归结原理数学分析

合集下载

《数学分析》考试大纲

《数学分析》考试大纲

《数学分析》考试大纲一、课程名称:数学分析二、适用专业: 数学与应用数学三、考试方法:闭卷考试四、考试时间:100分钟五、试卷结构:总分:100分,选择题15分,填空题15分,计算题40分,证明题30分。

六、参考书目:1、华东师范大学数学系编著,《数学分析》(上、下册),高等教育出版社,2010年第4版。

2、中国科学技术大学常庚哲史济怀编著,《数学分析教程》(上、下册),高等教育出版社,2003年第1版。

七、考试的基本要求:数学分析是数学与应用数学专业专升本入学考试中专业课考试内容,考生应理解和掌握《数学分析》中函数、极限、连续、微分学、积分学和级数的基本概念、基本理论、基本方法。

应具有抽象思维能力、逻辑推理能力、运算能力和空间想象能力,能运用所学知识正确拙推理证明,准确、简捷地计算。

能综合运用数学分析中的基本理论、基本方法分析和解决实际问题。

八、考试范围第一章实数集与函数(一)考核内容实数及其性质,绝对值与不等式。

区间与邻域,有界集与确界原理。

函数概念,函数的表示法。

函数的四则运算,复合函数,反函数,初等函数。

具有某些特性的函数:有界函数、单调函数、奇函数与偶函数、周期函数。

(二)考核知识点1、实数:实数的概念,实数的性质,绝对值与不等式;2、数集、确界原理:区间与邻域,有界集与无界集,上确界与下确界,确界原理;3、函数概念:函数的定义,函数的表示法(解析法、列表法、和图象法),分段函数;4、具有某些特征的函数:有界函数,单调函数,奇函数与偶函数,周期函数。

(三)考核要求1、了解实数域及性质;2、掌握几种不等式及应用;3、熟练掌握数域,上确界,下确界,确界原理;4、牢固掌握函数复合、基本初等函数、初等函数及某些特性(单调性、周期性、奇偶性、有界性等)。

第二章数列极限(一)考核内容数列。

数列极限的定义,无穷小数列。

收敛数列性质:唯一性、有界性、保号性、不等式性质、迫敛性、四则运算法则。

子列及子列定理。

数学分析3-4两个重要的极限

数学分析3-4两个重要的极限

1
1
x
e
.
x x
当 x 0时, 设 x y , y 0, 则
1
1 x
x
1
1 y y
1
1 y . y 1
因为当 x 时,y , 所以
lim 1 x
1 x
x
lim
y
1
1 y11 y 1
1 y 1
e
.
这就证明了
lim 1 x
1 x
x
e
.
前页 后页 返回
1 n2
e.
n 1
再由迫敛性,
求得 lim 1 n
1 n
1 n2
n
e.
前页 后页 返回
例7 (复利息问题)设银行将数量为A0的款贷出,每期利
率为 r.若一期结算一次,则t 期后连本带利可收回
t 1, 本利和: t 2, 本利和: t 3, 本利和:
A0 A0r A0 1 r
来值是复利问题:
At A0e rt
与此相反,若已知未来值At求现在值A0,则称贴 现问题。这时利率r称为贴现率。
由复利公式,容易推得离散的贴现公式为:
A0 At (1 r)t
A0
At (1
r )mt m
连续的贴现公式为:
A0 At e rt
前页 后页 返回
例8 设年利率为6.5%,按连续复利计算,现投资 多少元,16年之末可得1200元?

lim
n
1
1 n
1 n2
n
.

