模拟乘法器综合应用实验-调制与解调共34页文档
模拟乘法器调幅(AM、DSB、SSB)实验报告

实验十二模拟乘法器调幅(AM、DSB、SSB)一、实验目的1.掌握用集成模拟乘法器实现全载波调幅。
抑止载波双边带调幅和单边带调幅的方法。
2.研究已调波与调制信号以及载波信号的关系。
3.掌握调幅系数的测量与计算方法。
4.通过实验对比全载波调幅、抑止载波双边带调幅和单边带调幅的波形。
5.了解模拟乘法器(MC1496)的工作原理,掌握调整与测量其特性参数的方法。
二、实验内容1.调测模拟乘法器MC1496正常工作时的静态值。
2.实现全载波调幅,改变调幅度,观察波形变化并计算调幅度。
3.实现抑止载波的双边带调幅波。
4.实现单边带调幅。
三、实验原理幅度调制就是载波的振幅(包络)随调制信号的参数变化而变化。
本实验中载波是由晶体振荡产生的465KHz高频信号,1KHz的低频信号为调制信号。
振幅调制器即为产生调幅信号的装置。
1.集成模拟乘法器的内部结构集成模拟乘法器是完成两个模拟量(电压或电流)相乘的电子器件。
在高频电子线路中,振幅调制、同步检波、混频、倍频、鉴频、鉴相等调制与解调的过程,均可视为两个信号相乘或包含相乘的过程。
采用集成模拟乘法器实现上述功能比采用分离器件如二极管和三极管要简单得多,而且性能优越。
所以目前无线通信、广播电视等方面应用较多。
集成模拟乘法器常见产品有BG314、F1596、MC1495、MC1496、LM1595、LM1596等。
(1)MC1496的内部结构在本实验中采用集成模拟乘法器MC1496来完成调幅作用。
MC1496是四象限模拟乘法器。
其内部电路图和引脚图如图12-1所示。
其中V1、V2与V3、V4组成双差分放大器,以反极性方式相连接,而且两组差分对的恒流源V5与V6又组成一对差分电路,因此恒流源的控制电压可图12-1 MC1496的内部电路及引脚图正可负,以此实现了四象限工作。
V7、V8为差分放大器V5与V6的恒流源。
(2)静态工作点的设定1)静态偏置电压的设置静态偏置电压的设置应保证各个晶体管工作在放大状态,即晶体管的集-基极间的电压应大于或等于2V ,小于或等于最大允许工作电压。
幅度调制与解调电路实验报告

一、实验标题:幅度调制与解调电路实验十、实验目的1、加深理解调幅调制与检波的原理2、掌握用集成模拟乘法器构成调幅与检波电路的方法3、掌握集成模拟乘法器的使用方法4、了解二极管包络检波的主要指标、检波效率及波形失真十一、实验仪器与设备5、高频电子线路试验箱(TKGP);6、双踪示波器;7、频率计;8、交流毫伏表。
十二、实验原理实验原理图图一:电路原理图MC1496 是双平衡四象限模拟乘法器。
引脚8 与10 接输入电压UX,1 与4 接另一输入电压Uy,输出电压U0 从引脚6 与12 输出。
引脚2 与3 外接电阻RE,对差分放大器VT5、VT6 产生串联电流负反馈,以扩展输入电压Uy的线性动态范围。
引脚14 为负电源端(双电源供电时)或接地端(单电源供电使),引脚5 外接电阻R5。
用来调节偏置电流I5 及镜像电流I0 的值。
十三、实验内容及步骤1、乘法器失调调零2、观察调幅波形图二:K502 1-2短接波形图图三:K502 2-3短接波形图3、观测解调输出图四:解调输出波形图十四、实验分析用低频调制电压去控制高频载波信号的幅度的过程称为幅度调制(或调幅)。
既然高频载波的幅度随低频调制波而变,所以已调波同样随时间而变。
即有式中m是调幅波的调制系数(调幅度)。
同时当m<1时,实现了不失真的调制,而当m>1时,调制后的波形包络线,将与调制波不同,即产生了失真,或称超调。
十五、实验体会通过本次实验,我了解了集成模拟乘法器的基本工作原理、分类、特性等,在了解信号的调制和解调知识的。
温故而知新,本次试验使我熟悉了对实验仪器是使用,并且初步学会了集成模拟乘法器设计幅度调制的方法。
十六、注意事项1.实验前先检查试验箱的电源是否正常;2.使用示波器将波形调至最合适的大小再读数据;3.实验结束后关闭各设备电源,清理好仪器和工具。
