音频信号的获取与处理
音频信号的获取与处理

随着计算机技术的发展,特别是海量存储设备和 大容量内存在计算机上的实现,对音频媒体进行 数字化处理便成为可能。数字化处理的核心是对 音频信息的采样,通过对采集到的样本进行加工 ,生成各种效果。音频信息在多媒体中的应用是 极为广泛的,当计算机配有声卡和音箱后,就能 够发出各种悦耳的声音,尤其是视频图像配以娓 娓动听的音乐和语音,使计算机的操作得以藉由 视觉以外的听觉加以辅助而成为一种愉快的过程 。静态或动态图像配以解说和背景音乐,可使图 像充满生气;立体声音乐可增加空间感,使人身 临其境;语音电子邮件,听声如见其人,游戏中 的音响效果对于渲染气氛则为显得更为重要;此 外,在多媒体通信中,可视电话、电视会议、这 些都离不开数字化音频处理技术。
第2章 音频信息的获取与处理
声音是多媒体信息的一个重要组成部分, 也是表达思想和情感的一种必不可少的媒体 。无论其应用目的是什么,声音的合理使用 可以使多媒体应用系统变得更加丰富多彩。 在多媒体系统中,音频可被用作输入或输出 。输入可以是自然语言或语音命令,输出可 以是语音或音乐,这些都会涉及到音频处理 技术。
2020/9/28
•2.1 音频信号及其概念
2.1.1 声音处理技术历史回顾
语言、音乐和各种自然声是以声波为载体传递信息的基 本形式 。人类很早就开始研究声音,并利用当时已掌握了 的声音的某些规律来制造乐器、进行建筑设计或传声装置 设计,使发出的声音传得更远。可是几千年来,人类只能 凭耳朵来辨别声音的高低、强弱,而不能把声音记录和储 存起来。所以与其他研究领域相比,声学的研究相对滞后 。直到19世纪爱迪生发明了留声机,人们才能用机械的方 法把各种声音记录在唱片上。可是声音、机械振动不容易 传递,也不容易放大,机械方法很不方便。随着电学、电 子学的发展,人们开始尝试记录下这些真实的声音,利用 把声的振动转换成电信号的原理,使声音的记录成为可能 。最终电声技术获得了迅速发展。
音频的采集和处理分析ppt课件.ppt

音频的合成
(2) 单击 [Copy]按钮,获取声音素材
(5) 鼠标左键单击波表,确定合成开始位置
(1) 在文件1中设定编辑区域
(7) 调整合成素材的音量
(4) 打开文件2
(6) 单击 [Mix] 按钮
● [操作步骤]
(8) 单击[确定]按钮
(3) 关闭文件1
● 被合成的素材应采样频率一致,格式相同
音频的采集和处理
音频文件格式
MIDI文件(.mid) MIDI—— Musical Instrument Digital Interface,乐器数字化接口文件 不是将声音的波形进行数字化采样和编码,而是将数字式电子乐器的弹奏过程记录下来 特点:数据量小
音频的采集和处理
音频文件格式
WMA文件(.wma) WMA——Windows Media Audio,微软公司推出的与MP3格式齐名的一种新的音频格式 特点:压缩比和音质方面都超过了MP3,更是远胜于RA,即使在较低的采样频率下也能产生较好的音质
音频的采集和处理
音频文件格式
VOC文件(.voc) Creative公司的波形文件 SND文件(.snd) Macintosh计算机的波形文件
返回
音频的采集和处理
音频处理硬件
声卡的作用 数字信号与模拟信号之间的双向转换 声卡的类型 单板 输出功率大,抗干扰,音质好 主板集成 易受干扰,性能指标比单板略差
功率 放大器
音乐合成器
MIDI接口
游戏接口
扬声器
PC总线
地址总线
数据总线
麦克输入
线形输入
CD输入
返回
音频的采集和处理
数字音频的获取与处理
计算机音频处理的基本原理和应用

计算机音频处理的基本原理和应用计算机音频处理是指使用计算机技术对音频信号进行处理、分析和处理的过程。
它涉及到音频的录制、编码、解码、编辑和混音等方面。
本文将介绍计算机音频处理的基本原理和应用。