因为
1
1 n
1 n2
n
1
1 n
n

数学分析专升本考试大纲

数学分析专升本考试大纲

《数学分析》专升本考试大纲一、课程名称:数学分析二、适用专业:数学与应用数学三、考试方法:闭卷考试四、考试时间:120分钟五、试卷结构:总分:100分;判断题:10分;填空题20分;选择题15分;计算证明应用题:55分六、参考教材:1、林元重著,新编数学分析(上、下册),武汉大学出版社,2015年3月第1版2、陈纪修、於崇华、金路编,数学分析(上、下册),高等教育出版社,2004年6月第二版3、华东师范大学数学系编,数学分析(上、下册),高等教育出版社,2011年5月第四版七、考试内容及基本要求第1章极限论1.1引言(一) 考核要求1. 了解数学分析是什么.2. 掌握实数的性质(有序性,稠密性,阿基米德性.实数的四则运算),掌握实数的基本概念和最常见的不等式.3.掌握函数概念和函数的不同的表示方法.4. 掌握函数的有界性,单调性,奇偶性和周期性.(二) 考核范围1. 数学分析是什么.2. 实数的基本性质和绝对值的不等式,区间与邻域,集合的上下界.3. 函数的定义与表示法,复合函数与反函数,初等函数.4. 函数的有界性,单调性,奇偶性和周期性.1.2 数列极限概念(一) 考核要求ε-定义证明极限,学会证明1. 深刻理解并掌握数列极限概念,学会用数列极限的N数列极限的基本方法.2. 掌握数列极限的基本性质,掌握四则运算法则.3. 掌握夹逼准则,理解数集确界及确界原理,掌握单调有界准则,理解柯西收敛准则.(二) 考核范围1. 数列极限概念.2. 数列极限的唯一性,有界性,保号性,保不等式性,四则运算法则.3. 数列极限的夹逼准则和单调有界准则,数集的确界及确界原理,数列的子列及相关定理(包括致密性定理),柯西收敛准则.1.3 函数极限概念及性质(一) 考核要求1. 正确理解和掌握函数极限的M ε-定义、εδ-定义,掌握极限与左右极限的关系,能够用定义证明和计算函数的极限.2. 理解并掌握函数极限的基本性质(唯一性,有界性,保号性,保不等式性,四则运算法则),会用这些性质计算函数的极限.(二) 考核范围1. 函数极限的M ε-定义、εδ-定义,左右极限.2. 函数极限的唯一性,有界性,保号性,保不等式性,四则运算法则.1.4 函数极限存在的准则与两个重要极限(一) 考核要求1. 理解并掌握函数极限的归结原则,了解函数极限的单调有界定理,理解函数极限的柯西准则.能够写出函数极限的归结原理和柯西准则.2. 熟练掌握两个重要极限.(二) 考核范围1. 函数极限的归结,函数极限的单调有界定理,函数极限的柯西准则.2. 两个重要极限.1.5 无穷小量与无穷大量(一) 考核要求掌握无穷小量与无穷大量以及它们的阶数的概念.(二) 考核范围无穷小量与无穷大量,高阶无穷小,同阶无穷小,等价无穷小,无穷大.1.6 连续性概念(一) 考核要求深刻理解并掌握函数连续性概念.(二) 考核范围1. 函数连续,函数左右连续,区间上函数连续的概念.2. 间断点及其分类.1.7 连续函数的局部性质与初等函数的连续性(一) 考核要求掌握连续函数的局部性质和和初等函数的连续性.(二) 考核范围1. 连续函数的局部有界性,局部保号性,四则运算.2. 复合函数的连续性,反函数的连续性,初等函数的连续性.1.8 闭区间上连续函数的性质(一) 考核要求1. 理解闭区间上连续函数的最大最小值定理,介值性定理.2. 理解并掌握一致连续性概念,理解一致连续性定理.(二) 考核范围1. 连续函数的最大最小值定理,介值性定理.2. 一致连续性概念,一致连续性定理.1.9 实数的连续性与上(下)极限(一)考核要求1. 理解区间套定理、聚点定理,了解上(下)极限及其性质.2. 理解有限覆盖定理,了解几个基本定理的等价性.(二)考核范围1. 区间套定理、聚点定理,上(下)极限及其性质.2. 有限覆盖定理,几个基本定理的等价性.第2章一元函数微分学2.1 导数的概念(一) 考核要求1. 理解并掌握导数的定义,掌握导数的几何意义,了解导数的物理意义.2. 了解增量——微分公式,掌握可导与连续的关系.了解费马定理、达布定理.(二) 考核范围1. 变化率——导数,单侧导数,导函数,几个基本导数公式,几何意义.2. 增量——微分公式,可导与连续的关系.2.2 导数的运算法则(一) 考核要求1. 熟练掌握导数的四则运算法则,理解反函数的求导法则.2. 熟练掌握复合函数的求导法则及基本导数公式.3. 知道求分段函数在分段点处的导数.(二) 考核范围1.导数的四则运算法则,反函数的求导法则.2. 复合函数的求导法则,对数求导法,基本导数公式.2.3 参变量函数和隐函数的导数(一) 考核要求掌握参变量函数的求导法则,知道求隐函数的导数,会运用求导法则求相关变化率.(二) 考核范围参变量函数的求导法则,隐函数的求导法,相关变化率.2.4 微分(一) 考核要求1. 深刻理解并掌握微分的概念,掌握微分的运算方法,了解微分在近似计算中的应用.2. 