(完整版)基于Labview的声音信息采集与处理
LabView大作业基于声卡的LabVIEW数据采集与分析系统设计.docx

LabView大作业实验报告第7 次实验实验名称:基于声卡和LabView的虚拟仪器设计专业:姓名:学号:实验室: 实验组别:同组人员:实验时间:评定成绩:审阅教师:目录前言 (1)1.实验说明 (2)1.1设计原理1.2设计内容与要求1.3说明与注意事项2.软件设计 (5)2.1设计方案2.2程序框图2.3方案实现与前面板设计3.结果分析 (12)结束语 (15)参考文献 (16)附录(使用说明) (17)前言本文主要介绍了基于声卡和LabView的虚拟仪器设计这一实验的过程。
这次实验中主要包括了声卡、线路输入与保存、输入数据回放、信号分析处理以及对计算机内部产生信号的分析处理。
下面先对设计背景做简单介绍。
虚拟仪器技术是利用高性能的模块化硬件,结合高效灵活的软件来完成各种测试、测量和自动化的应用。
在虚拟仪器系统中,硬件解决信号的输入和输出,软件可以方便地修改仪器系统的功能,以适应不同使用者的需要。
其中硬件的核心是数据采集卡。
目前市售的数据采集卡价格与性能基本成正比,一般比较昂贵。
随着DSP(数字信号处理)技术走向成熟,PC机声卡可以成为一个优秀的数据采集系统,它同时具有A/D和D/A转换功能,不仅价格低廉,而且兼容性好、性能稳定、灵活通用,驱动程序升级方便。
同时一般声卡16位的A/D转换精度,比通常12位A/D 卡的精度高,对于许多工程测量和科学实验来说都是足够高的,其价格却比普通数据采集卡便宜得多。
本文主要分为三大部分,第一部分为实验说明,介绍这次实验的要求与内容。
第二部分为软件设计,介绍软件的设计原理,程序框图等。
最后是结果分析与结束语。
在此次设计过程中,得到了两位老师的指导,同时也感谢许多同学对我在实验过程中的帮助。
1.实验说明1.1设计原理声音的本质是一种波,表现为振幅、频率、相位等物理量的连续性变化。
声卡作为语音信号与计算机的通用接口,其主要功能就是将所获取的模拟音频信号转换为数字信号,经过DSP音效芯片的处理,将该数字信号转换为模拟信号输出。
labview基于声卡的数据采集系统

实验2 基于声卡的数据采集系统1 实验目的(1)学习声卡作为数据采集装置的Labview编程方法;(2)从设计中深入理解虚拟仪器的组成,理解数据采集,数据分析的重要性,用Labview实现测试系统的优点;(3)实验的应用:目前的测试实验教学实验中常常要用到A/D采集卡,而A/D采集卡价格不菲,以实验室有限的经费,不能较多第购置以供同学们实验使用,进而考虑计算机中的声卡本身就是一个A/D、D/A 的转换装置,而且造价低廉,性能稳定,在教学实验中完全可以满足实验的需求,可以进一步开发研制一个广泛应用的测试教学实验系统。
2 实验设备、仪器计算机、声卡、Labview软件,其组成如下图:3 实验任务设计一个基于声卡的频谱分析仪,可以采集和分析从麦克风输入的声音。
要求仪器可以调节采样频率、数据缓冲区的大小等,可显示其波形,保存并对波形作幅值频谱分析。
4 实验原理4.1 声卡简介声卡是现在计算机中非常常见的一个组件,是多媒体的标准配置。
与声卡声音采集相关的两个专业术语是声音采样和声道。
声音采样,即在模拟声音波形上每一个时间间隔取一个幅度值,把自然界的模拟音转变为数字音时。
声音采样的描述有两个指标:'采样位数'和'采样频率'。
采样位数就是指用来描述波形幅度的细腻程度,8位声卡可以把波形划分为256个级别,而16位声卡就可以划分为64×1024个级别,现在的声卡一般都采用16位的声卡。
'采样的频率'是指录音设备在一秒钟内对声音信号的采样次数,采样频率越高声音的还原就越真实越自然,现在声卡采样频率一般有22.05KHz、44.1KHz、48KHz三个等级,22.05 KHz是FM广播的声音品质,44.1KHz则是理论上的CD音质界限,而48KHz则更加精确一些。
声道,就是声卡处理声音的通道的数目,以前是单声道,后来又发展出立体声、5.1声道、四声道等的标准。
基于LabVIEW的语音信号处理

克 风等 音 输 入设 备 采 集 到 的模 拟 声 音 信 号转 换 为 电 脯
能处理的数! ≠信 号 , I 数 模 转 换 电路 负 责将 电脑 使 川 的 数 字 声 青信 号 转 换 为喇 叭 等 设 备 能 使 用 的模 拟 信 号 。