一、计算机音频处理的基本原理1.1 音频信号采样和量化音频信号是一种连续的模拟信号,计算机无法直接处理模拟信号,因此需要对音频信号进行采样和量化。
采样是指以一定的时间间隔对音频信号进行离散采样,获取一系列的采样值。
量化是指将采样值映射为一系列的数字值,通常采用二进制表示。
1.2 数字信号处理采样和量化后的音频信号被转换为数字信号,计算机可以对数字信号进行处理。
数字信号处理包括滤波、变换、编解码等操作。
滤波可以去除噪声和干扰,使得音频信号更加清晰。
变换可以将音频信号转换为频域表示,如傅里叶变换可以将音频信号分解为不同频率的成分。
编解码是将音频信号进行压缩和解压缩,以减小数据量和传输带宽。
1.3 音频信号合成和修改计算机音频处理还涉及到音频信号的合成和修改。
合成是指根据特定的算法和参数生成音频信号,如合成乐曲、声音效果等。
修改是指对已有的音频信号进行加工和改变,如音频剪辑、音频特效等。
这些操作可以通过计算机软件或硬件实现。
二、计算机音频处理的应用2.1 音乐制作和录音计算机音频处理在音乐制作和录音方面有广泛的应用。
音乐制作可以通过计算机软件进行录音、混音、编辑和后期处理,实现音频效果的增强和修饰。
音乐制作软件如Pro Tools、Logic Pro等,提供了丰富的音频处理工具和音效库。
2.2 语音识别和语音合成计算机音频处理在语音识别和语音合成方面也有重要应用。
语音识别可以将语音信号转换为文字,为人机交互和语音控制提供支持。
语音合成可以将文字转换为语音信号,为计算机生成自然语言提供支持。
这些应用广泛用于语音助手、智能音箱、机器翻译等领域。
2.3 声音特效和游戏音效计算机音频处理在电影、电视和游戏等娱乐领域也有广泛应用。
多媒体技术之音频信息的获取与处理PPT课件( 75张)

常用音频采样率:8kHz、11.025kHz、16kHz、22.05kHz、44.1kHz 及 48kHz
2.2.2 数字音频获取
● 量化
量化概念
通过采样得到的表示声音强弱的函数 x(nT) 是连续的,为把 x(nT) 存入计 算机,就必须将采样值离散化,即量化成一个有限个幅度值的集合 x(nT)
多媒体技术及其应用
第二章 音频信息的获取与处理
● 主要知识点
2.1声音概述 2.2数字化音频 2.3音乐合成与 MIDI 2.4音频卡 2.5数字音频压缩标准
2.1.1 声音定义 ● 声音概念 ● 声音特性
2.1.2 声音基本特点 ● 声音传播 ● 声音频率 ● 声音传播方向 ● 声音三要素 ● 声音连续、相关及
实时性 声音具有实时性。对处理声音的计算机硬件和软件提出很高要求
2.2 数字化音频
转换
模拟信号
数字信号
音频数字化需要考虑的问题
采样、量化、编码
模 拟 信 号 的 数 字 化 过 程
100101100011101
音频信号处理过程流程
音
频采
开信 样
始
号 频
频 率
率
采 样
量 化
保 存 为 声 音 文 件
周期
用声音录制软件记录的英文单词“Hello”的语音 实际波形
2.1.2 声音特点
● 声音的传播方式
声音是依靠介质 ( 比如:空气、液体、固体 ) 的振动进行传播的 声源是一个振荡源,它使周围介质产生振动,并以波的形式传播 人耳感觉到这种传播过来的振动,反映到大脑,就意味听到声音 声音在不同的介质中传播,其传播速度和衰减速率都是不一样的
音频信号的拾取与处理技术

另外,因为ENG方式拍摄旳主要是新闻信息类节目,所以 话筒以及录音器材对于画面并无太大影响,有时话筒等录音器 材在画面出现反而会增长真实感。
当空气旳气流吹向麦克风时,振膜受振便会产生难听旳干扰噪声。尤其在外景录音,当风 吹过麦克风时,所录旳风声却与人耳听到旳截然不同,一点儿也听不出是风吹树叶旳沙沙声或吹 过屋旁旳潇潇声,而是某些砰砰声、隆隆声或爆裂声。在室内录音一般没有风旳问题,但当麦克 风追随声源而必须迅速移动时也会引起气流对振膜旳冲击,产生干扰噪声;另一种问题是在近距 离录音时,演员口中气流冲击麦克风,尤其是有些带有“破”、“拖”、“搏”旳字更易产愤怒 流,其发声气流冲击麦克风振膜时会产生讨厌旳爆破声。