理解微分与导数的关系,会利用微分法则求参变量函数和隐函数的导数.(二) 考核范围1. 微分的概念,微分的运算法则,一阶微分形式的不变性,微分在近似计算中的应用.2. 利用微分法则求参变量函数和隐函数的导数.2.5 高阶导数与高阶微分(一) 教学目的1. 掌握高阶导数的概念和计算,掌握高阶导数的莱布尼茨公式.2. 了解高阶微分及其计算,知道高阶导数与高阶微分的关系.(二) 考核范围1. 高阶导数及其计算,高阶导数的莱布尼茨公式.2. 高阶微分及其计算.2.6 拉格朗日定理和函数的单调性、极值(一) 考核要求1. 掌握罗尔定理和拉格朗日中值定理的条件、结论及证明方法,会应用中值定理证明一些不等式和一些中值公式,了解达布定理和导数极限定理.2. 掌握求函数的单调区间和极值及最值的一般方法.(二) 考核范围1. 极值概念与费马定理.2. 罗尔定理,拉格朗日中值定理,应用中值定理证明不等式和中值公式举例,达布定理,导数极限定理.3. 函数的单调性与极值,函数的最值,最值应用题举例.2.7 柯西中值定理和不定式极限(一) 考核要求掌握柯西中值定理,掌握罗比达法则,会求各种形式的不定式极限.(二) 考核范围柯西中值定理及其简单应用举例,洛必达法则,不定式极限计算举例.2.8 泰勒公式(一) 考核要求理解带两种余项形式的泰勒公式,掌握基本初等函数的麦克劳林公式(熟记六个),会利用它们求不定式极限,了解泰勒公式在求高阶导数、函数极值以及近似计算方面的应用.(二) 考核范围1. 带佩亚诺余项和带拉格朗日余项的泰勒公式和麦克劳林公式,几个基本初等函数的麦克劳林公式.2. 泰勒公式应用举例(不定式极限,高阶导数,函数极值,近似计算).2.9其它应用(一) 考核要求1. 掌握函数凸性与拐点的概念,会求函数凹凸区间与拐点,了解函数凸性在证明不等式方面的应用.2.会求曲线的渐近线,了解函数作图的一般步骤,会描绘函数的图像.f x=近似解的牛顿切线法.3. 了解求方程()0(二) 考核范围f x=的近似解.函数的凸性与拐点,凸性的判定,渐近线,函数作图,方程()0第3章一元函数积分学3.1 不定积分的概念与线性运算(一) 考核要求理解原函数与不定积分的概念,熟练掌握基本积分公式及不定积分的线性运算法则,了解不定积分的几何意义,了解连续分段函数的原函数的求法.(二) 考核范围原函数与不定积分的概念,基本积分公式与线性运算法则,不定积分的几何意义.3.2 换元积分法与分部积分法(一) 考核要求理解并熟练掌握第一、二换元积分法与分部积分法.(二) 考核范围第一、二换元积分法,分部积分法.3.3 有理函数和三角函数有理式的不定积分(一) 考核要求掌握有理函数不定积分的计算方法,会计算一些三角函数有理式的不定积分,会计算一些简单无理函数的不定积分,了解欧拉变换法.(二) 考核范围有理函数的不定积分,三角函数有理式的不定积分,两类无理函数的不定积分.3.4 定积分的概念与牛顿——莱布尼茨公式(一) 考核要求-定义,了解定积分的几何1. 深刻理解并掌握定积分的概念,知道定积分概念的εδ意义和物理意义.2. 熟练掌握牛顿——莱布尼茨公式,会利用牛顿——莱布尼茨公式计算一些特殊的和式极限.(二) 考核范围-定义),牛顿—定积分的几何背景和物理背景,定积分的定义(极限形式的定义和εδ—莱布尼茨公式.3.5 可积函数类与定积分的性质(一) 考核要求1. 理解函数可积的必要条件,函数可积的充要条件(可积准则),掌握三类可积函数,对这些定理的证明及其证明思路只要求读懂,不作其它较高要求.2. 理解并掌握定积分的若干基本性质,能证明一些简单的积分不等式.(二) 考核范围1. 可积的必要条件,上(下)和与上(下)积分,可积的充要条件(可积准则),可积函数类.2. 定积分的基本性质,积分第一中值定理.3.6 微积分学基本定理、定积分的计算(续)(一) 考核要求1. 掌握微积分学基本定理,会求变上(下)限的定积分的导数.2. 熟练掌握换元积分法与分部积分法.3. 理解积分第二中值定理,理解泰勒公式的积分型余项,了解定积分近似计算.(二) 考核范围变上(下)限的定积分,微积分学基本定理,换元积分法与分部积分法,积分第二中值定理,泰勒公式的积分型余项,定积分近似计算.3.7 (3.8)定积分的应用(一) 考核要求1. 领会微元法的要领,掌握平面图形面积、由平行截面面积求体积、平面曲线弧长的计算公式,了解曲线的曲率,旋转曲面的面积.2. 领会定积分在物理应用方面的基本方法.(二)考核范围1. 微元法概述.2. 平面图形的面积,由平行截面面积求体积,平面曲线的弧长与曲率,旋转曲面面积.3. 功,液体静压力,引力.3.9 无穷积分与瑕积分(一) 考核要求1. 掌握无穷积分与瑕积分的定义和计算.2. 理解无穷积分的基本性质,掌握非负函数无穷积分的收敛性判别的比较判别法,掌握绝对收敛和条件收敛的概念,理解狄利克雷判别法和阿贝尔判别法(不作其它较高要求).3. 了解瑕积分与无穷积分的关系,了解瑕积分的收敛性判别法.(二) 考核范围1. 无穷积分与瑕积分的定义和计算.2. 