A (m ,3),则不等式2x ≥ax +4的解集为( ) A. x ≥32 B.x ≤3 C. x ≤32D. x ≥3AO y x9. (2014 河北省) 定义新运算:a ⊕b =⎪⎪⎩⎪⎪⎨⎧<->.,)0()0(b ba b ba例如:4⊕554=,4⊕54)5(=-.则函数y =2⊕x (0≠x 的图象大致是()10. (2014 山东省泰安市) 若不等式1a x+9x+1+1-123x +⎧⎪⎨⎪⎩<,≥有解,则实数a 的取值范围是( )(A )a <-36 (B )a ≤-36 (C )a >-36 (D )a ≥-3611. (2014 山东省烟台市) 二次函数)0(2≠++=a c bx ax y 的部分图像如图所示,图像过点(-1,0),对称轴为直线2=x 下列结论:其中正确的结论有①04=+b a ②c a +9>b 3 ③c b a 278++>0 ④当x >-1时,y 的值随x 的值的增大而增大. A .1个 B . 2个 C . 3个 D . 4个12. (2014 辽宁省锦州市) 二次函数2y ax bx c =++(a ≠0,a ,b ,c 为常数)的图象如图所示,2ax bx c m++=有实数根的条件是( )A.2m ≤-B. 2m ≥-C. 0m ≥D. 4m >二、填空题1. (2014 四川省巴中市) 要使式子11m m +-有意义,则m 的取值范围是( )A. m>-1B. m ≥-1C.m>-1且m ≠1D. m ≥-1且m ≠1(第7题图)4-2O5y x2. (2012 广东省) x 、y 为实数,且满足|3|30x y -++=,则2012x y ⎛⎫⎪⎝⎭的值是___________.3. (2014 甘肃省天水市) 关于x 的方程1101ax x +-=-有增根,则a = .4. (2014 天津市) 正六边形的边心距为,则该正六边形的边长是( )A .B . 2C . 3D . 25. (2014 广东省深圳市)如图,下列图形是将正三角形按一定规律排列,则第5个图形中所有正三角形的个数有.6. (2014 湖北省孝感市) 如图,Rt △AOB 的一条直角边OB 在x 轴上,双曲线(0)ky x x=>经过斜边OA 的中点C ,与另一直角边交于点D ,若OCD S △=9,则OBD S △的值为 .7. (2014 黑龙江省大庆市) 关于x 的函数22(1)(22)2y m x m x =--++的图象与x 轴只有一个公共点,求m =-----------三、解答题1. (2014 四川省凉山州) 先化简,再求值:⎪⎭⎫ ⎝⎛--+÷--2526332a a a a a ,其中0132=-+a a . 2. (2014 湖南省湘潭市) 从全校1200名学生中随机选取一部分学生进行调查,调查情况:A 、上网时间≤1小时;B 、1小时<上网时间≤4小时;C 、4小时<上网时间≤7小时;D 、上网时间>7小时.统计结果制成了如图统计图:(1)参加调查的学生有 _________ 人; (2)请将条形统计图补全;(3)请估计全校上网不超过7小时的学生人数.3. (2014 辽宁省营口市) 如图,在平面直角坐标系中,ABC ∆的三个顶点坐标分别为A (2-,1),B (1-,4),C (3-,2).(1)画出ABC ∆关于y 轴对称的图形111C B A ∆,并直接写出1C 点坐标;(2)以原点O 为位似中心,位似比为1:2,在y 轴的左侧,画出ABC ∆放大后的图形222C B A ∆,并直接写出2C 点坐标;(3)如果点D (a ,b )在线段AB 上,请直接写出经过(2)的 变化后D 的对应点2D 的坐标.4. (2013 广西钦州市) 如图,某大楼的顶部竖有一块广告牌CD ,小李在山坡的坡脚A 处测得广告牌底部D 的仰角为60°,沿坡面AB 向上走到B 处测得广告牌顶部C 的仰角为45°.已知山坡AB 的坡度为i =13AB =10米,AE =15米.(i =13BH 与水平宽度AH 的比) (1)求点B 距水平面AE 的高度BH ; (2)求广告牌CD 的高度.(测角器的高度忽略不计,结果精确到0.12≈1.4143 1.732)B DC 45︒60︒-111OCBAxy5. (2014 山东省淄博市) 如图,四边形ABCD 中,AC ⊥BD 交BD 于点E ,点F ,M 分别是AB ,BC 的中点,BN 平分∠ABE 交AM 于点N ,AB =AC =BD ,连接MF ,NF . (1)判断△BMN 的形状,并证明你的结论; (2)判断△MFN 与△BDC 之间的关系,并说明理由.6. (2014 福建省福州市) 现有A ,B 两种商品,买2件A 商品和1件B 商品用了90元,买3件A 商品和2件B 商品共用了160元.(1)求A ,B 两种商品每件多少元?(2)如果小亮准备购买A ,B 两种商品共10件,总费用不超过350元,且不低于300元,问有几种购买方案,哪种方案费用最低?7. (2014 浙江省绍兴市) (1)如图1,正方形ABCD 中,点E ,F 分别在边BC ,CD 上,∠EAF =45°,延长CD 到点G ,使DG =BE ,连结EF ,AG .求证:EF =FG . FCBAE(2)如图2,等腰直角三角形ABC 中,∠BAC =90°,AB =AC ,点M ,N 在边BC 上,且∠MAN =45°,若BM =1,CN =3,求MN 的长.8. (2014 四川省内江市) 莱汽车销售公司经销某品牌A 款汽车,随着汽车的普及,其价格也在不断下降.今年5月份A 款汽车的售价比去年同间期每辆降价1万元,如果卖出相同数量的A 款汽车,去年销售额为100万元,今年销售额只有90万元.(1)今年5月份A 款汽车每辆售价多少万元?(2)为了增加收入,汽车销售公司决定再经销同品牌的B 款汽车,已知A 款汽车每辆进价7.5万元,B 款汽车每辆进价为6万元,公司预计用不多于105万元且不少于99万元的资金购进这两款汽车共15辆,有几种进货方案?(3)如果B 款汽车每辆售价为8万元,为打开B 款汽车的销路,公用决定每售出一辆B 款汽车,返还顾客现金a 万元,要使(2)中所有方案获利相同,a 值应是多少?此时,哪种方案对公司更有利?B MN9. (2014 四川省资阳市) 如图,一次函数y =kx +b (k ≠0)的图象过点P (32-,0),且与反比例函数y =mx(m ≠0)的图象相交于点A (-2,1)和点B .(1)求一次函数和反比例函数的解析式;(4分)(2)求点B 的坐标,并根据图象回答:当x 在什么范围内取值时,一次函数的函数值小于反比例函数的函数值?(4分)10. (2014 四川省遂宁市) 已知:如图,⊙O 的直径AB 垂直于弦CD ,过点C 的切线与直径AB 的延长线相交于点P ,连结PD .(1)求证:PD 是⊙O 的切线. (2)求证:PD 2=PB•PA.(3)若PD=4,tan ∠CDB=,求直径AB 的长.11. (2012 江苏省苏州市) 如图,已知抛物线211(1)(444by x b x b =-++是实数且2b >)与x 轴的正半轴分别交于点A B 、(点A 位于点B 的左侧),与y 轴的正半轴交于点C .(1)点B 的坐标为________,点C 的坐标为_______(用含b 的代数式表示); (2)请你探索在第一象限内是否存在点P ,使得四边形PCOB 的面积等于2b ,且 PBC △是以点P 为直角顶点的等腰直角三角形?如果存在,求出点P 的坐标;如果不存在,请说明理由;(3)请你进一步探索在第一象限内是否存在点Q ,使得QCO QOA QAB △、△和△中的任意两个三角形均相似(全等可看作相似的特殊情况)?如果存在,求出点Q 的坐标;如果不存在,请说明理由.。
2015年中考数学模拟试卷4

2015年中考数学模拟试卷4第Ⅰ卷(选择题)一、选择题(共10小题,每小题3分,满分30分)1.﹣5的绝对值是()A.B.5 C.﹣5 D.﹣2.要使式子有意义,则m的取值范围是()A.m>﹣1 B.m≥﹣1 C.m>﹣1且m≠1D.m≥﹣1且m≠13.节约是一种美德,节约是一种智慧.据不完全统计,全国每年浪费食物总量折合粮食可养活约3亿5千万人.350 000 000用科学记数法表示为()A.3.5×107B.3.5×108C.3.5×109D.3.5×10104.若一组数据﹣1,0,2,4,x的极差为7,则x的值是()A.﹣3 B.6 C.7 D.6或﹣35.下列运算正确的是()A.a2•a3=a6B.﹣2(a﹣b)=﹣2a﹣2b C.2x2+3x2=5x4D.(﹣)﹣2=46.如图△ABC与△DEF是位似图形,位似比是1:2,已知DE=4,则AB的长是()A.2 B.4 C.8 D.17.如图所示的几何体的俯视图是()A.B.C.D.8.学校为了解七年级学生参加课外兴趣小组活动情况,随机调查了40名学生,将结果绘制成了如图所示的频数分布直方图,则参加绘画兴趣小组的频率是()9.在平面直角坐标系中,对于平面内任意一点(x,y),若规定以下两种变换:①f(x,y)=(y,x).如f(2,3)=(3,2);②g(x,y)=(﹣x,﹣y),如g(2,3)=(﹣2,﹣3).按照以上变换有:f(g(2,3))=f(﹣2,﹣3)=(﹣3,﹣2),那么g(f(﹣6,7))等于()A.(7,6)B.(7,﹣6)C.