中距离对 民族、美声唱法拾音 远距离对 美声唱法、乐器拾音 注:
5-20cm 15 左右 10-20cm 0
为了取得最大旳输出 电压 2
(1)当话筒与声源旳方位角成0 时,气流声会很轻易产生低频“pu”声;而 当话筒与声源成15 -30 时,音色旳低频、中频、高频都比较均衡。当话 筒置于45 -90 时,语音气流擦过话筒振膜,使音圈振动减小,所以低频 声音小,相对高频成份百分比增长,但总音量变小。
二、话筒旳选用
1、以话筒旳性能参数根据
指向性 敏捷度 频响特征 最大输入声压级 输出阻抗
A、指向性 话筒分为单一指向性和可变指向性两大类。前者只有如前面
所简介旳全向、双向、心型等指向性之一,而后者能够经过转换 开关旳切换,从而具有多种指向性。可变指向性话筒对于录音环 境和需要旳适应性较强,但价格却较为昂贵。
音频信号捕获与处理技术在语音识别中的应用教程

音频信号捕获与处理技术在语音识别中的应用教程随着人工智能技术的不断发展,语音识别成为了一项重要的研究领域。
在语音识别过程中,音频信号的捕获和处理技术起着至关重要的作用。
本文将介绍音频信号捕获与处理技术在语音识别中的应用,帮助读者了解该领域的基本原理和方法。
音频信号捕获是语音识别的第一步,目的是将环境中的声音转换成数字信号,以便后续的处理和分析。
最常用的音频采集设备是麦克风,它能将声音转换成电信号。
在选择麦克风时,需要考虑到其频率响应、信噪比、灵敏度等特性,以保证捕获到的音频信号具有足够的质量。
在音频信号捕获之后,接下来的关键步骤是信号的预处理。
预处理的目的是提高信号的质量和准确性。
常见的预处理方法包括去噪、滤波、增强等。
去噪技术能够有效降低环境噪声对语音信号的干扰,如常见的卷积神经网络去噪方法可以用于去除背景噪声。
滤波技术能够消除信号中的不必要频率成分,以提高信号的清晰度。
增强技术则可以加强信号的强度和明显度,使其更容易被识别。
语音识别的核心是特征提取。
特征提取的目的是将音频信号转换成有用的信息,用于模式识别和分类。
常用的特征提取方法包括短时能量、倒谱系数、梅尔频率倒谱系数等。
短时能量可以反映音频信号在不同时间段的能量分布情况,倒谱系数则通过傅里叶变换将时域信号转换成频域表示,梅尔频率倒谱系数则是计算音频信号在不同频率上的能量分布。
这些特征能够从不同角度描述音频信号的特性,提供有用的信息供语音识别算法使用。
特征提取之后,需要使用适当的模型对特征进行建模和分类。
常用的模型包括隐马尔可夫模型(HMM)和深度神经网络(DNN)等。
隐马尔可夫模型是一种统计模型,能够描述音频信号的时间序列特性和状态转移规律。
深度神经网络则是一种基于神经网络的模型,通过多层次的神经元和权重连接进行特征的学习和分类。
这些模型能够对特征进行有效的建模和分类,提高语音识别的准确性和鲁棒性。
除了以上的技术,语音识别中还涉及到其他一些重要的问题,如说话人识别、语音合成等。
C语言音频处理音频读取处理和播放的技巧

C语言音频处理音频读取处理和播放的技巧音频处理是计算机科学领域的一个重要分支,它涉及到音频信号的获取、处理和播放。
在C语言中,可以利用各种库和技巧来实现音频的读取、处理和播放。
本文将介绍一些C语言中常用的音频处理技巧,帮助读者更好地理解和应用音频处理的方法。
一、音频读取技巧1. 使用库文件:C语言中常用的音频读取库文件有libsndfile、libsndfile、PortAudio等。
这些库文件提供了方便的API接口,可以实现从音频文件中读取数据。
2. 了解音频文件格式:在进行音频读取操作前,先要了解所使用的音频文件的格式,比如WAV、MP3、FLAC等。
不同格式的音频文件在存储数据和读取方式上有所不同,需要根据文件格式进行相应的处理。
3. 使用文件指针:通过使用C语言中的文件指针,可以打开音频文件并读取其中的数据。