I a b Vl E W 中提 供 _ r强 大 的 数 据 采 集 程 序 但 。 『 1 r 以 很
进 行 模 数 转换 。根据 对 信号 采 集 和保 存 的相 关要 求 . 程 序
后 两 板 设 计 如 冈 1昕 示 。 埘 声 音 进 行 采 集 时 主 要 的 参 数 为 录 时 间 、 采 样 值
唯 一 的编 泽 型 冈形 化 编 程语 言 。I a b VI E w 类 似于 ( 、 币 ¨
都 是模 拟 信 号 . 而电脑所能处理 的都 是数字信 号 , 声 卡 的
作 用 就是 实 现 两 者 的转 换 。从 结 构 I 分. 声 卡 可分 为模 数 转 换 电路 和 数 模 转 换 电 路 两 部 分 : 模 数转 换 电路 负 责将 麦
缺点 , 在 进 行 语 音 信 号 处 理 时 往 往 比较 慢 、 比较 难 。
m了 - 声 直 接 对 收 集 的 声 爵信 号进 行 模 数 转 换 , 此
声 } ÷ 所 得 到 的 信 息 直 接 为 数 量 而 模 拟 量 。 不 需 要冉 次
L a b VI E W 是一 种 程 序 开 发 环 境 , 南 美 周 旧 家 仪 器
( Na t i o n a l I n s t r u me n t s , NI ) 公司研 制开 发 , 是 目 前 国 际 上
趣 , 有助于语吉学习。
0 引 言
基于LabVIEW的声波采集系统

.
武汉 : 武汉大学, 0 . 2 4 0
[ 曾璐, 2 ] 陆荣双. 基于 Lb IW 的数据采集系统设计【. a VE J电 ] 子技术, 0 , 2 1— 7 2 4 1) 6 1. 0 ( : [杨乐 平, 3 】 李海涛, 肖相少 , . b IW 程序设 计与应 用 等 L VE a [】 M. 北京: 电子工业 出版社, 0 . 2 1 0
决 了电网信息化 中如何评测云计算平台的问题 ,同时也
软件产品的质量要求和测试细则f. 1. S2 0 】0
型f1 0 6 S. 0 : 2
6结 束语
本文提 出了云计算平 台的通用评测体系 ,包 含通用 评 测体 系指标 、相关 的基准评测方法和用来对云计算平
台进行评分 的通用评测模 型 ,并在电网信 息化项 目中完
成 了通用评测体系的初 步验证 。通用评测 体系的提 出解
[ 中华人 民共和 国国家标准.B 50 . — 0 0 6 ] G T2 005 2 1 软件工 1 程 软件产 品质量 要求 与评价( u R ) S a E商业 现货(O S q C T)
De a t n o Co p rme t f mme c r ̄
v l dH X l d ar ,M ae Co , P Co M txV w r 等云计算平台 , u u i 使用如表
1 所示 的测试用例完成 了通用评测 , 5 对 种云计算平台进行
了评分。
在 评 测 过程 中使 用 了如 下 工具 :功 能 评 测 工 具
时, 当波形 出现 问题 时 , 就需要设置 断点 , 观察波形 上传 点的值 , V e a alV l 。 即 i V r be a e w i u
基于LabVIEW语音信号的采集与分析

a n a l y s i s ,e t c .T h i s s y s t e m c a r l c o mp a r a t i v e c o mp l e t e l y a n a l y s e v o i c e s i na g 1. An d he t n i t g e t s t h e s i g n a l p o we r s p e c t r u m a n d a mp l i t u d e s p e c t r u m a n d p h a s e s p e c t r u m ,h a r mo n i c s i na g l d a t a a n d s i g n l a d i s t o r t i o n p a r a me t e r s .T h r o u g h t h e f i r e n d l y i n t e r a c t i v e i n t e r f a c e :f r o n t p a n e l ,i t c s n f l e x i b l e c o n t r o l s y s t e m