无穷积分的基本性质,比较判别法(包括极限形式及特殊形式),绝对收敛与条件收敛,狄利克雷判别法与阿贝尔判别法.3. 瑕积分的收敛性判别法.第4章 级数论4.1 数项级数的基本概念及性质(一) 考核要求1. 理解数项级数收敛与发散的定义,掌握收敛级数的基本性质,能够根据定义或性质判别一些简单简单级数的敛散性.2. 掌握等比级数与调和级数.3. 理解级数收敛的柯西准则,对应用柯西准则判别级数的敛散性不作较高要求.(二) 考核范围数项级收敛与发散的定义和基本性质,等比级数,调和级数,柯西准则.4.2 正项级数(一) 考核要求1. 掌握判别正项级数敛散性的基本方法:比较判别法,比式判别法和根式判别.2. 了解积分判别法和拉贝判别法.(二) 考核范围1. 比较判别法,比式判别法,根式判别法.2. 积分判别法,拉贝判别法.4.3 变号级数(一) 考核要求1. 掌握交错级数的莱布尼茨判别法,掌握绝对收敛与条件收敛概念.2. 理解狄利克雷判别法与阿贝尔判别法,对其应用一般不作较高要求.3. 理解绝对收敛级数的两条重要性质,对其应用不作较高要求.(二) 考核范围1. 交错级数及其莱布尼茨判别法,绝对收敛与条件收敛.2. 狄利克雷判别法与阿贝尔判别法.3. 绝对收敛级数的重排,绝对收敛级数的乘积.4.4 函数项级数及其一致收敛性(一) 考核要求1. 深刻理解并掌握函数列和函数项级数一致收敛性的定义,理解一致收敛的柯西准则.2. 掌握一致收敛的另一充要条件(即lim sup ()()0n n x D f x f x →∞∈-=lim sup ()0n n x DR x →∞∈=),掌握判别函数项级数的魏尔斯特拉斯判别法即优级数判别法.3. 理解判别函数项级数收敛性的狄利克雷判别法和阿贝尔判别法,对其应用不作较高要求.(二) 考核范围1. 函数列与函数项级数一致收敛性的定义,一致收敛的柯西准则.2. 一致收敛的另一充要条件,魏尔斯特拉斯判别法.3. 函数项级数收敛性的狄利克雷判别法和阿贝尔判别法.4.5 一致收敛函数序列与函数项级数的性质(一) 考核要求理解并掌握一致收敛函数列和函数项级数的连续性,逐项积分与逐项求导法则.(二) 考核范围一致收敛函数列与函数项级数的连续性,逐项积分与逐项求导法则.4.6 幂级数及其性质(一) 考核要求掌握幂级数的收敛半径及收敛域的求法,掌握幂级数的基本性质和运算法则.(二) 考核范围幂级数的收敛半径,收敛半径的计算公式,收敛区间和收敛域的概念.4.7 函数的幂级数展开(一) 考核要求掌握泰勒级数和麦克劳林级数,熟记一些初等函数的幂级数展开式,掌握初等函数的幂级数展开.(二) 考核范围泰勒级数,麦克劳林级数,五种基本初等函数的幂级数展开式,初等函数的幂级数展开(直接法和间接法).4.8 傅里叶级数(一) 考核要求1. 理解三角级数和傅里叶级数定义,掌握傅里叶级数的收敛定理,能够按照收敛定理将比较简单的函数展开成傅里叶级数.2. 掌握以2l为周期的函数的展开式,掌握偶函数和奇函数的傅里叶级数的展开,掌握正弦级数,余弦级数.3. 了解收敛定理的证明,了解傅里叶级数的一致收敛性.(二) 考核范围1. 三角级数;正交函数系,傅里叶级数,收敛定理,傅里叶级数的展开式举例.2. 以2l为周期的函数的展开式,掌握偶函数和奇函数的傅里叶级数的展开式,函数的奇延拓与偶延拓及正弦级数与余弦级数.3.黎曼引理,收敛定理的证明,贝塞尔不等式,一致收敛性定理.第5章多元函数微分学5.1多元函数与极限(6)(一) 考核要求1. 理解二元及多元函数的定义.了解平面中邻域,开域,闭域的定义.-定义,知道二元函数极限存在的充要条件,了解方向2. 理解二元函数重极限的εδ极限与累次极限,了解重极限与累次极限的区别与联系.(二) 考核范围1. 二元函数及多元函数,平面中的邻域,开域,闭域.2. 二元函数重极限定义,二元函数极限存在的充要条件,方向极限与累次极限.5.2 二元函数的连续性(一) 考核要求1. 理解二元函数的连续性的定义,知道二元初等函数的连续性.R上的完备性定理,知道有界闭区域上连续函数的整体性质.2. 了解有关二维空间2(二) 考核范围1. 二元函数的连续性的定义,二元初等函数的连续性.R中的聚点定理,致密性定理,闭区域套定理,有限覆盖定理.2. 23. 有界闭域上连续函数的最大最小值定理,介值性定理和一致连续性.(1) 基本要求:掌握二元函数的连续性的定义,了解有界闭域上连续函数的性质.(2) 较高要求:掌握有界闭域上连续函数性质的证明要点.5.3 偏导数与全微分(一) 考核要求1. 理解并掌握多元函数偏导数的定义,知道偏导数的几何意义,能够熟练的求出初等函数的偏导数和高阶偏导数,能够求二元函数在一些特殊的导数,知道混合偏导数与求导顺序无关的条件.2. 理解并掌握二元函数可微和全微分的定义,掌握微分法则,掌握可微的必要条件,理解可微的充分条件,了解高阶全微分及其运算.(二) 考核范围1. 多元函数偏导数与高阶偏导数,偏导数的几何意义,混合偏导数与求导顺序无关的条件.2. 