模拟乘法器调幅实验报告

模拟乘法调幅(A M、DS B)实验报告姓名学号班级日期模拟乘法调幅(A M 、DS B )模块4一、 实验目的1、 掌握用集成模拟乘法器实现全载波调幅和抑止载波双边带调幅方法。
2、 研究已调波与调制信号以及载波信号的关系。
3、 掌握调幅系数的测量与计算方法。
4、 通过实验对比全载波调幅、抑止载波双边带调幅波形。
5、 了解模拟乘法器(MC1496)的工作原理,掌握调整与测量其特性参数的方法。
6、 掌握用集成模拟乘法器构成调幅与检波电路的方法。
二、 实验原理调幅与检波原理简述:调幅就是用低频调制信号去控制高频振荡(载波)的幅度,使高频振荡的振幅按调制 信号的规律变化;而检波则是从调幅波中取出低频信号。
本实验中载波是465KHZ 高频信号,10KHZ 的低频信号为调制信号。
集成四象限模拟乘法器 MC1496简介:本器件的典型应用包括乘、除、平方、开方、倍频、调制、混频、检波、鉴相、鉴频 动态增益控制等。
它有两个输入端VX 、VY 和一个输出端 V0。
一个理想乘法器的输出为VO=KVXVY 而实际上输出存在着各种误差, 其输出的关系为:VO=K (VX +VXOS (VY+VYOS +VZOX 为了得到好的精度,必须消除 VXOS VYOS 与VZOX 三项失调电压。
集成模拟乘法 器MC1496是目前常用的平衡调制/解调器,内部电路含有 8个有源晶体管。
MC1496的内部原理图和管脚功能如下图所示:12105 ■■实验电路说明用MC1496集成电路构成的调幅器电路如下图所示SIG+ |j214| GADJ |~2~GADJ |~3~羽SIG- EE111BIAS 叵10| OUT+叵NC |2LE1 )、SIG+ 信号输入正端2 )、GADJ 增益调节端3 )、 GADJ 增益调节端 4)、 SIG- 信号输入负端 5 )、 BIAS 偏置端6 )、OUT+ 正电流输出端7 )、 NC 空脚 8)、CAR+载波信号输入正端9 )、 NC空脚 10)、CAR-载波信号输入负端 11)、 NC空脚12)、OUT- 负电流输出端 13 )、NC空脚14)、 V- 负电源CAR+ ,才2■- 3CAR-NCV-NCOUT - NC图中W1用来调节引出脚1、4之间的平衡,器件采用双电源方式供电(+ 12V ,- 8V ),所以5脚偏置电阻R15接地。
实验四 集成电路模拟乘法器的应用资料

实验四集成电路模拟乘法器的应用模拟乘法器是利用晶体管的非线性特性,经过电路上的巧妙设计,在输出中仅保留两路输入信号中由非线性部分产生的信号的乘积项,从而获得良好的乘积特性的集成器件。
在高频电子线路中,振幅调制、同步检波、混频、倍频、鉴频、鉴相等调制与解调的过程,均可视为两个信号相乘或包含相乘的过程。
采用集成模拟乘法器实现上述功能比采用分立器件如二极管和三极管要简单的多,而且性能优越。
所以目前在无线通信、广播电视等方面应用较多。
集成模拟乘法器的常见产品有BG314、F1595、F1596、MC1495、MC1496、LM1595、LM1596等。
本实验仅介绍MC1496集成模拟乘法器。
一、实验目的1.了解模拟乘法器(MC1496)的组成结构与工作原理,掌握其调整与特性参数的测量方法。
2.掌握利用乘法器实现振幅调制(AM与DSB)、同步检波、混频、倍频等几种频率变换电路的原理及设计方法。
3.学会综合地、系统地应用已学到模电、数电与高频电子线路的知识,掌握对振幅调制、同步检波、鉴频、混频和倍频电路的设计与仿真技能,提高独立解决问题的能力。
二、实验设备与仪器高频实验箱 WHLG-2 一台数字双踪示波器 TDS-1002 一台高频信号发生器 WY-1052 一台数字万用表一块三、实验任务与要求1、模拟乘法器1496的构成、基本原理说明①集成模拟乘法器的内部结构MC1496集成模拟乘法器的内部电路结构和引脚排列如图4-1所示。
图4-1 MC1496的内部电路及引脚图MC1496是双平衡四象限模拟乘法器。
其中V1、V2与V3、V4组成双差分放大器,V5、V6组成的单差分放大器用以激励V1~V4。