(﹣7,6)D.(﹣7,﹣6)10.如图,已知⊙O的半径为6cm,射线PM经过点O,OP=10cm,射线PN与⊙O相切于点Q,A,B两点同时从点P出发,点A以5cm/s的速度沿射线PM方向运动,点B以4cm/s的速度沿射线PN方向运动.设运动时间为t(s).当直线AB与⊙O相切时,t(s)的值是()第Ⅱ卷(非选择题,共90分)二.填空题(共6小题,每小题3分,共18分)11.计算:﹣5+2=_________.12.分解因式:ab﹣2a=_________.13.如图是两个可以自由转动的转盘,转盘均被等分成三个扇形,并分别标上1,2,3和6,7,8这6个数字.如果同时转动两个转盘各一次(指针落在等分线上重转),则转盘停止后指针指向的数字之和为偶数的概率是_________.14.Diaoyu Island自古就是中国领土,中国政府已对Diaoyu Island开展常态化巡逻.某天,为按计划准点到达指定海域,某巡逻艇凌晨1:00出发,匀速行驶一段时间后,因中途出现故障耽搁了一段时间,故障排除后,该艇加快速度仍匀速前进,结果恰好准点到达.如图是该艇行驶的路程y(海里)与所用时间t(小时)的函数图象,则该巡逻艇原计划准点到达的时刻是_________.15.如图,在平面直角坐标系中,△ABC的边AB∥x轴,点A在双曲线y=(x<0)上,点B在双曲线y=(x>0)上,边AC中点D在x轴上,△ABC的面积为8,则k=_________.16.如图,四边形ABCD与四边形AEFG都是菱形,其中点C在AF上,点E,G分别在BC,CD上,若∠BAD=135°,∠EAG=75°,则=_________.三、解答题(共8小题,共72分)下列各题需要在答卷指定位置写出文字说明、证明过程、演算步骤或画出图形.17.(本题8分)解分式方程:.18.(本题8分)如图,点B在线段AD上,BC∥DE,AB=ED,BC=DB.求证:∠A=∠E.19.(本题8分)如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC(顶点是网格线的交点).(1)将△ABC向上平移3个单位得到△A1B1C1,请画出△A1B1C1;(2)请画一个格点△A2B2C2,使△A2B2C2∽△ABC,且相似比不为1.20.(本题8分)在一个不透明的口袋里装有分别标有数字﹣3、﹣1、0、2的四个小球,除数字不同外,小球没有任何区别,每次实验先搅拌均匀.(1)从中任取一球,求抽取的数字为正数的概率;(2)从中任取一球,将球上的数字记为a,求关于x的一元二次方程ax2﹣2ax+a+3=0有实数根的概率;(3)从中任取一球,将球上的数字作为点的横坐标,记为x(不放回);再任取一球,将球上的数字作为点的纵坐标,记为y,试用画树状图(或列表法)表示出点(x,y)所有可能出现的结果,并求点(x,y)落在第二象限内的概率.21.(本题8分)已知:如图,正方形ABCD的边长为2a,H是以BC为直径的半圆O上一点,过H与圆O 相切的直线交AB于E,交CD于F.(1)当点H在半圆上移动时,切线EF在AB、CD上的两个交点也分别在AB、CD上移动(E、A不重合,F、D不重合),试问:四边形AEFD的周长是否也在变化?证明你的结论;(2)设△BOE的面积为S1,△COF的面积为S2,正方形ABCD的面积为S,且S1+S2=S,求BE与CF 的长.22.(本题10分)某个体经营户把开始六个月试销A、B两种商品的逐月投资与所获利润列成表:(1)设投资A种商品金额x A万元时,可获得纯利润y A万元,投资B种商品金额x B万元时,可获得纯利润y B万元,请分别在如图所示的直角坐标系中描出各点,并画出图象;(2)观察图象,猜测并分别求出y A与x A,y B与x B的函数关系式;(3)若该经营户准备下月投入资金12万元经营这两种商品,但不知投入A、B两种商品各多少才合算,请你帮助制定6一个能获得最大利润的资金投入方案,并计算出这个最大利润为多少万元.投资A种商品金额(万元) 1 2 3 4 5 6获取利润(万元) 2投资B种商品金额(万元) 1 2 3 4 5 6获取利润(万元) 123.(本题10分)如图,在△ABC中,已知AB=AC=5,BC=6,且△ABC≌△DEF,将△DEF与△ABC重合在一起,△ABC不动,△DEF运动,并满足:点E在边BC上沿B到C的方向运动,且DE、始终经过点A,EF与AC交于M点.(1)求证:△ABE∽△ECM;(2)探究:在△DEF运动过程中,重叠部分能否构成等腰三角形?若能,求出BE的长;若不能,请说明理由;(3)当线段AM最短时,求重叠部分的面积.24.(本题12分)如图,抛物线C1:y=(x+m)2(m为常数,m>0),平移抛物线y=﹣x2,使其顶点D在抛物线C1位于y轴右侧的图象上,得到抛物线C2.抛物线C2交x轴于A,B两点(点A在点B的左侧),交y轴于点C,设点D的横坐标为a.(1)如图1,若m=.①当OC=2时,求抛物线C2的解析式;②是否存在a,使得线段BC上有一点P,满足点B与点C到直线OP的距离之和最大且AP=BP?若存在,求出a的值;若不存在,请说明理由;(2)如图2,当OB=2﹣m(0<m<)时,请直接写出到△ABD的三边所在直线的距离相等的所有点的坐标(用含m的式子表示).参考答案一选择题BDBDD ADDCD 二填空题-3 a(b-2) 497:00 -331三解答题17 x=618 略19解:(1)如图所示:△A1B1C1即为所求;(2)如图所示:△A2B2C2即为所求.20解:(1)根据题意得:抽取的数字为正数的情况有1个,则P=;(2)∵方程ax2﹣2ax+a+3=0有实数根,∴△=4a2﹣4a(a+3)=﹣12a≥0,且a≠0,解得a<0,则方程ax2﹣2ax+a+3=0有实数根的概率为;(3)列表如下:﹣3 ﹣1 0 2﹣3 ﹣﹣﹣(﹣1,﹣3)(0,﹣3)(2,﹣3)﹣1 (﹣3,﹣1)﹣﹣﹣(0,﹣1)(2,﹣1)0 (﹣3,0)(﹣1,0)﹣﹣﹣(2,0)2 (﹣3,2)(﹣1,2)(0,2)﹣﹣﹣所有等可能的情况有12种,其中点(x,y)落在第二象限内的情况有2种,则P==.21解:(1)由题意知,AB、CD、EF都与半圆相切,∴EH=EB,FH=CF.∴四边形AEFD的周长=AE+EH+HF+DF+AD=AE+EB+FC+DF+AD=6a.∴四边形AEFD的周长是定值,没有变化.(2)∵EO平分∠BEH,FO平分∠CFH,∴OF⊥EO.∵∠EOB、∠OFC同为∠FOC的余角,∴∠EOB=∠OFC.又∠EBO=∠OCF=90°,∴△EBO∽△OCF.∴,即EB•CF=OC•OB=a2…①∵S1+S2=S,∴OB•BE+OC•CF=•4a2.即BE+CF=a…②解①②得BE=a,FC=a;或BE=a,FC=a.22解:(1)如图所示:(2)由图象可得出:y A可能是二次函数,y B可能是一次函数,设y A=a(x﹣4)2+2代入(1,0.65)得:a=﹣0.15,∴y A=﹣0.15(x﹣4)2+2,经检验其余各点代入符合上式,设y B=kx+b代入(1,0.25),(2,0.5)得:,解得:,∴y B=0.25x,经检验其余各点代入符合上式;(3)设投入x万元经营A商品,投入(12﹣x)万元经营B商品,y=y A+y B=﹣0.15(x﹣4)22+0.95x+2.6,当x=﹣=≈3.2,y最大==≈4.1,∴投入3.2万元经营A商品,投入8.8万元经营B商品,可获得最大利润,最大利润为4.1万元.23(1)证明:∵AB=AC,∴∠B=∠C,∵△ABC≌△DEF,∴∠AEF=∠B,又∵∠AEF+∠CEM=∠AEC=∠B+∠BAE,∴∠CEM=∠BAE,∴△ABE∽△ECM;(2)能.解:∵∠AEF=∠B=∠C,且∠AME>∠C,∴∠AME>∠AEF,∴AE≠AM;当AE=EM时,则△ABE≌△ECM,∴CE=AB=5,∴BE=BC﹣EC=6﹣5=1,当AM=EM时,则∠MAE=∠MEA,∴∠MAE+∠BAE=∠MEA+∠CEM,即∠CAB=∠CEA,又∵∠C=∠C,∴△CAE∽△CBA,∴,∴CE=,∴BE=6﹣=;∴BE=1或.(3)解:设BE=x,又∵△ABE∽△ECM,∴,即:,∴CM=﹣+x=﹣(x﹣3)2+,∴AM=5﹣CM═(x﹣3)2+,∴当x=3时,AM最短为,又∵当BE=x=3=BC时,∴点E为BC的中点,∴AE⊥BC,∴AE==4,此时,EF⊥AC,∴EM==,S△AEM=.24解:(1)当m=时,抛物线C1:y=(x+)2.∵抛物线C2的顶点D在抛物线C1上,且横坐标为a,∴D(a,(a+)2).∴抛物线C2:y=﹣(x﹣a)2+(a+)2①.①∵OC=2,∴C(0,2).∵点C在抛物线C2上,∴﹣(0﹣a)2+(a+)2=2,解得:a=,代入抛物线C2:y=﹣(x﹣a)2+(a+)2,得抛物线C2的解析式为:y=﹣x2+x+2.②存在a使得点P,满足点B与点C到直线OP的距离之和最大且AP=BP;在①式中,令y=0,即:﹣(x﹣a)2+(a+)2=0,解得x=2a+或x=﹣,∴B(2a+,0);令x=0,得:y=a+,∴C(0,a+).设直线BC的解析式为y=kx+b,则有:,解得,∴直线BC的解析式为:y=﹣x+(a+).假设存在满足条件的a值.∵AP=BP,∴点P在AB的垂直平分线上,即点P在C2的对称轴上;∵点B与点C到直线OP的距离之和≤BC,只有OP⊥BC时等号成立,∴OP⊥BC.