可以使用fopen()函数打开文件,使用fread()函数读取文件中的数据,并使用fclose()函数关闭文件。
二、音频处理技巧1. 音频采样率的调整:音频采样率是指音频每秒钟采集的样本数,常见的采样率有44.1kHz、48kHz等。
通过控制采样率,可以调整音频的播放速度和音质。
2. 音频音量的调整:通过对音频信号进行放大或缩小的操作,可以调整音频的音量。
可以通过调整音频的幅度或者应用数字信号处理的技术实现音量的调整。
3. 音频滤波:音频滤波是指对音频信号进行滤波处理,去除不需要的频率成分。
可以使用低通滤波器、高通滤波器、带通滤波器等进行音频滤波操作,以改善音频的质量。
三、音频播放技巧1. 使用库文件:在C语言中,可以使用SDL、OpenAL等音频播放库文件来实现音频的播放。
这些库文件提供了方便的接口函数,可以实现音频的播放和控制。
2. 使用多线程:为了保证音频播放的流畅性,在进行音频播放时可以考虑使用多线程。
将音频播放操作放在一个独立的线程中进行,可以避免音频播放对其他操作的阻塞。
数字音频放大器工作原理

数字音频放大器工作原理数字音频放大器(Digital Audio Amplifier)是一种利用数字信号处理技术来实现音频信号放大的装置。
它具有高效率、低功耗、小体积等特点,被广泛应用于音响设备、汽车音响以及通信系统等领域。
本文将介绍数字音频放大器的工作原理,并详细探讨其信号处理过程和特点。
一、数字音频信号的获取在数字音频放大器中,首先要获取原始的音频信号。
一般来说,音频信号可以通过麦克风、CD播放器、电视机等设备产生。
这些设备将模拟音频信号转换成数字音频信号,通过数字音频接口(如S/PDIF、HDMI等)传输给数字音频放大器。
二、数字音频信号的处理数字音频放大器通过接收到的数字音频信号进行处理,以满足不同的音频放大需求。
信号处理包括数字滤波、数字增益调节、音效处理等过程。
1. 数字滤波数字滤波是数字音频放大器中的关键环节之一,其作用是对音频信号进行滤波处理,以去除不需要的频率成分或噪声干扰,保留音频信号的有效部分。
常用的数字滤波器有低通滤波器、高通滤波器、带通滤波器等。
2. 数字增益调节数字增益调节是对音频信号的幅度进行调整,以满足放大器输出功率的要求。
通过调节增益系数可以实现音量的控制,使得音频信号在放大器中得到适当的放大。
3. 音效处理音效处理是数字音频放大器的又一重要功能,通过应用数字信号处理算法,可以实现多种音效效果,如均衡器、混响、环绕声等,以提升音频质量,增强听觉体验。
三、数字音频信号的放大在信号处理完毕之后,数字音频放大器会将处理后的音频信号转换为模拟音频信号,并进行放大操作,以提供足够的功率输出。
放大操作的核心是利用功率放大器(Power Amplifier)将输入信号增加到适当的幅度,使其能够驱动扬声器产生声音。
常见的数字音频放大器采用PWM(Pulse Width Modulation)调制技术来实现信号的放大。
具体步骤如下:1. 数字音频信号调制:将数字音频信号转换为PWM信号,控制其占空比(即高电平和低电平的时间比例),以表达不同的音频特性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《多媒体技术》实验指导书
学院通信工程系
2014年9月
实验一音频信号的获取与处理
【目的与要求】
1、了解音频数据的获取和处理方法;
2、学会使用简单的声音编辑工具进行音频数据的录制、编辑和播放;
3、了解不同的音频文件在质量上和数据量上的差异。
【实验仪器与器件】
硬件:计算机、声卡、话筒、音箱或耳机
软件:声音播放软件(如千千静听、暴风影音等)、音频处理软件cool edit pro 【实验容】
【基础知识】
1.声音媒体是较早引入计算机系统的多媒体信息之一,从早期的利用PC机置喇叭发声,发展到利用声卡在网上实现可视,声音一直是多媒体计算机中重要的媒体信息。