等 分析 。在 系统 中 ,可 以对语音 信 号进 行 较 完 整 的分 析 。进 而得 到 信 号 的功 率谱 、幅 度谱 、相
位谱 、谐波信号数据和失真参数。而且通过友好 的交互界 面——前 面板,可以灵活地控制 系统 功 能 的 实现 ,得 到 实时的分析数 据 。 关键词 :L a b V I E W; 语音信号 ;声卡;信号分析 ; 前面板
f un c t i o n,g e t r e a l — t i me a n a l y s i s d a t a . Ke y wor d s: La bVI EW ; s pe e c h s i g n l; a a u d i o c a r d; s i g na l a n a l y s i s ;f r o n t p a n e l
LabVIEW在音频信号处理中的应用与实现

LabVIEW在音频信号处理中的应用与实现音频信号处理是一项重要的技术,涉及到各个领域,如音乐、语音识别以及通信等。
在现代科技的发展下,计算机软件和硬件的进步为音频信号处理提供了更加高效和便捷的方式。
其中,LabVIEW作为一款基于图形化编程的软件平台,被广泛应用于音频信号处理中。
本文将探讨LabVIEW在音频信号处理中的应用与实现。
一、LabVIEW简介LabVIEW,全称是Laboratory Virtual Instrument Engineering Workbench(实验室虚拟仪器工程师工作台),是由美国国家仪器公司(National Instruments)推出的一款图形化编程环境。
它允许用户通过拖拽和连接不同的图形化模块以及运算符号来创建程序。
LabVIEW广泛应用于数据采集、控制系统、图像处理以及音频信号处理等领域,并且在工程和科学研究中发挥着重要作用。
二、LabVIEW在音频信号处理中的应用1. 音频采集和录制LabVIEW可以通过硬件设备实时采集音频信号,并以图形化的方式呈现出来。
用户可以选择不同的采样率和位深度来适应不同的需求。
同时,LabVIEW还提供了录制功能,可以将采集到的音频信号保存为文件,方便后续的处理和分析。
2. 音频处理算法实现LabVIEW提供了丰富的音频处理函数和工具箱,使得用户可以方便地实现各种音频处理算法。
比如滤波、均衡器、时域和频域分析等。
用户只需要将这些模块拖拽到图形化编程界面,并进行连接和参数调整,即可完成相应的音频处理功能。
3. 音频效果器设计与调试通过LabVIEW,用户可以自行设计和调试各种音频效果器,如混响器、压缩器、失真器等。
用户可以根据需求,自定义参数并实时调试效果。
这样,可以提高音频信号的质量,并且满足不同领域的需求。
4. 实时音频信号处理LabVIEW中的图形化编程环境使得实时音频信号处理成为可能。
用户可以通过合适的硬件设备,将输入音频信号进行实时处理,并输出处理后的音频信号。
labview声音采集系统设计
虚拟仪器技术姓名:史昌波学号:2131391 指导教师:来军院系(部所):电子工程学院专业:控制工程目录1、前言 (3)2、声卡的硬件结构和特性 (3)2.1声卡的作用和特点 (3)2.2声卡的构造 (5)3、LABVIEW中与声卡相关的函数节点 (6)4、LABVIEW程序设计 (7)4.1程序原理 (7)4.2程序结构 (7)4.3结果分析 (9)5、结束语 (10)6、参考文献 (10)基于声卡的数据采集与分析1、前言虚拟仪器技术是利用高性能的模块化硬件,结合高效灵活的软件来完成各种测试、测量和自动化的应用。
在虚拟仪器系统中,硬件解决信号的输入和输出,软件可以方便地修改仪器系统的功能,以适应不同使用者的需要。
其中硬件的核心是数据采集卡。
目前市售的数据采集卡价格与性能基本成正比,一般比较昂贵1。
随着DSP(数字信号处理)技术走向成熟,计算机声卡可以成为一个优秀的数据采集系统,它同时具有A/D和D/A转换功能,不仅价格低廉,而且兼容性好、性能稳定、灵活通用,驱动程序升级方便,在实验室中,如果测量对象的频率在音频围,而且对指标没有太高的要求,就可以考虑使用声卡取代常规的DAQ设备。
而且LABVIEW中提供了专门用于声卡操作的函数节点,所以用声卡搭建数据采集系统是非常方便的2。