如答图1所示,设C2对称轴x=a(a>0)与BC交于点P,与x轴交于点E,则OP⊥BC,OE=a.∵点P在直线BC上,∴P(a,a+),PE=a+.∵tan∠EOP=tan∠BCO===2,∴==2,解得:a=.∴存在a=,使得线段BC上有一点P,满足点B与点C到直线OP的距离之和最大且AP=BP.(3)∵抛物线C2的顶点D在抛物线C1上,且横坐标为a,∴D(a,(a+m)2).∴抛物线C2:y=﹣(x﹣a)2+(a+m)2.令y=0,即﹣(x﹣a)2+(a+m)2=0,解得:x1=2a+m,x2=﹣m,∴B(2a+m,0).∵OB=2﹣m,∴2a+m=2﹣m,∴a=﹣m.∴D(﹣m,3).AB=OB+OA=2﹣m+m=2.如答图2所示,设对称轴与x轴交于点E,则DE=3,BE=AB=,OE=OB﹣BE=﹣m.∵tan∠ABD===,∴∠ABD=60°.又∵AD=BD,∴△ABD为等边三角形.作∠ABD的平分线,交DE于点P1,则P1E=BE•tan30°=•=1,∴P1(﹣m,1);在△ABD形外,依次作各个外角的平分线,它们相交于点P2、P3、P4.在Rt△BEP2中,P2E=BE•tan60°=•=3,∴P2(﹣m,﹣3);易知△ADP3、△BDP4均为等边三角形,∴DP3=DP4=AB=2,且P3P4∥x轴.∴P3(﹣﹣m,3)、P4(3﹣m,3).综上所述,到△ABD的三边所在直线的距离相等的所有点有4个,其坐标为:P1(﹣m,1),P2(﹣m,﹣3),P3(﹣﹣m,3),P4(3﹣m,3).。
2015-2016年枣庄市滕州市九年级上期中数学试卷及答案解析

边形是菱形.其中错误命题的个数是(
)
A.1 B.2 C.3 D.4
8.已知:如图,在矩形 ABCD 中,E,F,G,H 分别为边 AB,BC,CD,DA 的中 点.若 AB=2,AD=4,则图中阴影部分的面积为( )
A.3 B.4 C.6 D.8
9.若方程 x2﹣3x﹣2=0 的两实根为 x1、x2,则(x1+2)(x2+2)的值为(
2015-2016 学年山东省枣庄市滕州市九年级(上)期中数学试卷
一、选择题(每小题 3 分,共 45 分)在每小题的四个选项中,只有一项是符合题目要求
的
1.下列一元二次方程无解的是(
)
A.x2﹣2x+1=0B.x2+3x﹣2=0 C.2x2+x+3=0 D.2x2﹣3x﹣1=0
2.用配方法解方程 x2+4x+1=0,则配方正确的是( A.(x+2)2=3 B.(x+2)2=﹣5 C.(x+2)2=﹣3
28.为丰富学生的学习生活,某校九年级组织学生参加春游活动,所联系的旅行社收费标 准如下:
春游活动结束后,该班共支付给该旅行社活动费用 2800 元,请问该班共有多少人参加这次 春游活动? 29.如图,在▱ABCD 中,E、F 分别为边 AB、CD 的中点,BD 是对角线,AG∥DB,交 CB 的延长线于 G. (1)求证:△ADE≌△CBF; (2)若四边形 BEDF 是菱形,则四边形 AGBD 是什么特殊四边形?并证明你的结论.
)
A.﹣4 B.6 C.8 D.12
10.如图,已知直线 a∥b∥c,直线 m、n 与直线 a、b、c 分别交于点 A、C、E、B、D、F,
AC=4,CE=6,BD=3,则 BF=(
2015年中考数学模拟试题参考答案

2015年中考数学模拟试题参考答案1-10:DADBBDAABB(11)2(12)1.49×810(13 )83(14)1425 (15)8(16)75° 17(1)y=-2x+4 (2)x ≤118(1)略 (2)105°19(1)P P 略P 略略略略PPPP略略P 略PPPPPp 凭PPPPPPp(2)树形图略P=81520(1)(2)略.(3)P(0,1), y=-12x+7421(1)连接BD ,OD ,作OG ⊥CD 于G ,DE ⊥AB 于E.则OG=DE=125,22221127-=2510DG OD OG =-=()()725DC DG ∴==(2)连接BD,由tan ∠BAC=12。
设BC=a,则AC=2a,222=A 2+(=52a)Baa=25 a=5 作DH ⊥BC 于H ,则3cos DCH cos 5BAD ∠=∠=设DC=x,则CH=35x ,45DH x =.由勾股定理得:222435554x x ⎛⎫⎛⎫++= ⎪ ⎪⎝⎭⎝⎭解得5x =,负值舍去。
5DC ∴=.22.(1)设调整价格后的标价是y.元.80757520100100100100160160y -⨯=⨯⨯180y ∴=(2)(x 120)(2x 400)3000--+=12150,170x x ∴==(3)6a ≤<1023.解:⑴当k=2时AB=BC=2CD ,又E 是BC 的中点.∴BC=2BE ,∴BE=CD.又∠ABC=∠BCD.∴△ABE ≌△BCD.∴∠CBD=∠BAE ,∴∠AFB=∠CBD +∠AEB=∠BAE +∠AEB=180°-∠ABC=60°.⑵作BH ⊥AC 于H ,则CH=21AC ,又AG=3GC ,∴AC=4GC. ∴CH=2GC.∴GH=GC ,∵AB=BC ,∠ABC=120°,∴∠ACB=30°.∴∠ACD=120°-30°=90°, ∴BH ∥CD.∴1==GCGHCD BH ,∴BH=CD 设CD=BH=1,则AB=k , 又Rt △ABH 中∠BAH=30°,∴AB=2BH=2,即k=2.⑶由∠ABC=∠BCD=∠APD=120°可证△ABP ∽△PCD ∴CD BP PC AB =设CD=1,PB=x 则AB=BC=k ,PC=k -x.∴1xx k k =- ∴x 2-kx +k =0由点P 的唯一性可知方程有两个相等的实根,∴△=k 2-4k =0,∴k =4.24.解:⑴将A (-t ,0),B (3t ,0),C (0,-3)代入可求321)3)((1222--=-+=x tx t t x t x t y ⑵作DG ⊥x 轴于G ,EH ⊥x 轴于H.由y D =y C =-3得332122-=--x tx t ,∴x=0或x=2t.∴x D =2t.∴AG=3t.设E (x E ,y E ),则y E =21t (x E +t)(x E -3t),易证△AGD ∽△AHE ,∴EHDGAH AG =∴)3)((1332t x t x t t x t E E E -+=+∴x E =4t ,∴AH=5t ,∴5353===t t AH AG AE AD . ⑶t=1时y=x 2―2x ―3,设PM 的解析式为:y=kx +m ,由⎩⎨⎧--=+=322x x y m kx y 得x 2-(k +2)x -m -3=0,△=(k +2)2+4(m +3)=0,∴k +2=±23--m ,设x M >0,x N <0则x m =322--=+m k , y M =―m ―3―233---m ,x N =-3-m ,y N =-m -3+233---m .由x M +x N =0知Q为MN的中点.可得y Q =6)122(21)(21--=--=+m m y y N M ,∴QC=y Q -y C =―m ―6―(―3)=―m ―3.CP =―3―m ,∴CP =CQ.。
2015中考数学模拟试题含答案(套)

1. 2. 3. 4. 5. 6. 7. 8. 9. 2014年中考数学模拟试卷(一)、选择题(本大题满分36分,每小题3分.在下列各题的四个备选答案中,只有一个是正确的, 请在答题卷上把你认为正确的答案的字母代号按要求用 2B 铅笔涂黑) 2 sin 60 。
的值等于 B.虫 2 F 列的几何图形中,一定是轴对称图形的有 A. 1 扇形 A. 5个 据2013年1月24日《桂林日报》报道,临桂县 名第二.将18亿用科学记数法表示为 8A. 1.8 X 10B. 1.8 X 10估计.8-1的值在 A. 0至U 1之间 B. 1至U 2之间将下列图形绕其对角线的交点顺时针旋转A.平行四边形B.矩形 B. 4个 90° D. .3£3等腰梯形 2012年财政收入突破 gC. 1.8 X 10D. 2个 18亿元,在广西各县中排 10D. 1.8 X 10D. 3至4之间C. 2 到3之间所得图形一定与原图形重合的是C.正方形D.菱形如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是A.为调查某校1500名学生对新闻、体育、动画、娱乐、 戏曲五类电视节目的喜爱情况,随机抽取部分学生进行调查,并结 合调查数据作出如图所示的扇形统计图.根据统计图提供的 信息,可估算出该校喜爱体育节目的学生共有 A. 1200 名 B. 450用配方法解一元二次方程 2 A. (x + 2 ) = 92C. (x + 2 ) = 1如图,在△ ABC 中,AD A. 1 : 2 B. 1 : 4名 C. 400 2 x + 4 x -5 = 0 名 D. 300 名 B. (x - 2 ) D. (x - 2 ) ,此方程可变形为 2 = 9 2 =1 BE 是两条中线,则 S A EDC : S A ABC = C. 1 D. 10.下列各因式分解正确的是 2 2A. x + 2x-1= (x - 1 ) 3 C. x- 4 x = x (x + 2 ) (x - 2 ) 2B.