二元函数可微和全微分的定义,微分法则,可微的必要条件,可微的充分条件,高阶全微分及其运算.5.4 复合函数微分法与方向导数(一) 考核要求理解并熟练掌握复合函数求导的链式法则,掌握方向导数与梯度的定义及其运算,了解二元函数的梯度的几何意义.(二) 考核范围1. 复合函数链式法则,复合函数的全微分,一阶全微分形式不变性.2. 方向导数与梯度5.5 多元函数的泰勒公式(一) 考核要求理解并掌握多元函数的泰勒公式,了解泰勒公式的一个推论——中值定理.(二) 考核范围泰勒公式与中值定理,泰勒公式的计算与应用举例.5.6 隐函数及其微分法(一) 考核要求1. 理解隐函数定理和可微性定理,掌握隐函数微分法.2. 了解隐函数组及其可微性定理,知道求隐函数组的偏导数.(二) 考核范围1. 隐函数存在性定理,隐函数可微性定理.2. 隐函数组及其可微性定理,反函数组定理.5.7 多元函数偏导数的几何应用(一) 考核要求1. 理解空间曲线(两种表示形式)的切线方程的推导,掌握空间曲线的切线与法平面方程的求法,理解曲面(两种表示形式)的切平面方程的推导,掌握曲面的切平面与法线的求法.2. 了解二元函数全微分的几何意义,了解三元函数梯度的几何意义.(二) 考核范围1. 空间曲线的切线与法平面方程,曲面的切平面与法线方程.2. 二元函数全微分的几何意义,、三元函数梯度的几何意义.5.8多元函数的极值与条件极值(一) 考核要求1. 掌握二元函数的极值的必要条件与充分条件.2. 了解拉格朗日乘数法,会用拉格朗日乘数法求条件极值.(二) 考核范围1. 二元函数的极值,必要条件与充分条件.2. 条件极值,拉格朗日乘数法,用条件极值的方法证明不等式.第6章多元函数积分学6.1 二重积分(一) 考核要求1. 了解平面点集的面积定义及其性质,理解二重积分的定义和性质,理解有界闭区域上的连续函数可积的结论,理解并熟练掌握化二重积分为累次积分的计算公式.2. 理解二重积分变量变换公式的证明,掌握用极坐标计算二重积分.(二) 考核范围1. 二重积分的定义和性质,化二重积分为累次积分的计算公式.2. 二重积分的变量变换公式,用极坐标计算二重积分.6.2 三重积分(一) 考核要求1. 掌握三重积分的定义,了解三重积分的性质,熟练掌握化三重积分为累次积分的计算公式(柱体法和截面法).2. 了解三重积分变量变换公式,掌握用球坐标和柱坐标计算三重积分.(二) 考核范围1. 三重积分的定义,化三重积分为累次积分的计算公式(柱体法和截面法).2. 三重积分变量变换公式,柱坐标变换公式,球坐标变换公式.6.3 n重积分和广义重积分(一) 考核要求了解n重积分和广义二重积分的概念和性质,了解广义二重积分的收敛性判别.(二) 考核范围n重积分的定义,计算公式,广义二重积分的性质,收敛性判别.6.4 重积分的应用(一) 考核要求掌握用重积分计算计算面积和体积,掌握曲面面积的计算公式,了解物体的重心,转动惯量与引力及其计算公式.(二) 考核范围平面区域的面积,立体的体积,曲面的面积,物体重心,转动惯量,引力.6.5 第一型曲线积分(一) 考核要求理解并掌握第一型曲线积分的定义,性质和计算公式.(二) 考核范围第一型曲线积分的定义,性质和计算公式.6.6 第二型曲线积分(一) 考核要求1. 理解并掌握第二型曲线积分的定义,性质,坐标形式和计算公式.2. 了解两类曲线积分之间的联系.(二) 考核范围1. 第二型曲线积分的定义,性质,坐标形式和计算公式.2. 两类曲线积分之间的联系.6.7 格林公式(一) 考核要求理解并掌握格林公式以及曲线积分与路线无关的条件.(二) 考核范围格林公式,曲线积分与路线无关的条件.6.8 第一型曲面积分(一) 考核要求理解并掌握第一型曲面积分的定义和计算公式.(二) 考核范围第一型曲面积分的定义和计算公式.6.9 第二型曲面积分(一) 考核要求理解并掌握第二型曲面积分的定义、性质,了解两类曲面积分的联系,掌握第二型曲面积分的计算公式.(二) 考核范围有向曲面的概念,第二型曲面积分的定义、性质,两类曲面积分的联系,第二型曲面积分的计算公式.6.10 高斯公式与斯托克斯公式(一) 考核要求理解并掌握高斯公式和斯托克斯公式.(二) 考核范围高斯公式,斯托克斯公式,沿空间曲线的第二型积分与路径无关的条件.*6.11 含参变量的积分(一) 考核要求1. 理解并掌握含参变量的定积分的连续性,可微性和可积性定理,掌握计算含参变量的定积分基本方法.2. 了解含参变量的广义积分的一致收敛性概念和性质,了解一致收敛性判别法(魏尔斯特拉斯判别法,狄里克雷判别法和阿贝尔判别法.3. 了解含参变量的广义积分的连续性,可微性与可积性定理,了解含参变量的定积分基本方法.4. 了解Γ函数与β函数的定义、性质及其联系.(二) 考核范围1. 含参变量的定积分的连续性,可微性和可积性定理的证明,定理的应用.2. 含参变量的广义积分的一致收敛性概念和性质,一致收敛性判别法.3. 连续性,可微性与可积性定理,定理的应用.4.Γ函数与β函数的定义、性质及其联系,余元公式.萍乡学院工程与管理学院2019年3月20日。