2、声卡的硬件结构和特性2.1声卡的作用和特点声卡的主要功能就是经过DSP(数字信号处理)音效芯片的处理,进行模拟音频信号的与数字信号的转换,在实际中,除了音频信号以外,很多信号都在音频围,比如机械量信号,某些载波信号等,当我们对这些信号进行采集时,使用声卡作为采集卡是一种很好的解决方案。
声卡的功能主要是录制与播放,编辑与合成处理,MIDI接口三个部分3。
(1)录制与播放通过声卡,人们可以将来自话筒等外部音源的声音录入计算机,并转换成数字文件存储到计算机中进行编辑等操作,人们也可以将这些数字文件转换成声音信号,通过计算机扬声器播放。
基于LabVIEW的数据采集与处理系统设计
基于LabVIEW的数据采集与处理系统设计基于LabVIEW的数据采集与处理系统设计摘要:虚拟仪器作为一种基于图形化编程的新型概念仪器,以计算机作为运行媒介,节省了大量的显示、控制硬件,越来越显示出它独有的优势。
基于LabVIEW 的数据采集与处理系统,整体采用了循环结构与顺序结构相结合的形式,实现了模拟信号的采集与实时动态显示,并且仿真出了对数据的采集和报警功能,并且能够存储数据,进行各种自定义设置,显示效果良好,对现实中的数据采集与处理系统具有很大的借鉴作用。
关键词:虚拟仪器;数据采集;数据处理;LabVIEWThe Design of Data Acquisition and Processing System Based onLabVIEWAbstract:As a kind of virtual instrument based on graphical programming the new concept of instruments, run at the computer as a medium, save a large amount of display, control hardware, more and more shows its unique advantages. Data acquisition and processing system based on LabVIEW, and the overall adopted loop structure and order structure, in the form of the combination of the dynamic analog signal acquisition and real-time display, and the simulation of the data collection and alarm function, and the ability to store data, for a variety of Settings, display effect is good, the reality of the data acquisition and processing system has a great reference.Keywords:Virtual Instrument;Data Collection;DataProcessing;LabVIEW;1.引言1.1 课题研究的意义虚拟仪器是现如今非常流行的一种计算机技术,它的应用面很广,由于采用了计算机界面代替了传统的硬件显示器,又可以利用计算机的处理器去实现硬件的处理功能,所以只需要将需要处理的各种类型的数据通过统一的接口传输到计算机中,这样就能实现各种显示、处理与控制功能。
基于LabVIEW的数据采集与处理技术
基于LabVIEW的数据采集与处理技术LabVIEW是一种图形化编程环境,被广泛应用于数据采集与处理领域。
本文将介绍基于LabVIEW的数据采集与处理技术,包括其原理、应用和发展趋势。
一、LabVIEW的原理LabVIEW是National Instruments(NI)公司开发的一种用于数据采集、控制、测量和分析的编程工具。
它采用图形化编程语言,即通过连接图形化的“节点”(也称为虚拟仪器或VI)来构建程序。
LabVIEW的程序由一系列的节点组成,每个节点代表一个操作或函数。
用户可以通过拖拽和连接这些节点来实现数据采集和处理。
这种图形化的编程方式使得非专业程序员也能够很容易地使用LabVIEW进行数据采集和处理。
二、LabVIEW的应用1. 数据采集LabVIEW提供了丰富的数据采集模块,可以通过各种方式获取不同类型的数据。
它支持各种传感器和仪器,包括温度传感器、压力传感器、光电传感器等。
通过连接这些传感器和仪器,LabVIEW可以实时采集并显示数据。