- D.x 2+ (-2 ) (x+ 1 ) 2 = x 2 + 2 x + 111.如图,AB 是O O 的直径,点 E 为BC 的中点,AB = 4 ,/ BED = 120 °则图中阴影部分的面积之和为填空题(本大题满分18分,每小题 计算:丨-1 I =.3已知一次函数y = kx + 3的图象经过第一、二、四象限,贝U k 的取值范围是在10个外观相同的产品中,有 2个不合格产品,现从中任意抽取 1个进行检测,抽到合格产品的概率是 _______ . ___________在临桂新区建设中,需要修一段全长 2400m 的道路,为了尽量减少施工对县城交通所造成的影 响,实际工作效率比原计划提高了 20%结果提前8天完成任务,求原计划每天修路的长度.若设原计划每天修路 xm 则根据题意可得方程 ______________ . _________________________________________________________在平面直角坐标系中,规定把一个三角形先沿着 x 轴翻折, 再向右平移2个单位称为1次变换.如图,已知等边三角形 ABC 的顶点B , C 的坐标分别是(-1 , -1 ), (-3 , -1 ),把△ ABC 经过连续9次这样的变换得到△ A'B'C ;则点A 的对 应点A'的坐标是如图,已知等腰 Rt △ ABC 的直角边长为1,以Rt △ ABC 的斜 边AC 为直角边,画第二个等腰 Rt △ ACD 再以Rt △ ACD 的 斜边AD 为直角边,画第三个等腰 Rt △ ADE ……依此类推直 到第五个等腰 Rt △ AFG 则由这五个等腰直角三角形所构成 的图形的面积为 .解答题(本大题8题,共66分,解答需写出必要的步骤和过程 卷上答题无效)(本小题满分8分,每题4分)(1)计算:4 COS45 °- 8+( n - . 3 ) +(-1) 3;(2)化简:(1 - )m n(本小题满分6分)A. 3 如图,△ 出发,沿B. 2.3C. —2ABC 中,/ C = 90 ° M 是AB 的中点,动点 P 从点AD. 1AC 方向匀速运动到终点 C,动点Q 从点C 出发,沿 CB 方向匀速运动到终点 B.已知 到达终点,连接 MP MQ PQ . 的面积大小变化情况是 A. 一直增大 C.先减小后增大 P, Q 两点同时出发,并同时 在整个运动过程中,△ MPQ B. D. 一直减小 先增大后减小12. _ 、 13. 14. 15. 16.17.18.三、19. 20.3分,请将答案填在答题卷上,在试卷上答题无效) /I 32 I it11H I ■ r-3 -2 -10VAJ 1 3 jr —i —2 -3请将答案写在答题卷上,在试(第 17题图)解不等式组:3 (x - 1)v 2 x + 1.21. (本小题满分6分)如图,在△ ABC中,AB = AC,/ ABC = 72(1)用直尺和圆规作/ ABC的平分线BD交AC于点D (保留作图痕迹,不要求写作法);⑵在(1)中作出/ ABC的平分线BD后,求/ BDC的度数.22. (本小题满分8分)在开展“学雷锋社会实践”活动中,某校为了解全校的情况,随机调查了50名学生每人参加活动的次数,并根据数据绘成条形统计图如下:23. (本小题满分10分)某中学计划购买A型和B型课桌凳共200套.经招标,购买一套A型课桌凳比购买一套B型课桌凳少用40元,且购买4套A型和5套B型课桌凳共需1820元.(1)求购买一套A型课桌凳和一套B型课桌凳各需多少元?(2)学校根据实际情况,要求购买这两种课桌凳总费用不能超过40880元,并且购买A型课桌2凳的数量不能超过B型课桌凳数量的-,求该校本次购买A型和B型课桌凳共有几种方3案?哪种方案的总费用最低?24. (本小题满分8分)如图,PA, PB分别与O O相切于点A, B,点M在PB上,且OIM/ AP, MN L AP,垂足为N.(1)求证:OM = AN;(2)若O O的半径R = 3 , PA = 9,求OM的长.1200名学生参加活动21. (12 分)如图,Rt△ ABC 中,/ C= 90° AC = BC= 8, DE = 2,线段DE 在AC 边上运动(端点D 从点A开始),速度为每秒1个单位,当端点E到达点C时运动停止.F为DE中点,MF丄DE 交AB于点M , MN // AC交BC于点N,连接DM、ME、EN.设运动时间为t秒.⑴求证:四边形MFCN是矩形;(2) 设四边形DENM的面积为S,求S关于t的函数解析式;当S取最大值时,求t的值;(3) 在运动过程中,若以E、M、N为顶点的三角形与△ DEM相似,求t的值.26.(本小题满分12分)在平面直角坐标系中,现将一块等腰直角三角板1 1在两坐标轴上,点C为(-1 , 0).如图所示,B点在抛物线y = x2 - x -2图象上,过点B2 2作BD丄x轴,垂足为D,且B点横坐标为-3.(1)求证:△ BDC也△ COA(2)求BC所在直线的函数关系式;(3)抛物线的对称轴上是否存在点只使厶ACP是以AC为直角边的直角三角形?若存在,求出所有点P的坐标;若不存在,请说明理由•ABC放在第二象限,斜靠A第21题图 C 备用图(第26题图)9. (2013?遵义)如图,在 Rt △ ABC 中,/ C=90° , AC=4cm , BC=3cm .动点 M , N 从点 C 同时 出发,均以每秒1cm 的速度分别沿 CA 、CB 向终点A , B 移动,同时动点 P 从点B 出发,以每秒 2cm 的速度沿BA 向终点A 移动,连接PM ,PN ,设移动时间为t (单位:秒,0 v t v 2.5 ).(1 )当t 为何值时,以 A , P , M 为顶点的三角形与△ ABC 相似?(2)是否存在某一时刻 t ,使四边形 APNC 的面积S 有最小值?若存在,求 S 的最小值;若不存 在,请说明理由.•••在 Rt △ ABC 中,/ C=9C ° , AC=4cm , BC=3cm .•••根据勾股定理,得 AC 2 BC 2 =5cm .(1 )以A , P, M 为顶点的三角形与△ ABC 相似,分两种情况: ①当△ AMPABC 时,AP ACAMAB,即5 2t 4 t4 5 ,3解得t=;2AM AP4 t5 2t②当△ APMABC 时,,即AC AB4 5 '解得t=0 (不合题意,舍去);3综上所述,当t=—时,以A 、P 、 M 为顶点的三角形与△ ABC 相似;27(2)存在某一时刻t ,使四边形APNC 的面积S 有最小值.理由如下: 假设存在某一时刻t ,使四边形APNC 的面积S 有最小值.如图,过点 P 作PH 丄BC 于点H .贝U PH // AC , .PH BP Rn PH 2t • ------ • ---- ------- ,即 AC BA 458•- PH= t ,5 • S=S △ABC -S △ BPH ,118=一 X 3X 4——X ( 3-t ) ? t , 2 2 5 4 3 21=_ (t- _ ) 2+ 一 ( O v t v 2.5). 5 2 5> 0, ••• S 有最小值.321 当t=—时,S 最小值=—25321答:当t= 3时,四边形APNC 的面积S 有最小值,其最小值是.2 52013年初三适应性检测参考答案与评分意见说明:第12题是一道几何开放题,学生可从几个特殊的点着手,计算几个特殊三角形面积从而1降低难度,得出答案•当点P , Q 分别位于A C 两点时,S A MPQ = S A ABC ;当点P 、Q 分别运动到AC,2 11 11 1BC 的中点时,此时,— AC. - BC = - S A ABC ;当点 P 、Q 继续运动到点 C, B 时,&MPQ =—S22 2 4 2△ ABC,故在整个运动变化中,△ MPQ 的面积是先减小后增大,应选 C.19.(1)解:原式=4 X -2 < 2 +1-1……2分(每错1个扣1分,错2个以上不给分)13.-;14.k v 0 ; 15.4 (若为 8 一扣1分);16351017.(16, 1+ .3 );18. 15.5(或 31).2细-^^= 8 ;x (1 20%)x二、填空题 三、解答题2 2n 、 m n m n m (m n )(m n)m20. 解:由①得 3 (1 + x ) - 2 (x-1)w 6,化简得x w 1. ............. 3分 由②得3x -3 v 2x + 1, ............. 4分 化简得x v 4.............. 5分•••原不等式组的解是 x < 1. ..... 6分_ 1 3 2 7 3 17 4 18 5 5 '八 x = =3.3 , ............ 1 分50•这组样本数据的平均数是 3.3. ............ 2分 •••在这组样本数据中, 4出现了 18次,出现的次数最多, •这组数据的众数是 4............. 4分3 3•••将这组样本数据按从小到大的顺序排列, 其中处在中间的两个数都是 3,有= 3. 2•这组数据的中位数是 3. .................... 6分(2)v 这组数据的平均数是3.3 ,•••估计全校1200人参加活动次数的总体平均数是 3.3,有3.3 X 1200 = 3900. •••该校学生共参加活动约3960次. . 