在软件或多媒体作品中使用数字化声音是多媒体应用最基本、最常用的手段。
在多媒体作品中可以通过声音直接表达信息、制造某种效果和气氛、演奏音乐等。
逼真的数字声音和悦耳的音乐,拉近了计算机与人的距离,使计算机不仅能播放声音而且"听懂"人的声音是实现人机自然交流的重要方面之一。
2.数字音频和模拟音频
模拟音频和数字音频在声音的录制和播放方面有很大不同。
模拟声音的录制是将代表声音波形的电信号转换到适当的媒体上,如磁带或唱片。
播放时将纪录在媒
体上的信号还原为波形。
模拟音频技术应用广泛,使用方便。
但模拟的声音信号在多次重复转录后,会使模拟信号衰弱,造成失真。
数字音频就是将模拟的(连续的)声音波形数字化(离散化),以便利用数字计算机进行处理,主要包括采样和量化两个方面。
3.数字音频的质量
数字音频的质量取决于采样频率和量化位数这两个重要参数。
采样频率是对声音波形每秒钟进行采样的次数。
人耳听觉的频率上限在2OkHz左右,根据采样理论,为了保证声音不失真,采样频率应在4OkHz左右。
经常使用的采样频率有11.025kHz、22.05kHz和44.lkHz等。
采样频率越高,声音失真越小、音频数据量越大。
量化位数(也称量化级)是每个采样点的幅度量化时采用的二进制数的位数,常用的量化标准有8位、16位和32位。
例如,8位量化级表示每个采样点可以表示256个(0-255)不同量化值,而16位量化级则可表示65536个不同量化值。
量化位数越高音质越好,数据量也越大。
反映数字音频质量的另一个因素是通道(或声道)个数。
单声道是比较原始的声音复制形式, 每次只能生成一个声波数据。
立体声(双声道)技术是每次生成两个声波数据,并在录制过程中分别分配到两个独立的声道输出,从而达到了很好的声音定位效果。
四声道环绕(4.1声道)是为了适应三维音效技术而产生的,四声道环绕规定了4个发音点:前左、前右,后左、后右,并建议增加一个低音音箱,以加强对低频信号的回放处理。
Dolby AC-3音效(5.1声道)是由5个全频声道和一个超重低音声道组成的环绕立体声。
在多媒体音频技术中,存储声音信息的文件有多种格式,如Wav、Midi、Mp3、Rm、VQF等等。
1)Wav格式
Wav格式的文件又称波形文件,是用不同的采样率对声音的模拟波形进行采样得到的一系列离散的采样点,以不同的量化位数(16位、32位或64位)把这些采样点的值转换成二进制数得到的。
Wav是数字音频技术中最常用的格式,它还原的音质较好,但所需存储空间较大。
2)Midi格式
Midi是Musical Instrument Digital Interface(乐器数字接口)的缩写。
它是由世界上主要电子乐器制造厂商建立起来的一个通信标准,并于1988年正式提交给MIDI制造商协会,便成为数字音乐的一个国际标准。
MIDI标准规定了电子乐器与计算机连接的电缆硬件以及电子乐器之间、乐器与计算机之间传送数据的通信协议等规。
MIDI标准使不同厂家生产的电子合成乐器可以互相发送和接收音乐数据。
Midi文件纪录的是一系列指令而不是数字化后的波形数据,所以它占用存储空间比Wav文件要小很多。
3)MP3格式
MP3是对MPEG Layer 3的简称,是目前最热门的音乐文件。
其技术采用MPEG Layer 3标准对WAVE音频文件进行压缩而成,特点是能以较小的比特率、较大的压缩率达到近乎CD音质。
其压缩率可达1:12,每分钟CD音乐大约需要1兆的磁盘空间。
4)Rm格式
Rm是RealMedia文件的简称。
Real Networks公司所制定的音频视频压缩规称为RealMedia,是目前在Internet上相当流行的跨平台的客户/服务器结构多媒体应用标准,它采用音频/视
频流和同步回放技术来实现在Intranet上全带宽地提供最优质的多媒体,同时也能够在Internet上以28.8Kbps的传输速率提供立体声和连续视频。
4.硬件准备