数学分析课程简介

数学分析课程简介

数学分析课程简介课程编码:21090031-21090033课程名称:数学分析英文名称:Mathematical Analysis课程类别:学科基础课程课程简介:数学分析俗称:“微积分”,创建于17世纪,直到19 世纪末及20世纪初才发展为一门理论体系完备,内容丰富,应用十分广泛的数学学科。

数学分析课是各类大学数学与应用数学专业、信息与计算科学专业最主要的专业基础课。

是进一步学习复变函数论、微分方程、微分几何、概率论、实变分析与泛函分析等后继课程的阶梯,是数学类硕士研究生的必考基础课之一。

本课程基本的内容有:极限理论、一元函数微积分学、级数理论、多元函数微积分学等方面的系统知识,用现代数学工具——极限的思想与方法研究函数的分析特性——连续性、可微性、可积性。

极限方法是贯穿于全课程的主线。

课程的目的是通过三个学期学习和系统的数学训练,使学生逐步提高数学修养,特别是分析的修养,积累从事进一步学习所需要的数学知识,掌握数学的基本思想和方法,培养与锻炼学生的数学思维素质,提高学生分析与解决问题的能力。

教材名称:数学分析教材主编:华东师范大学主编(第四版)出版日期:2010 年6 月第四版出版社:高等教育出版社数学分析1》课程教学大纲(2010 级执行)课程代号:21090031总学时:80学时(讲授58学时,习题22学时)适用专业:数学与应用数学、信息与计算科学先修课程:本课程不需要先修课程,以高中数学为基础一、本课程地位、性质和任务本课程是本科数学与应用数学专业、信息与计算科学专业的一门必修的学科基础课程。