8分23. 解:在 Rt △ BDC 中,Z BDC = 90 ° BC = 6 米,(2)解:原式(m nm n m m n22. 21.•••/ A= 36 °•••/ BDC =Z A+Z ABD = 36 ° + 36° = 72 ° . ••… 解:(1 )观察条形统计图,可知这组样本数据的平均数是/ BCD = 30 °••• DC = BC • cos30 ° .......................... 1 分[3=6 3 x— = 9 , .......................... 2 分2• DF = DC + CF = 9 + 1 = 10 , ............................ 3 分• GE = DF = 10. ......................... 4 分在Rt△ BGE中,/ BEG = 20 °• BG = CG • tan20 ° .......................... 5 分=10x 0.36=3.6 , ..................... 6 分在Rt△ AGE中,/ AEG = 45 °• AG = GE = 10 , .......................... 7 分• AB = AG -BG = 10 - 3.6 = 6.4.答:树AB的高度约为6.4米. ........ 8分24. ............................................................................................ 解(1)如图,连接OA贝U OAL AP. 1分•/ MNL AP,「. MN// OA. .................. 2 分•/ OM/ AP,「.四边形ANMO1 矩形.• OM = AN. ................... 3 分(2)连接OB 则OB L AP,•/ OA = MN, OA = OB, OM/ BP,• OB = MN,Z OMB =/ NPM.• Rt △ OB阵Rt △ MNP. ................... 5 分• OM = MP.设OM = x,贝U NP = 9- x. ..................... 6 分在Rt△ MNP中,有x2 = 3 2+ (9- x):• x = 5.即OM = 5 .................. 8 分25. 解:(1 )设A型每套x元,贝U B型每套(x + 40 )元. ....... 1分• 4x + 5 (x + 40 ) =1820. .................................................. 2 分• x = 180 , x + 40 = 220.即购买一套A型课桌凳和一套B型课桌凳各需180元、220元. ........ 3分(2)设购买A型课桌凳a套,则购买B型课桌凳(200 - a)套.a w : (200 - a),3•弓......... 4分180 I a + 220 (200- a)w 40880.解得78w a< 80. ............... 5 分•/ a 为整数,• a = 78 , 79, 80•共有3种方案. .......... 6分设购买课桌凳总费用为y元,则y = 180a + 220 (200 - a) =-40 a + 44000. ............. 7 分••• -40 v 0, y随a的增大而减小,•当a = 80时,总费用最低,此时200- a =120. .............. 9分即总费用最低的方案是:购买A型80套,购买B型120套. ........... 10分解答:解:(1)设购买甲种鱼苗x尾,则购买乙种鱼苗(6000-x)尾.由题意得:0.5X+0.8 (6000 - x) =3600,解这个方程,得:x=4000 ,••• 6000 - x=2000 ,答:甲种鱼苗买4000尾,乙种鱼苗买2000尾;(2)由题意得:0.5X+0.8 (6000 - x)詔200, 解这个不等式,得:x多000,即购买甲种鱼苗应不少于2000尾,乙不超过4000尾;(3)设购买鱼苗的总费用为y,甲种鱼苗买了x尾.则y=0.5x+0.8 (6000 - x) = —0.3x+4800 ,由题意,有x+ (6000 —x) ^^>6000,100 1()IJ100解得:x <2400,在y= —0.3x+4800 中,••• - 0.3v 0, • y随x的增大而减少,•••当x=2400 时,y 最小=4080.答:购买甲种鱼苗2400尾,乙种鱼苗3600尾时,总费用最低.点评:根据钱数和成活率找到相应的关系式是解决本题的关键,注意不低于是大于或等于;不超过是小于或等于.22. (10分)(2013?鹤壁二模)如图,在梯形BH丄DC于H , CH=DH,点E在AB上,点ABCD 中,AD // BC, / ABC=90 ° DG 丄BC 于G, F在BC上,并且EF// DC .(1 )若AD=3 , CG=2,求CD ;(2)若CF=AD+BF,求证:EF=「CD.考点:直角梯形;勾股定理;矩形的性质;相似三角形的判定与性质.专题:几何综合题;压轴题.分析:(1)由AD // BC, / ABC=90 ° DG丄BC得到四边形ABGD为矩形,利用矩形的性质有AD=BG=3 , AB=DG,而BH丄DC , CH=DH,根据等腰三角形的判定得到△ BDC为等腰三角形,即有BD=BG+GC=3+2=5,先在Rt△ ABD中求出AB,然后在Rt△ DGC中求出DC ;(2)由CF=AD+BF , AD=BG,经过线段代换易得GC=2BF,再由EF // DC得至U / BFE= / GCD,根据三角形相似的判定易得Rt△ BEF s Rt△ GDC,禾U用相似比即可得到结论.解答:(1)解:连BD,如图,•••在梯形ABCD 中,AD // BC , / ABC=90 ° DG 丄BC,•••四边形ABGD为矩形,••• AD=BG=3 , AB=DG ,又••• BH 丄DC , CH=DH ,•△ BDC为等腰三角形,• BD=BG+GC=3+2=5 ,在Rt△ ABD中,辱研苛近品=4,• DG=4 ,在Rt△ DGC 中,• DC=-= 4」(2)证明:•/ CF=AD+BF ,• CF=BG+BF ,• FG+GC=BF+FG+BF,即GC=2BF ,•/ EF / DC,•/ BFE= / GCD ,• Rt△BEF s Rt△GDC ,• EF:DC=BF : GC=1 : 2,• EF=-DC.点评:本题考查了直角梯形的性质:有一组对边平行,另一组对边不平行,且有一个直角•也考查了矩形的性质、勾股定理、等腰三角形的判定以及相似三角形的判定与性质.23. (11分)(2007?可池)如图,四边形OABC为直角梯形,A (4, 0), B ( 3, 4) , C (0, 4).点M从O出发以每秒2个单位长度的速度向A运动;点N从B同时出发,以每秒1个单位长度的速度向C运动.其中一个动点到达终点时,另一个动点也随之停止运动.过点N作NP垂直x轴于点P,连接AC交NP于Q,连接MQ .(1 )点M (填M或N)能到达终点;(2)求厶AQM的面积S与运动时间t的函数关系式,并写出自变量t的取值范围,当t为何值时,S的值最大;(3)是否存在点M,使得△ AQM为直角三角形?若存在,求出点M的坐标;若不存在,说明理由.考点:二次函数综合题.专题:压轴题.分析:(1) (BC请N的运动速度)与(OA -t点M的运动速度)可知点M能到达终点.(2)经过t秒时可得NB=y , OM - 2t.根据/ BCA= / MAQ=45。
山东省滕州市南沙河中学2015届九年级数学学业水平模拟考试试题(1)