V7、V8及其偏置电路组成差分放大器V5、V6的恒流源。
引脚8与10接输入电压C u ,1与4接另一输入电压t u ,输出电压o u 从引脚6与12输出。
引脚2与3外接电阻R E ,对差分放大器V5、V6产生串联电流负反馈,以扩展输入电压y u 的线性动态范围。
实验四幅度调制及调幅波的解调

实验四幅度调制及调幅波的解调2014141049 14电子郑敏诺一、实验目的1.掌握用集成模拟乘法器实现全载波调幅和抑制载波双边带调幅的方法与过程,并研究已调波与二输入信号的关系。
2.掌握测量调幅系数的方法。
3.了解调幅波的解调方法,掌握用集成电路实现同步检波的方法。
4.了解二极管包络检波的主要指标,检波效率及波形失真;掌握二极管包络检波法。
5.通过实验中波形的变换,学会分析实验现象。
三、实验仪器1.模拟双踪示波器 CS-4135A 一台2.DDS函数信号发生器 DG1022 一台3.数字万用表 VC88E 一台4.实验电路板 G3 一块四、实验原理及电路说明(一)利用集成模拟乘法器实现幅度调制幅度调制就是载波的振幅受调制信号的控制作周期性的变化。
变化的周期与调制信号周期相同。
即振幅变化与调制信号的振幅成正比。
通常称高频信号为载波信号,图4-1 1496芯片内部电路图低频信号为调制信号,调幅器即为产生调幅信号的装置。
本实验采用集成模拟乘法器1496来构成调幅器,图4-1为1496芯片内部电路图,它是一个四象限模拟乘法器的基本电路,电路采用了两组差动对由V1-V4组成,以反极性方式相连接,而且两组差分对的恒流源又组成一对差分电路,即V5与V6,因此恒流源的控制电压可正可负,以此实现了四象限工作。
D、V7、V8为差动放大器V5、V6的恒流源。
进行调幅时,载波信号加在V1-V4的输入端,即引脚的⑧、⑩之间;调制信号加在差动放大器V5、V6的输入端,即引脚的①、④之间,②、③脚外接1KΩ电阻,以扩大调制信号动态范围,已调制信号取自双差动放大器的两集电极(即引出脚⑹、⑿之间)输出。
用1496集成电路构成的调幅器电路图如图4-2所示,图中R P1用来调节引出脚①、④之间的平衡,R P2用来调节⑧、⑩脚之间的平衡,三极管V为射极跟随器,以提高调幅器带负载的能力。
图4-2 1496构成的调幅器根据相乘器的原理,当载波信号为:V C ( t ) =V C Sinωc ( t ) (1)调制信号为:V S ( t ) =V S SinΩ( t ) (2)并假定两信号输入端均处于平衡状态,那么其输出信号为;V o (t) = kV C (t)·V S ( t ) = kV S·V C Sinωc t·SinΩt= 12kV S·V C[cos(ωc-Ω)t-cos(ωc+Ω)t] (3)式中k为相乘器的乘法因子,可用实验测得,本实验中k=70。
实验七-集成电路模拟乘法器的应用

实验报告实验名称 集成电路模拟乘法器的应用成绩姓名 马晓恬 专业班级 电信081 实验日期 学号指导教师刘富强提交报告日期12.19一、实验目的1、了解模拟乘法器(MC1496)的工作原理,掌握其调整与特性参数的测量方法。
2、掌握利用乘法器实现混频,平衡调幅,同步检波,鉴频等几种频率变换电路的原理及方法。
二、实验内容1、 改变模拟乘法器外部电路,实现混频器电路,观察输出点波形,并测量输出频率。
2、 改变模拟乘法器外部电路,实现平衡调幅电路,观察输出点波形。
3、 改变模拟乘法器外部电路,实现同步检波电路,观察输出点波形。
4、 改变模拟乘法器外部电路,实现鉴频电路,观察输出点波形。
三、实验仪器1、双踪示波器一台2、频率特性扫频仪(选项)一台四、实验原理及电路1、集成模拟乘法器的内部结构集成模拟乘法器是完成两个模拟量(电压或电流)相乘的电子器件。
在高频电子线路中,振幅调制、同步检波、混频、倍频、鉴频、鉴相等调制与解调的过程,均可视为两个信号相乘或包含相乘的过程。
采用集成模拟乘法器实现上述功能比采用分立器件如二极管和三极管要简单的多,而且性能优越。
所以目前在无线通信、广播电视等方面应用较多。