2. 数据处理LabVIEW提供了强大的数据处理功能,可以对采集到的数据进行各种处理和分析。
它支持数学运算、滤波、插值、统计分析等。
用户可以根据需要对数据进行处理,从而得到更有用的结果。
3. 控制系统LabVIEW可以用于构建控制系统,实现对实验室设备或生产设备的控制。
它支持PID控制算法、状态机等控制方法,用户可以根据需要设计和调整控制策略。
4. 图形化界面LabVIEW提供了友好的图形化界面设计工具,用户可以通过拖拽和连接各种控件来创建自定义的界面。
这样,用户不仅可以方便地实现数据采集和处理,还可以将结果以直观的方式显示给用户。
三、LabVIEW数据采集与处理技术的发展趋势1. 高性能硬件支持随着计算机硬件的不断发展,LabVIEW可以利用更强大的计算能力进行数据采集和处理。
现在已经出现了一些基于FPGA(现场可编程逻辑门阵列)的硬件,使得LabVIEW可以实现更高的数据采集速率和处理能力。
LabVIEW的数据采集与处理技术
LabVIEW的数据采集与处理技术LabVIEW(Laboratory Virtual Instrument Engineering Workbench)是一款基于图形化编程的系统设计平台,它被广泛应用于数据采集与处理领域。
本文将介绍LabVIEW的数据采集与处理技术,包括LabVIEW的基本原理、应用场景和相关技巧。
一、LabVIEW概述LabVIEW是由美国国家仪器公司(National Instruments)开发的一款可视化编程语言和集成开发环境。
借助LabVIEW,用户可以通过拖拽和连接图形化符号来构建程序,而无需编写传统的文本代码。
LabVIEW以其可读性强、易于开发和维护的特点,成为许多工程与科研领域的首选开发工具。
二、LabVIEW的数据采集技术1. 硬件支持LabVIEW支持多种数据采集设备,包括各类传感器、仪器和现场总线等。
用户可以通过连接这些设备来实现数据的实时采集。
LabVIEW提供了丰富的硬件模块,能够兼容主流的数据采集设备,并且还支持自定义硬件驱动程序的开发。
2. 数据采集模块LabVIEW提供了一系列的数据采集模块(DAQ模块),用于实时采集、转换和存储各类模拟和数字信号。
DAQ模块可以通过简单的拖拽和连接进行配置,使得用户能快速搭建用于数据采集的软硬件系统。
LabVIEW还提供了快速配置向导,帮助用户进行基本的设备设置和信号检测。
三、LabVIEW的数据处理技术1. 数据存储与传输LabVIEW提供了多种数据存储与传输方式,满足各类数据处理需求。
用户可以选择将数据保存到本地文件、数据库或云端存储中,也可以通过网络协议将数据传输到其他设备或软件中。
LabVIEW还支持实时数据传输,使得用户能够对实时采集的数据进行实时监控和处理。
2. 数据分析与算法LabVIEW提供了强大的数据分析和算法模块,用户可以通过拖拽和连接这些模块来构建复杂的数据处理流程。
LabVIEW支持基本的数学运算、信号滤波、频谱分析和图像处理等功能,也支持用户自定义算法的开发。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验四基于LabVIEW的声音数据采集一、背景知识在虚拟仪器系统中,信号的输入环节一般采用数据采集卡实现。
商用的数据采集卡具有完整的数据采集电路和计算机借口电路,但一般比较昂贵,计算机自带声卡是一个优秀的数据采集系统,它具有A/D和D/A转换功能,不仅价格低廉,而且兼容性好、性能稳定、通用性强,软件特别是驱动程序升级方便。
如被测对象的频率在音频范围内,同时对采样频率要求不是太高,则可考虑利用声卡构建一个数据采集系统。
1.从数据采集的角度看声卡1.1声卡的作用从数据采集的角度来看,声卡是一种音频范围内的数据采集卡,是计算机与外部的模拟量环境联系的重要途径。
声卡的主要功能包括录制与播放、编辑和处理、MIDI接口三个部分。
1.2声卡的硬件结构图1是一个声卡的硬件结构示意图。
一般声卡有4~5个对外接口。
图1 声卡的硬件结构示意图声卡一般有Line In 和Mic In 两个信号输入,其中Line In为双通道输入,Mic In仅作为单通道输入。
后者可以接入较弱信号,幅值大约为0.02~0.2V。
声音传感器(采用通用的麦克风)信号可通过这个插孔连接到声卡。