山东省滕州市南沙河中学2015届九年级数学学业水平模拟考试试题(1)(考试时间l20分钟 试卷满分120分)抛物线c bx ax y ++=2的顶点坐标是(ab2-,a b ac 442-).第Ⅰ卷(选择题共36分)一、选择题(本大题共l2小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.化简100得 A .100B .10C .10D .±102.“着力扩大投资,突破重点项目建设”是遵义经济社会发展的主要任务之一.据统计,枣庄市2013年全社会固定资产投资达1762亿元,把1762亿元这个数字用科学记数法表示为A .1762×108B .1.762×1010C .1.762×1011D .1.762×10123.如图的几何体是由一个正方体切去一个小正方体形成的,它的主视图是( )ABC D4.不等式组⎩⎨⎧≤≥+4235x x 的解是A .22≤≤-xB .2≤xC .2-≥xD .2<x5.如图所示,把一张矩形纸片对折,折痕为AB ,再把以AB 的中点O 为顶点的平角∠AOB 三等分,沿平角的三等分线折叠,将折叠后的图形剪出一个以O 为顶点的等腰三角形,那么剪出的等腰三角形全部展开平铺后得到的平面图形一定是A .正三角形B .正方形C .正五边形D .正六边形6.已知二次函数b x a y ++=2)1(有最大值0.1,则a 与b 的大小关系为 A .b a >B .b a <C .b a =D .不能确定7.如图,正方形MNEF 的四个顶点在直径为4的大圆上,小圆与正方形各边都相切,AB 与CD 是大圆的直径,AB⊥CD,CD⊥MN,则图中阴影部分的面积是A .πB .2πC .3πD .4π8.如图,△ABC 在平面直角坐标系中的第二象限内,顶点A 的坐标是(-2,3),先把△ABC 向右平移4个单位长度得到△A 1B 1C 1,再作△A 1B 1C 1关于x 轴的对称图形△A 2B 2C 2,则顶点A 2的坐标是A .(-3,2)B .(2,-3)C .(1,-2)D .(3,-l )9.如图,⊙O 与正六边形OABCDE 的边OA 、OE 分别交于点F .G ,则弧FG 对的圆周角∠FPG 的大小为A.45° B.60° C.75°D.30°10.若四边形的对角线互相垂直且相等,则它一定是A.菱形B.正方形C.等腰梯形D.以上说法均不正确11.一个圆锥形的漏斗,小李用三角板测得其高度的尺寸如图所示,那么漏斗的斜壁AB的长度为A.4 cm B.5 cm C.5 cm D.34 cm 12.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,点P以每秒一个单位的速度沿着B—C 一A运动,⊙P始终与AB相切,设点P运动的时间为t,⊙P的面积为y,则y与t之间的函数关系图像大致是A B C D二、填空题:本大题共6小题,每小题4分,共24分.把答案填在题中横线上..13.分解因式:________962=+-mn mn m .14.写出一个你喜欢的实数k 的值_______,使得反比例函数xk y 2-=的图象在每一象限内,y 随x 的增大而增大.15.数据a ,1+a ,2+a ,3+a ,3-a ,2-a ,1-a 的平均数为_______,中位数是________.16.将一副三角板如图放置,若AE∥BC,则∠AFD=__________.17。
山东省滕州市党山中学2015届九年级数学学业水平模拟试题
某某省滕州市党山中学2015届九年级数学学业水平模拟试题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷(选择题共42分)一、选择题(本大题共14小题,每小题3分,共42分)在每小题所给的4个选项中,只有一项县符合题目要求的.)1.2的相反数的绝对值是()A.2B.22C.2-D.22-2.在“大家跳起来”的乡村学校舞蹈比赛中,某校10名学生参赛成绩统计如图所示,对于这10名学生的参赛成绩,下列说法中错误的是()A.众数是90B.中位数是90C.平均数是90 D.极差是153.如图,已知∠1=∠2,则不一定能使△ABD≌△ACD的条件是A.BD=CD B.AB=ACC.∠B=∠C D.∠BDM=∠CDA4.下列运算正确的是A.6x3-5x2=x B.(-2a)2=-2a2C.(a-b)2=a2-b2D.-2(a-1)=-2a+25.计算8216-313+的结果是 A .3-2B .3-52C .33-2D .2-36.方程x 2-2x =3可以化简为A .(x -3)( x +1)=0B .(x +3)( x -1)=0C .(x -1)2=2 D .(x -1)2+4=0 7.下列说法正确的是A .了解某某卫视“非诚勿扰”节目的收视率用普查的方式。
B .在同一年出生的367名学生中,至少有两人的生日是同一天是必然事件C .某市6月上旬前五天的最高温如下(单位:℃):28、29、31、29、33,对这组数据众数和中位数都是29D .若甲组数据的方差S 2甲=0.32,乙组数据的方差S 2乙=0.04,则甲组数据比乙组数据稳定。
8.定义一种“十位上的数字比个位、百位上的数字都要小”的三位数叫做“V 数”如“729”就是一个“V 数”.若十位上的数字为2,则从1,4,5,6中任选两数,能与2组成“V 数”的概率是A .41 B .21C .103D .43 9.若不等式⎪⎩⎪⎨⎧->+>-142322x x a x 的解集为一2<x <3,则a 的取值X 围是A .a =-2B .a =21C . a ≥-2D .a ≤一110.如图,是由6个棱长为1个单位的正方体摆放而成的,将正方体A 向右平移2个单位,向后平移1个单位后,所得几何体的视图图①图②A .主视图改变,俯视图改变B .主视图不变,侧视图不变C .主视图不变,俯视图改变D .主视图改变,侧视图不变 11.已知⎩⎨⎧==21y x 是二元一次方程组⎩⎨⎧=+=-18my nx ny mx 的解,则4m +3n 的立方根为A .±1 B.32C .±32D .-112.如图,点A 是反比例函数y =x 3(x >0)的图象上任意一点,AB ∥x 轴交反比例函数y =-x2的图象于点B ,以AB 为边作平行四边形ABCD ,其中C 、D 在x 轴上,则S □ABCD 为A .2B .3C .4D .513.如图AB 是⊙O 的直径,弦CD ⊥AB ,∠CDB =30°,CD =43,则阴影部分图形的面积为A .34πB .348π C . 4π D.8π14.某物流公司的快递车和货车同时从甲地出发,以各自的速度匀速向乙地行驶,快递车到达乙地后卸完物品再另装货物共用50分钟,立即按原路以另一速度匀速返回,直至与货车相遇.已知货车的速度为60千米/时,两车之间的距离y (千米)与货车行驶时间X (小时)之间的函数图象如图所示,现有以下4个结论:①快递车从甲地到乙地的速度为90千米/时;②甲、乙两地之间的距离为120千米; ③图中点B 的坐标为(465,70);④快递车从乙地返回时的速度为80千米/时. 以上4个结论中正确的是 A .①②③B .①②④C .①③④ D.②③④第Ⅱ卷(非选择题共78分)二、填空题(本大题共5小题,每小题3分,共15分)把答案填在题中横线上. 15.分解因式:mx 2-8mx +16m =____.16.某种商品的进价为320元,为了吸引顾客,按标价的八折出售,这时仍可盈利至少25%,则这种商品的标价最少是____元.17.在菱形ABCD 中,E 是BC 边上的点,连接AE 交BD 于点F ,若EC =2BE ,EF =2,则AE 的值是____18.如图,两同心圆的圆心为O ,大圆的弦AB 切小圆于P ,两圆的半径分别为2和1,若用阴影部分围成一个圆锥,则该圆锥的底面半径为____.19.在下图中,每个图案均由边长为1的小正方形按一定的规律堆叠而成,照此规律,第100个图案中共有____个小正方形。
2015年各地中考数学模拟试卷精选汇编图形的相似与位似含答案
D.C.B. A.图形的相似与位似一.选择题1. (2015·吉林长春·二模)答案:C2.(2015·江苏江阴长泾片·期中)如图,在8×4的矩形网格中,每格小正方形的边长都是1,若△ABC 的三个顶点在图中相应的格点上,图中点D 、点E 、点F 也都在格点上,则下列与△ABC 相似的三角形是 ( )A .△ACDB .△ADFC .△BDFD .△CDE 答案:C3. (2015·屯溪五中·3月月考)一个三角形三边之比为3:5:7,与它相似的三角形的最长边为21cm ,则其余两边之和为【 】A.24cmB.21 cmC.13 cmD.9cm 、 答案:A4. (2015·屯溪五中·3月月考)下列四个三角形,与左图中的三角形相似的是( ) 答案:B5. (2015·安徽省蚌埠市经济开发·二摸)如图,在ABC ∆中,DE ∥BC ,12AD DB =,4DE =,则BC 的长是【 】第1题图·D·F·E图 1图2A .8B .10C .11D .12 答案:D6.(2015•山东滕州羊庄中学•4月模拟)如图1,若A 、B 、C 、P 、Q 、甲、乙、丙、丁都是方格纸中的格点,为使△PQR ∽△ABC ,则点R 应是甲、乙、丙、丁四点中的 A .甲 B .乙 C .丙 D .丁答案: C ;7.(2015•山东潍坊广文中学、文华国际学校•一模)如图2,点D 在△ABC 的边AC 上,要 判定△ADB 与△ABC 相似,添加一个条件,不正确的是( ) A .∠ABD =∠C B .∠ADB =∠ABC C .AB CB BDCD=D .AD ABAB AC = 答案:C ;8.(2015·山东省枣庄市齐村中学二模)在直角坐标系中,已知点A (-2,0)、B (0,4)、C (0,3),过点C 作直线交x 轴于点D ,使得以D 、O 、C 为顶点的三角形与△AOB 相似,这样的直线最多可以作( )A .2条B .3条C .4条D .6条答案:C9.(2015·山东枣庄·二模)如图,四边形ABCD 是平行四边形,点N 是AB 上一点,且BN = 2AN ,AC 、DN 相交于点M ,则ADM CMNB S S ∆四边形∶的值为( )第6题图A .3∶11B .1∶3C .1∶9D .3∶10答案:A10.(2015山东·枣庄一摸)如图,为测量池塘边上两点A 、B 之间的距离,小明在池塘的一侧选取一点O ,测得OA 、OB 的中点分别是点D 、E ,且DE =14米,则A 、B 间的距离是( ).A .18米B .24米C .28米D .30米答案:C11.