集成模拟乘法器的常见产品有BG314、F1595、F1596、MC1495、MC1496、LM1595、LM1596等。
下面介绍MC1496集成模拟乘法器。
(1)MC1496的内部结构MC1496是双平衡四象限模拟乘法器。
其内部电路和引脚如图7-1(a)(b)所示。
其中1VT 、2VT 与3VT 、4VT 组成双差分放大器,5VT 、6VT 组成的单差分放大器用以激励1VT ~4VT 。
7VT 、8VT 及其偏置电路组成差分放大器5VT 、6VT 的恒流源。
引脚8与10接输入电压U X ,1与4接另一输入电压U y ,输出电压U 0从引脚6与12输出。
引脚2与3 外接电阻R E ,对差分放大器5VT 、6VT 产生串联电流负反馈,以扩展输入电压U y 的线性动态范围。
《模电实验》模拟乘法器
模拟乘法器幅度调制实验姓名:学号:模拟乘法器幅度调制实验模拟乘法器是利用三极管的非线性特性,经过电路的巧妙设计,在输出中仅保留两路输入信号的乘积项,从而获得良好的乘积特性的集成器件。
模拟乘法器其可用于各种频率变化,如平衡调制、混频、同步检波、鉴波、检波、自动增益控制等电路。
本实验利用模拟乘法器MC1496实现幅度调制电路。
一、实验目的1、了解模拟乘法器的工作原理;2、学会利用模拟乘法器搭建振幅调制电路,掌握其工作原理及特点。
3、了解调制系数Ma的测量方法,了解Ma<1、Ma=1、Ma>1时调幅波的波形特点。
二、复习要求1、复习幅度调制器的有关知识;2、分析实验电路中用MC1496乘法器调制的工作原理,并分析计算各引脚的直流电压;3、了解调制系数M的意义及测量方法;4、分析全载波调幅信号的特点;5、了解实验电路各元件的作用。
三、实验电路原理实验电路如下图所示。
该电路可用来实现幅度调制,混频。
倍频,同步检波等功能。
图中R8和R9为负载电阻,R10为偏置电阻,R7为负载反馈电阻。
R1、R2和Rp组成平衡调节电路,调节Rp可以调节1、4两管脚的电位差。
当电位器为0时,电路满足平衡调幅。
当电位差不为零时,输入包含调制信号和直流分量两部分,则可实现普通调幅。
四、实验步骤1、按照电路图焊接电路。
2、实现普通单音调幅:a、在Ux上加入振幅Vx=50mV、频率f=500KHz的正弦信号,在Uy上加入振幅Vy=200mV、频率f=10KHz的正弦信号,调节电位器Rp,使电路工作在不平衡状态,用示波器观察输出波形。
b、保持Ux不变,改变Uy的幅值,当Uy的幅度为50mV、100mV、150mV、200mV、250mV时,用示波器观察输出信号的变化,并作出Ma—Uy曲线。
c、保持Ux不变,fx由小变大,观察输出波形的变化。
3、实现平衡调幅a、将Uy接地,在Ux上加入振幅Vx=50mV、频率fx=500KHz的正弦信号,调节电位器Rp使输出Uo=0.b、在Ux上加入振幅Vx=50mV、频率fx=500KHz的正弦信号,在Uy上加入振幅Vy=200mV、频率f=10KHz的正弦信号,微调调节电位器Rp,得到抑制波的双边带信号。
实验三 模拟乘法器应用实验报告
实验题目:乘法器调幅(AM、DSB、SSB)、同步检波、混频及倍频实验原理:2TP3(2P3、2Q3)—载波(本振)信号输入端;2Q4—调制信号(或高频已调信号)输入端;2TP4—调制信号(或高频已调信号)输入端测试点;2TP5(2P5)—乘法器同相输出端;2TP5A—乘法器反相输出端;2TP6(2Q6)—2.5MHz带通滤波器输出;2W11—调制信号(或高频已调信号)输入端幅度调节;2W1—乘法器1、4输入端平衡调节;2W2—增益调节。
图3.1 乘法器调幅、混频实验电路图2TP9(2P9)—载波(本振)信号输入端;2TP10(2P10)—高频已调信号输入端;2TP11(2P11)—同步检波输出端;2W5—1、4输入端平衡调节。
图3.2 乘法器同步检波器电路图2TP7(2P7)—信号输入端;2TP8(2P8)—信号输出端;2W3—调节中心频率;2W4—调节输出幅度。