若由Mic In 输入,由于有前置放大器,容易引入噪声且会导致信号过负荷,故推荐使用Line In ,其噪声干扰小且动态特性良好,可接入幅值约不超过1.5V的信号。
另外,输出接口有2个,分别是Wave Out和SPK Out。
Wave Out(或LineOut)给出的信号没有经过放大,需要外接功率放大器,例如可以接到有源音箱;SPK Out给出的信号是通过功率放大的信号,可以直接接到喇叭上。
这些接口可以用来作为双通道信号发生器的输出。
1.3声卡的工作原理声音的本质是一种波,表现为振幅、频率、相位等物理量的连续性变化。
声卡作为语音信号与计算机的通用接口,其主要功能就是将所获取的模拟音频信号转换为数字信号,经过DSP音效芯片的处理,将该数字信号转换为模拟信号输出。
输入时,麦克风或线路输入(Line In)获取的音频信号通过A/D 转换器转换成数字信号,送到计算机进行播放、录音等各种处理;输出时,计算机通过总线将数字化的声音信号以PCM(脉冲编码调制)方式送到D/A 转换器,变成模拟的音频信号,进而通过功率放大器或线路输出(Line Out)送到音箱等设备转换为声波。
1.4声卡的配置及硬件连接使用声卡采集数据之前,首先要检查Line In 和Mic In的设置。
如图2,打开“音量控制”面板,在“选项”的下拉菜单中选择“属性”,得到如图3的对话框,在此对话框上选择“录音”,并配置列表中的选项即可。
可以通过控制线路输入的音量来调节输入的信号的幅度。
图2 音量控制面板图3 音量控制面板属性更改及录音控制面板声卡测量信号的引入应采用音频电缆或屏蔽电缆以降低噪声干扰。
若输入信号电平高于声卡所规定的最大输入电平,则应该在声卡输入插孔和被测信号之间配置一个衰减器,将被测信号衰减至不大于声卡最大允许输入电平。
一般采用两种连接线:a.一条一头是3.5mm的插孔,另一头是鳄鱼夹的连接线;b.一条双头为3.5mm插孔的音频连接线。
我们也可以使用坏的立体耳机做一个双通道的输入线,剪去耳机,保留线和插头即可。
2.声卡的主要技术参数2.1采样位数采样位数可以理解为声卡处理声音的解析度。
这个数值越大,解析度就越高,录制和回放的声音就越真实。
我们首先要知道:电脑中的声音文件是用数字0和1来表示的。
所以在电脑上录音的本质就是把模拟声音信号转换成数字信号。
反之,在播放时则是把数字信号还原成模拟声音信号输出。
声卡的位是指声卡在采集和播放声音文件时所使用数字声音信号的二进制位数。
声卡的位客观地反映了数字声音信号对输入声音信号描述的准确程度。
8位代表2的8次方——256,16位则代表2的16次方——643⨯。
比10较一下,一段相同的音乐信息,16位声卡能把它分为643⨯个精度单位进10行处理,而8位声卡只能处理256个精度单位,造成了较大的信号损失,最终的采样效果自然是无法相提并论的。
位数越高,在定域内能表示的声波振幅的数目越多,记录的音质也就越高。
2.2采样频率每秒钟采集声音样本的数量。
采集频率越高,记录的声音波形就越准确,保真度就越高。
但采样数据量相应变大,要求的存储空间也越多。
目前,声卡的最高采样频率是44.1KHz,有些能达96KHz。
一般将采样频率设为4挡,分别是44.1KHz、22.05KHz、11.025KHz、8KHz。
2.3缓冲区与一般数据采集卡不同,声卡面临的D/A和A/D任务通常是连续的。
为了在一个简洁的结构下较好地完成某个任务,声卡缓冲区的设计有其独到之处。
为了节省CPU资源,计算机的CPU采用了缓冲区的工作方式。
在这种工作方式下,声卡的A/D、D/A都是对某一缓冲区进行操作。
一般声卡使用的缓冲区长度的默认值是8192字节,也可以设置成8192字节或其整数倍大小的缓冲区,这样可以较好地保证声卡与CPU的协调工作。
声卡一般只对20Hz~20KHz的音频信号有较好的响应,这个频率响应范围已经满足了音频信号测量的要求。
2.4基准电压声卡不提供基准电压,因此无论是A/D还是D/A,在使用时,都需要用户参照基准电压进行标定。
目前一般的声卡最高采样频率可达96KHz;采样位数可达13位甚至32位;声道数为2,即立体声双声道,可同时采集两路信号;每路输入信号的最高频率可达22.05KHz,输出16为的数字音频信号,而16位数字系统的信噪比可达96dB。
bVIEW中有关声卡的控件介绍利用声卡作为声音信号的DAQ卡,可以方便快捷地穿件一个采集声音信号的VI。