(2015·江苏南京溧水区·一模)如图,在△ABC 中,D 、E 分别是AB 、AC 上的点,且DE //BC ,若S △ADE :S △ABC =4︰9,则AD :AB =( ▲ )A .1∶2B .2∶3C .1∶3D .4∶9答案: B二.填空题1. (2015·湖南岳阳·调研)如图,△ABC 中,如果AB AC =,AD BC ⊥于点D ,M为AC 中点,AD 与BM 交于点G ,那么:GDM GAB S S ∆∆的值为 ;(第4题)BCD E答案:142.(2015·江苏江阴·3月月考)如图,正方形ABCD 的边长为3,点E ,F 分别在边AB ,BC 上,AE =BF =1,小球P 从点E 出发沿直线向点F 运动,每当碰到正方形的边时反弹,反弹时反射角等于入射角.当小球P 第一次碰到点E 时,小球P 所经过的路程长为______________.答案:53.(2015·江苏江阴青阳片·期中)如图,在△ABC 中,AB =AC =5,BC =6,P 是BC 上一点,BP =2,将一个大小与∠B 相等的角的顶点放在P 点,然后将这个角绕P 点转动,使角的两边始终分别与AB 、AC 相交,交点为D 、E .若△PDE 为直角三角形,则BD 的长为 ▲ .答案:512或3204. (2015·屯溪五中·3月月考)若0435≠==c b a ,则b cb a ++=___________. 答案:4PEAD第2题图FEDCBA第1题图图25. (2015·合肥市蜀山区调研试卷)如图,直线a ∥b ∥c ,直线m 、n 与a 、b 、c 分别交于点A 、B 、C 、D 、E 、F ,若AB =6,DE =3,EF =4,则BC = .答案: 8 14.6.(2015·福建漳州·一模)如图,在△ABC 中,DE ∥BC ,AD =3,AB =5,则DE ∶BC 的值是 . 答案:357.(2015•山东滕州张汪中学•质量检测二)如图2,在△ABC 中,若DE ∥BC ,DB AD =12,DE =4cm ,则BC 的长为 _________ . 答案:12;. 8.(2015·辽宁东港市黑沟学校一模,3分)如图,在矩形ABCD中,AB =10,AD =4,点P 是边AB 上一点,若△APD 与△BPC 相似,则满足条件的点P 有___________个.答案: 39.(2015·江苏无锡北塘区·一模)已知,如图,△ABC 中,DE ∥FG ∥BC ,AD ∶DF ∶FB =1∶2∶3,若EG =3,则AC = ▲ .a b cA DB ECF m n第11题图答案: 910.(2015·无锡市南长区·一模)如图,△ABC 中,AB =5,BC =3,CA =4,D 为AB 的中点,过点D 的直线与BC 交于点E ,若直线DE 截△ABC 所得的三角形与△ABC 相似,则DE =_________. 答案: 2三.解答题1. (2015·江苏常州·一模)(本题满分10分)如图,矩形ABCD 中,AB =2,AD =4,动点E 在边BC 上,与点B 、C 不重合,过点A 作DE 的垂线,交直线CD 于点F .设DF =x ,EC =y .⑴ 求y 关于x 的函数关系式,并写出x 的取值范围. ⑵ 当CF =1时,求EC 的长.⑶ 若直线AF 与线段BC 延长线交于点G ,当△DBE 与△DFG 相似时,求DF 的长.FD⑴ 如图1,x y 21=(80<<x ) --------------------------------------------- 2′⑵ DF =1或DF =3,相应地,21=EC 或23=EC -------------------------------- FGBCD E A (第16题)CAD·第16题图4′⑶ 由∠DEC =∠AFD 得,∠BED =∠DFG .DF =x ,FG =1622+-x xx ,DE=16212+x ,BE =4-21x -------------- 6′ 当∠DBE =∠GDF 时,x ·16212+x =1622+-x xx ·(4-21x ),------ 7′ 解得x =58.GFDACBGFD ABC当∠BDE =∠GDF 时,x (4-21x )=1622+-x xx ·16212+x , -------- 8′ 解得x =34(x =-4舍去) 即DF 的长为58或34. 10′2.(2015·江苏江阴长泾片·期中)如图,在Rt △ABC 中,∠C =90°,AC =4㎝,BC =5㎝,D 是BC 边上一点,CD =3㎝,点P 为边AC 上一动点(点P 与A 、C 不重合),过点P 作PE // BC ,交AD 于点E .点P 以1㎝/s 的速度从A 到C 匀速运动。
滕州市滨湖中学2015届中考学业水平模拟数学试题(二)及答案
2015年山东省滕州市滨湖中学学业水平模拟(二)数学试题(本试卷满分120分,考试时间l20分钟)第Ⅰ卷(选择题共30分)一、选择题(本大题共l0小题。
每小题3分。
共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.我国最长的河流长江全长约6300千米,用科学计数法表示为A .6.3× 102千米 B .63 ×102千米 C .6.3×103千米 D .6.3×104千米 2.下列运算中,正确的是A .325=-m mB .222)(n m n m +=+C .n mnm =22D .222)(mn n m =⋅3.如图,AB ∥CD ,BC ∥DE ,若∠B=40°,则∠D 的度数是A .40°B .140°C .160°D .60°4.有一副扑克牌,共52张(不包括大、小王),其中梅花、方块、红心、黑桃四种花色各有13张,把扑克牌充分洗匀后,随意抽取一张,抽得红心的概率是 A .131 B .41 C .521 D .134 5.不等式组⎩⎨⎧->-<-32512x x 的解集是A .61<<xB .31<<-xC .31<<xD .61<<-x6.某单位3月上旬中的1至6日每天用水量的变化如图所示,那么这6天用水量的中位数是A .31.5B .32C .32.5D .337.分式方程111=-x 的解为 A .2=xB .1=xC .1-=xD .2-=x8.如图,以O 为位似中心将四边形ABCD 放大后得到四边形A′B′C′D′,若OA=4, OA′=8,则四边形ABCD 和四边形A′B′C′D′的周长的比为A .1:2B .1:4C .2:1D .4:19.若0)3()2(22=++-b a ,则2015()a b +的值是 A .0B .1C .-lD .201210.函数m mx y -=与)0(≠=m xmy 在同一坐标系内的图象可能是ABCD第Ⅱ卷(非选择题共90分)二、填空题(本大题共5小题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第1页(共28页) 2015年山东省枣庄市滕州市级索中学中考数学模拟试卷
一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项符合题目要求. 1.﹣3的相反数是( ) A.3 B.﹣3 C.±3 D. 2.下列图形中既是中心对称图形又是轴对称图形的是( )
A. B. C. D. 3.生物学家发现一种病毒的长度约为0.0000037毫米,数据0.0000037用科学记数法表示的结果为
( ) A.3.7×10﹣5 B.37×10﹣5 C.3.7×10﹣6 D.0.37×10﹣5 4.如图所示的几何体的左视图是( )
A. B. C. D. 5.下面两图是某班全体学生上学时,乘车,步行,骑车的人数分布条形统计图和扇形统计图(两图
均不完整),则下列结论中错误的是( )
A.该班总人数为50人 B.骑车人数占总人数的20% 第2页(共28页)
C.乘车人数是骑车人数的2.5倍 D.步行人数为30人 6.在△ABC中,若,,则△ABC是( ) A.等腰三角形 B.等边三角形 C.直角三角形 D.等腰直角三角形 7.实数a,b在数轴上对应点的位置如图所示,则必有( )
A.a+b>0 B.a﹣b<0 C.ab>0 D.<0 8.已知某项工程由甲、乙两队合做12天可以完成,乙队单独完成这项工程所需时间是甲队单独完
成这项工程所需时间的2倍少10天.甲、乙两队单独完成这项工程分别需要多少天?设甲队单独完成需x天,根据题意列出的方程正确的是( ) A. B. C. D. 9.如图,矩形A′B′CD′是由矩形ABCD绕C点顺时针旋转而得,且点A、C、D′
在同一条直线上,
在Rt△ABC中,若AB=2,,则对角线AC旋转所扫过的扇形面积为( )
A. B. C. D. 10.已知x1、x2是方程x2﹣(k﹣2)x+k2+3k+5=0的两个实数根,则x12+x22的最大值是( ) A.19 B.18 C.15 D.13
二、填空题:本大题共6小题,每小题3分,共18分. 11.函数y=中,自变量x的取值范围是 . 12.计算: = . 第3页(共28页)
13.某班6名同学在一次“1分钟仰卧起坐”测试中,成绩分别为(单位:次):39,45,42,37,41,
39.这组数据的众数、中位数分别是 . 14.如图所示,矩形纸片ABCD,AD=4,∠DAC=60°,沿对角线AC折叠(使△ABC和△ACD落
在同一平面内),则D、E两点间的距离为 .