实验内容及步骤:一. 普通波调幅(AM )1. 电路连接《调幅与调频接收模块》接±12V 电源电压;打开“乘法器调幅 混频”电路的电源开关(电源指示灯点亮);2TP3接载波信号C u (20KHz ,100mV PP );2TP4接调制信号u Ω(1kHz 、300mVpp );用示波器同时观测C u 、u Ω和同相输出端(2TP5)。
注:C u 由示波器(Wave Gen )提供;u Ω由信号源(F20A A 路)提供,并以u Ω所接示波器通道做触发源。
2. 电路调整调节2W11,使2TP4端幅度最大;调节示波器使波形清晰稳定;调节2W1,使2TP5输出信号为AM 已调波AM u (如图3.4);调节2W2,使AM u 的波峰、波谷无压缩失真(2W1、2W2往往配合调节)。
3. 时域测量记录或存储C u 、u Ω和AM u 的时域波形,按图3.4计算调制度m :图3.4 AM 波时域波形%100⨯+-=BA BA m4.频域测量①频谱仪射频输入(RF IN)接反相输出端2TP5A。
实验四模拟乘法器调幅(AM、DSB、SSB)
实验四模拟乘法器调幅(AM、DSB、SSB)梧州学院实验报告实验名称:模拟乘法器调幅(AM、DSB、SSB)实验室名称:通信虚拟仿真实验室实验时间:2021年12月17日实验设备及环境:信号源模块1块频率计模块1块4号板1块双踪示波器1台万用表1块实验目的:1、掌握用集成模拟乘法器实现全载波调幅、抑制载波双边带调幅和音频信号单边带调幅的方法。
2、研究已调波与调制信号以及载波信号的关系。
3、掌握调幅系数的测量与计算方法。
4、通过实验对比全载波调幅、抑制载波双边带调幅和单边带调幅的波形。
5、了解模拟乘法器(MC1496)的工作原理,掌握调整与测量其特性参数的方法。
实验原理及内容:1、实现全载波调幅,改变调幅度,观察波形变化并计算调幅度。
2、实现抑制载波的双边带调幅波。
3、实现单边带调幅。
幅度调制就是载波的振幅(包络)随调制信号的参数变化而变化。
本实验中载波是由高频信号源产生的465KHz 高频信号,2KHz的低频信号为调制信号。
振幅调制器即为产生调幅信号的装置。
a)集成模拟乘法器的内部结构集成模拟乘法器是完成两个模拟量(电压或电流)相乘的电子器件。
在高频电子线路中,振幅调制、同步检波、混频、倍频、鉴频、鉴相等调制与解调的过程,均可视为两个信号相乘或包含相乘的过程。
采用集成模拟乘法器实现上述功能比采用分离器件如二极管和三极管要简单得多,而且性能优越。
所以目前无线通信、广播电视等方面应用较多。
集成模拟乘法器常见产品有BG314、F1595、F1596、MC1495、MC1496、LM1595、LM1596等。
1)MC1496的内部结构在本实验中采用集成模拟乘法器MC1496来完成调幅作用。
MC1496是四象限模拟乘法器,其内部电路图和引脚图如图10-1所示。
其中V1、V2与V3、V4组成双差分放大器,以反极性方式相连接,而且两组差分对的恒流源V5与V6又组成一对差分电路,因此恒流源的控制电压可正可负,以此实现了四象限工作。
幅度调制与解调电路仿真
幅度调制与解调电路仿真
一、实训目的
1、理解幅度调制与解调的基本原理。
2、了解模拟乘法器的特性及工作原理。
3、熟悉利用模拟乘法器进行幅度调制与解调的基本过程。
4、理解幅度调制与解调电路的输入与输出信号的含义。
5、会对利用模拟乘法器构成的幅度调制与解调电路进行仿真分析。
二、实训步骤
1、在Multisim软件环境中绘制出电路图4.1,注意元件标号和各个元件参数的设置。
图4.1 幅度调制电路
2、双击图4.1中的示波器XSC1,如图4.2进行参数设置。
3、打开仿真开关,就可以观察到如图4.2的幅度调制波形了。
图4.2幅度调制电路波形图
当模拟乘法器outputgain由1V\V改为2V\V时波形如图4.2a
图4.2a幅度调制电路波形图
4、在Mulitisim软件环境中绘制出电路图4.3,注意元件标号和各个元件参数的设置。
图4.3幅度调制与解调电路
图4.4幅度调制与解调电路波形图
6、打开仿真开关,就可以观察到如图4.4的幅度调制与解调两种波形了。