通过本课程的教学,使学生掌握数学分析的基本概念、基本理论、思想方法,培养学生解决实际问题的能力和创新精神,为学习后继课程打下基础。

二、课程教学的基本要求重点:极限理论;一元函数微分学及贯穿整个课程内容的无穷小分析的方法。

基本要求:掌握极限、函数连续性、可微等基本概念;掌握数列极限、函数极限;闭区间连续函数性质;熟练掌握函数导数、微分的计算及应用;掌握微分中值定理及其应用。

《数学分析》课程教学大纲

《数学分析》课程教学大纲

《数学分析》课程教学大纲一、教学大纲说明(一)课程的性质、地位、作用和任务《数学分析》是综合性大学数学类各专业一门重要的专业基础课程,是从初等数学到高等数学过渡的桥梁。

本课程所占学分多,跨度大(计划共四个学期),是一门内容丰富而整体性强、思想深刻而方法基本的课程,以经典微积分为主体内容,其中,极限的思想贯穿全课程,它不仅为许多后继课程提供必要的基础知识和基本技能的训练,而且对全面培养学生的现代数学素质以及运用数学思想和方法解决问题的能力起着十分重要的作用。

本课程的任务是使学生系统地掌握极限理论、一元函数微积分学、无穷级数与多元函数微积分学等方面的知识,使学生获得数学思想,数学的逻辑性,严密性方面的严格训练,使学生掌握近代数学的方法、技巧,为后续课程的学习乃至毕业后能胜任相应的实际工作奠定坚实的基础。

(二)教学目的和要求本课程教学目的是通过系统的学习,使学生全面掌握数学分析的基本理论知识,初步掌握现代数学的观点与方法,使学生具备灵活、快捷的运算能力与技巧,培养学生严格的逻辑思维能力与推理论证能力,简洁、清晰运用数学符号和语言的表达能力,提高建立数学模型,并应用微积分这一工具解决实际应用问题的能力。

在教学基本要求上分为三个档次,即了解、理解和掌握。

1、掌握——能联系几何与物理的直观背景,从正反两方面理解基本概念;熟练运用基本理论较进行推理论证和分析问题;熟练运用基本方法、灵活运用基本技巧进行运算和解决应用问题。

包括实数与函数、各类极限、连续、(偏)导数、(全)微分、各类积分、级数和函数项级数的敛散性、幂级数的概念、性质、计算及应用。

2、理解——能从正面理解基本概念;能应用和了解如何证明基本理论;能掌握基本方法解决问题,但不要求很熟练和技巧性。

包括泰勒公式、函数图像的讨论、实数完备性基本定理的内容、证明及应用、一般有理函数的不定积分及万能变换、欧拉变換、隐函数定理的证明、各类敛散问题中的狄利克雷判别法与阿贝尔判别法、傅里叶级数的概念、性质、计算与应用、斯托克斯公式。