与声音信号相关的函数节点位于程序框图下【函数】选版下【编程】函数选版的【图形与声音】函数子选版的【声音】函数选版的各子选版,如图4所示图 4 LabVIEW中声卡控件下面主要介绍【声音】/【输入】控件选板中相关控件的作用。
配置声音输入配置声音输入设备(声卡)参数,用于获取数据并且将数据传送至缓冲区。
启动声音输入采集开始从设备上采集数据,只有停止声音输入采集已经被调用时,才需要使用该VIs。
声音输入清零停止声音采集,清除缓冲区,返回到任务的默认状态,并且释放与任务有关的资源。
配置声音输出用于配置声音输出设备的参数,使用“写入声音输出”VI将声音写入设备。
写入声音输出将数据写入声音输出设备,如要连续写入,必须使用配置声音输出VI配置设备,必须手动选择所需多态实例。
声音输出清零将任务返回到默认的未配置状态,并清空与任务相关的资源,任务变为无效。
此外,还有众多的声音文件的打开和关闭等函数节点,在此不一一介绍,读者可参考LabVIEW帮助窗口进行了解。
另外在程序框图下【Express】下【输入】下的【声音采集】及【输出】下的【播放波形】也是与声音信号相关的函数节点,如图5所示。
图 5 LabVIEW中Express下的声卡控件4.应用程序举例4.1声音的基本采集利用声卡采集声音信号,其程序的基本实现过程如图6所示。
图6 声卡采集程序流程图4.1.1 VIs声音采集本案例通过采集由Line In 输入的声音信号,练习声音采集的过程。
操作步骤[1] 执行【开始】/【程序】/National Instruments LabVIEW8.5】命令,进入LabVIEW8.5的启动界面。
[2] 在启动界面下,执行【文件】/【新建VI】菜单命令,创建一个新的VI,切换到前面板设计窗口下,移动光标到前面板设计区,打开【空间】/【新式】/【图形显示控件】控件选板,选择一个“波形图”控件,放置到前面板设计区,编辑其标签为“声音信号波形”并调整它的大小,如图7所示。
图7 波形图标签编辑[3] 切换到程序框图设计窗口下,打开【函数】/【编程】/【图形与声音】/【声音】/【输入】函数选板,在程序框图设计区放置一个“配置声音输入”节点、一个“启动声音输入采集”节点、一个“读取声音输入”节点、一个“停止声音输入采集”节点、一个“声音输入清零”节点,如图8所示。
图8 声音输入控件[4] 移动光标到各节点上。
可以在“即时帮助”窗口中看到各节点的端口及解释。
如“配置声音输入”节点,如图9所示。
图9 “配置声音输入”节点[5] 分别移动光标到“配置声音输入”节点的“设备ID”、“声音格式”、“采样模式”的输入端口上,单击鼠标右键,从弹出右键快捷菜单中,执行【创建】/【输入控件】菜单命令,通过端口创建相应的输入节点,如图10所示。
图10 “配置声音输入”节点设置[6] 移动光标到“声音输入清零”节点的“错误输出”端口上,单击鼠标右键,从弹出的右键快捷菜单中执行【创建】/【显示控件】菜单命令,创建相应的显示节点,如图11所示图11 “声音输入清零”节点设置[7] 打开【函数】/【编程】/【结构】函数选板,选择“While循环”节点,放置到程序框图设计区,在“While循环”的循环条件端口创建一个输入控件,移动光标到“While循环”的循环条件节点的输入端,单击鼠标右键,从弹出的右键快捷菜单中执行【创建】/【输入控件】菜单命令,创建相应的输入节点,并按图12所示,完成程序框图的设计。
图12 程序框图的设计[8] 切换设计界面到前面板,可以看到与程序框图设计区节点相对应的控件对象,调整它们的大小和位置,美化界面。
[9] 单击工具栏上程序运行按钮,并对着传声器输入语音或一段音乐,即可在波形图空间中查看声音信号的波形,其中的一个运行界面如图13所示。
图13 程序运行界面二、实验内容1、基于LabVIEW,用声卡采集声音信号,并显示出来,计算并显示声音信号的幅度谱。
2、对声音信号添加频率为20KHz,幅度为0.01V的噪声(采样频率为44.1KHz,采样数:10000个点),将加噪后的信号波形及其幅度谱显示出来。
3、对加噪后的信号滤波,采用低通滤波器,截止频率为15KHz,Butterworth 型,阶数为10,将滤波后的信号波形及其幅度谱显示出来。
4、比较以上3个步骤的波形和幅度谱。
5、采用同样的方法可以测量信号的相位谱、功率谱等信息,实验前面板如图14所示图14 实验程序的前面板实验程序框图如图15所示图15 实验程序框图。