目前,多媒体计算机中的音频处理工作主要借助声卡,从对声音信息的采集、编辑加工,直到声音媒体文件的回放这一整个过程都离不开声卡。
声卡在计算机系统中的主要作用是声音文件的处理、音调的控制、语音处理和提供MIDI接口功能等。
进行录制音频信号所需的硬件除了声卡,还有麦克风、音箱以及外界的音源信号设备(如CD唱机、录音机等),把麦克风、音箱、外界音源信号设备与声卡正确连接完成硬件准备工作,如图1.1所示。
图1.1 外部设备与声卡连接示意图
硬件连接好后,为了使声卡能正常工作还要进行音频设置,设置方法如下:1)右击桌面右下角的小喇叭,选择“调整音频属性”,选择“音频”面板。
2)单击“声音播放”中的“音量”按钮,设置播放的音量。
其中,“主音量”是输出的总音量;“波形”是指我们播放的WAV文件和MP3文件的音量;“软件合成器”(MIDI)是管MIDI音乐文件的音量;“CD唱机”是负责播放CD;“线性输入”是指声卡上的LINEIN输入。
3)设置录音的音量:单击“录音”中的“音量”按钮;“选项”菜单,打开“属性”框,;勾选“麦克风”(英文是MIC),调整音量大小。
音量的大小调节,需要根据自己的情况来决定,嗓音大的可以把音量调小一点,嗓音小的把音量调到最大。
【cool edit操作基础】
1)使用Cool Edit录制声音
①运行用Cool Edit,打开主界面窗口,如图1.2所示
图1.2 cool edit主界面
②右击音轨1的空白处,插入伴奏音乐,如图1.3所示。
图1.3 伴奏音乐的插入
③按下音轨2的R键及左下方的红色录音键,跟随伴奏音乐开始演唱(或朗诵)和录制。
如图4所示。
图1.3 声音格式的设置
④结束录音可按“停止”按钮。
点左下方播音键进行试听,看有无严重的出错,无误后双击音轨2 进入波形編辑界面,把录制的声音存储为无压缩的.wav文件。
“保存类型”可选择为“Windows PCM”。
(也可以另存为其他格式)2)用Cool Edit编辑音频文件
①降噪处理:
在波形编辑界面,找出一段适合用来作噪声采样波形,打开“效果--噪声消除
--降噪器”准备进行噪声采样,如图1.4和图1.5所示。
在按默认参数值进行噪声采样后,关闭降噪器,回到波形編辑界面,全选录制的声音波形,进入降噪器并点击确定,完成降噪处理。
图1.4 噪声选择示意图
图1.5 噪声采样示意图
②混响处理:
打
开
【
效
果】
|【常用效果器】|【混响】,调节混响长度、起始缓冲、高频吸收时间、干湿声比例等值,如图1.6所示,反复调节试听,达到最佳效果为止。
图1.6 设置混响效果
③淡入淡出:
选取背景音乐波形的开头一部分或结束的一段,执行【效果】|【波形振幅】|【渐变】,打开波形振幅对话框,选中淡入/出选项卡,设置好初始音量值和结束音量值,点击确定完成淡入淡出处理,如图1.7所示。
图1.7 淡入淡出处理
④混缩合成:
点“编辑--混缩到文件--全部波形”便可将伴奏和处理过的人声混缩合成在一起,最后点“文件-- 另存为”将混缩合成后的文件保存为需要的格式。
【实验容及步骤】
录制一首自己的歌曲(伴奏可在网上下载)或进行诗歌朗诵(自行选择合适的背景音乐)。
要求:
1、尽可能多的练习使用cool edit软件的各项功能,除以上介绍外,其他功能参考“cool_edit2.1教程.doc”文件;
2、使用“另存为”命令分别将音频文件以A/mu-Law Wave、Microsoft ADPCM、MP3格式进行保存。
将各种格式的语音文件的声音参数(如采样频率、
量化精度、压缩算法、压缩前后的数据量等)以表格的形式记录。
【实验报告要求】
1、写明实验的操作步骤及相关参数的设置情况。
2、根据实验结果比较各种压缩格式的音频效果,计算对应的压缩率。
3、总结实验心得。
【思考题】
1. 数字音频通常使用的采样率为多少?
2.请举出三种多媒体音频技术中常用的存储声音信息的文件格式?
3. 如果要将背景音乐和人声的波形分别通过左右声道输出,可以怎样操作?(选作)。