15.在△ABC中,BC=10, 如图甲,B1是AB的中点,BC∥B1C1,则B1C1= ; 如图乙,B1、B2是AB的三等分点,BC∥B1C1∥B2C2,则B1C1+B2C2= ; 如图丙,B1、B2、…、Bn﹣1是AB的n等分点,BC∥B1C1∥B2C2∥…∥Bn﹣1Cn﹣1,则BC+B1C1+B2C2+…+Bn
﹣1Cn﹣1= .
16.如图,四边形ABCD中,E是BC的中点,连结AE,交BD于F,若DC∥AE,且,已
知△ACD的面积S△ACD=,则S△ABD= ,S△ABC= .
三、本大题共3小题,每小题9分,共27分. 17.解不等式:2﹣3(x﹣1)>0. 18.如图所示,在平面直角坐标系中,每个小方格的边长是1,把△ABC先向右平移4个单位,再
向下平移2个单位,得到△A′B′C′.在坐标系中画出△A′B′C′,并写出△A′B′C′各顶点的坐标. 第4页(共28页)
19.如图,E、F分别是平行四边形ABCD的边BA、DC延长线上的点,且AE=CF,EF交AD于G,
交BC于H.求证:GE=FH.
四、本大题共3小题,每小题10分,共30分. 20.在一个不透明的盒子里,装有三个分别标有1、2、3的小球,它们的形状、大小、质地等完全
相同.小明和小红做一个游戏,小明先摸出一球,记着编号后放入,小红再摸出一球,记住编号. (1)求小明和小红都摸出2号球的概率; (2)若小明摸出的球的编号与小红摸出的球的编号的乘积是质数,则小明获胜,是合数,则小红胜,既不是质数又不是合数,则重新游戏.你认为这个游戏规则合理吗?请说明理由.
21.先化简,再求值:,其中. 22.如图,平行于y轴的直尺(一部分)与反比例函数y=(x<0)的图象交于点A、C,与X轴
交于点B、D,连结AC.点A、B的刻度分别为5、2(单位:cm),直尺的宽度为2cm,OB=2cm. (1)求这个反比例函数的解析式; (2)求梯形ABCD的面积. 第5页(共28页)
五、本大题共1小题,每小题10分,共20分,其中第24题为选做题. 23.峨眉河是峨眉的一个风景点.如图,河的两岸PQ平行于MN,河岸PQ上有一排间隔为50米
的彩灯柱C、D、E、…,小华在河岸MN的A处测得∠DAN=21°,然后沿河岸走了175米到达B处,测得∠CBN=45°,求这条河的宽度(参考数据:sin21°≈,tan21°≈).
六、选做题:从甲、乙两题中选做一题,如果两题都做,只以甲题计分. 24.已知关于x的一元二次方程x2+(2m﹣1)x+m2=0有两个实数根x1和x2. (1)求实数m的取值范围; (2)当x12﹣x22=0时,求m的值. 25.如图,AB为⊙O的直径,点C在⊙O上,过点C作⊙O的切线交AB的延长线于点D,已知
∠D=30°.
(1)求∠A的度数; (2)若点F在⊙O上,CF⊥AB,垂足为E,CF=4,求DB的长.
六、本大题共2小题,第25题12分,第26题13分,共计25分. 第6页(共28页)
26.我国古代数学家秦九韶在《数书九章》中记述了“三斜求积术”,即已知三角形的三边长,求它
的面积.用现代式子表示即为:…①(其中a、b、c为三角形的三边长,s为面积). 而另一个文明古国古希腊也有求三角形面积的海伦公式: s=…②(其中p=.) (1)若已知三角形的三边长分别为5,7,8,试分别运用公式①和公式②,计算该三角形的面积s; (2)你能否由公式①推导出公式②?请试试. 27.我们把一个半圆与抛物线的一部分合成的封闭图形称为“蛋圆”,如果一条直线与“蛋圆”只有一个
交点,那么这条直线叫做“蛋圆”的切线.如图,点A、B、C、D分别是“蛋圆”与坐标轴的交点,已知点D的坐标为(0,﹣3),AB为半圆的直径,半圆圆心M的坐标为(1,0),半圆半径为2. (1)求“蛋圆”抛物线部分的解析式,并写出自变量的取值范围; (2)求出经过点C的“蛋圆”切线的解析式; (3)P点在线段OB上运动,过P作x轴的垂线,交抛物线于点E,交BD于点F.连结DE和BE后,是否存在这样的点E,使△BDE的面积最大?若存在,请求出点E的坐标和△BDE面积的最大值;若不存在,请说明理由. 第7页(共28页)
2015年山东省枣庄市滕州市级索中学中考数学模拟试卷
参考答案与试题解析
一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项符合题目要求. 1.﹣3的相反数是( ) A.3 B.﹣3 C.±3 D. 【考点】相反数. 【分析】根据相反数的概念解答即可. 【解答】解:﹣3的相反数是﹣(﹣3)=3. 故选:A. 【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.
2.下列图形中既是中心对称图形又是轴对称图形的是( ) A. B. C. D. 【考点】生活中的旋转现象;轴对称图形;中心对称图形. 【分析】根据轴对称图形与中心对称图形的概念和图形特点求解. 【解答】解:A、是轴对称图形,不是中心对称图形,不符合题意; B、是轴对称图形,也是中心对称图形,符合题意; C、是轴对称图形,不是中心对称图形,不符合题意; D、不是轴对称图形,是中心对称图形,不符合题意. 故选:B. 【点评】掌握好中心对称图形与轴对称图形的概念: 判断轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合; 判断中心对称图形是要寻找对称中心,图形旋转180度后与原图形重合. 第8页(共28页)
3.生物学家发现一种病毒的长度约为0.0000037毫米,数据0.0000037用科学记数法表示的结果为
( ) A.3.7×10﹣5 B.37×10﹣5 C.3.7×10﹣6 D.0.37×10﹣5 【考点】科学记数法—表示较小的数. 【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定. 【解答】解:0.0000037=3.7×10﹣6, 故选:C. 【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.
4.如图所示的几何体的左视图是( )
A. B. C. D. 【考点】简单几何体的三视图. 【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形. 【解答】解:从左向右看,得到的几何体的左视图是中间无线条的矩形. 故选D. 【点评】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.
5.下面两图是某班全体学生上学时,乘车,步行,骑车的人数分布条形统计图和扇形统计图(两图
均不完整),则下列结论中错误的是( )