702数学分析

702数学分析

南京信息工程大学硕士研究生入学考试《数学分析》考试大纲科目代码:702科目名称:数学分析考试内容:一、实数集与函数1 实数集及其性质2 确界定义与确界原理3 函数概念 4有某些特性的函数(有界函数、单调函数、奇函数与偶函数、周期函数)二、数列极限1 数列极限概念2 收敛数列的性质(唯一性、有界性、保号性、不等式性、迫敛性、四则运算)3 数列极限存在的条件:包括单调有界定理与柯西(Cauchy)准则三、函数极限1 函数极限概念2 函数极限的性质(唯一性、局部有界性、局部保号性、不等式性、迫敛性、四则运算)3 函数极限存在的条件:包括归结原则(Heine 定理),单调有界定理与柯西准则4 两个重要极限5 无穷小量,无穷大量, 非正常极限,阶的比较,曲线的渐近线四、函数的连续性1 连续性概念,间断点及其分类2 连续函数的性质(有界性、保号性、连续函数的四则运算、复合函数的连续性、反函数的连续性;闭区间上连续函数的有界性、取得最大值最小值性、介值性、一致连续性)3 初等函数的连续性五、导数与微分1 导数的概念2 求导法则3 微分概念4 高阶导数与高阶微分 5参量方程所确定的函数的导数六、微分中值定理及其应用1 中值定理(罗尔定理、拉格朗日定理、柯西定理)2 不定式极限3 泰勒公式(及其皮亚诺余项与拉格朗日余项、一些常用初等函数的泰勒展开式、应用于近似计算)4 函数的单调性、极值、最大值与最小值5 函数的凸性与拐点6 函数图象的讨论七、实数完备性1 实数集完备性的基本定理的应用2 闭区间上连续函数性质的证明第八章不定积分1原函数与不定积分概念,基本积分公式 2 换元积分法与分部积分法 3 有理函数和可化为有理函数的积分九、定积分1定积分的概念及其几何意义 2 可积条件的应用(包括必要条件,可积准则),三类可积函数 3 定积分的性质(线性运算法则、区间可加性、不等式性质、绝对可积性,积分中值定理) 4 微积分学基本定理,定积分的分部积分法与换元法十、反常积分1无穷限反常积分概念、柯西准则,绝对收敛与条件收敛 2无穷限反常积分收敛性判别法:比较判别法及p-函数判别法,狄利克雷(Dirichlet)判别法,阿贝尔(Abel)判别法 3无界函数反常积分概念,无界函数反常积分比较判别法及p-函数判别法十一、定积分的应用1 平面图形的面积2 由截面面积求体积、旋转体的体积3 曲线的弧长与曲率4 旋转曲面的面积十二、数项级数1 级数收敛的概念,柯西收敛准则,收敛级数的性质2 正项级数收敛判别法(比较判别法、p-级数判别法、比式与根式判别法、积分判别法)3 一般项级数的绝对收敛与条件收敛、交错级数的莱布尼兹判别法,阿贝尔(Abel)判别法与狄利克雷(Dirichlet)判别法,绝对收敛级数的性质十三、函数列与函数项级数1 函数列与函数项级数的一致收敛性,柯西准则,函数项级数的维尔斯特拉斯(Weierstrass)优级数判别法,狄利克雷(Dirichlet)判别法,阿贝尔(Abel)判别法2 函数列极限函数与函数项级数和函数的连续性、可积性、可微性十四、幂级数1 幂函数的收敛性,阿贝尔定理,收敛半径与收敛域,内闭一致收敛性,和函数的分析性质2 函数的幂级数展开十五、傅里叶级数1 傅里叶级数的概念,三角函数系的正交性2 以2L为周期的函数的展开式,奇式与偶式展开3 收敛定理的证明十六、多元函数的极限与连续1 平面点集与多元函数2 二元函数的极限,重极限与累次极限3 二元函数的连续性,有界闭域(集)上连续函数的性质十七、多元函数的微分学1偏导数与全微分概念,可微性 2 复合函数微分法,高阶导数,高阶微分,混合偏导数与其顺序无关性 3 方向导数与梯度 4 泰勒公式与极值问题十八、隐函数定理及其应用1隐函数的概念,隐函数定理 2隐函数组定理,隐函数组求导、反函数组与坐标变换,函数行列式及其性质 3 几何应用(空间曲线的切线与法平面,曲面的切平面与法线) 4 条件极值与拉格朗日乘数法十九、含参量积分1 含参量正常积分,连续性、可积性与可微性2 含参量反常积分的收敛与一致收敛,柯西准则,维尔特拉斯(Weierstrass)判别法,狄利克雷(Dirichlet)判别法,阿贝尔(Abel)判别法,含参量无穷积分的连续性,可积性与可微性3 欧拉积分二十、曲线积分1第一型曲线积分的概念,性质和计算公式 2第二型曲线积分的概念,性质和计算公式,两类曲线积分之间的关系二十一、重积分1 二重积分概念与性质2 二重积分的计算(化为累次积分),二重积分的换元法(极坐标与一般变换) 3. 格林(Green)公式,曲线积分与路线的无关性3 三重积分的概念与计算,三重积分的换元法(柱坐标、球坐标与一般变换)4 重积分的应用(体积、曲面面积等)二十二、曲面积分1第一型曲面积分的的概念与计算 2第二型曲面积分的概念与计算,两类曲面积分之间的关系 3高斯(Gauss)公式,斯托克斯(Stokes)公式。

数学分析的基本原理

数学分析的基本原理数学分析是数学的一个分支,研究的是函数、极限、导数、积分等概念与性质。

作为数学的基础学科,数学分析具有一些基本的原理和方法。

本文将介绍数学分析的基本原理,帮助读者更好地理解和应用数学分析知识。

一、函数与极限的基本原理函数是数学中的一个重要概念,表示一个变量与另一个变量之间的依赖关系。

在数学分析中,我们研究的是实数域上的函数,即定义域为实数集的函数。

极限是函数与自变量趋于某一点时的表现。

数学分析中,我们用了极限的概念来研究函数的连续性、收敛性等性质。

极限具有一些基本的原理,包括极限的唯一性原理、极限的四则运算原理、函数极限的保号性原理等。

极限的唯一性原理指出,如果一个函数存在极限,那么这个极限是唯一确定的。

这意味着我们可以通过计算确定一个函数在某一点的极限值。

极限的四则运算原理是指,如果两个函数都在某一点存在极限,那么它们的和、差、积和商的极限也存在,并且可以通过已知函数的极限来计算未知函数的极限。

函数极限的保号性原理是指,如果一个函数在某一点的左侧或右侧是单调递增(或递减)的,并且这个函数在该点的极限为正(或负),那么该函数在这一点的附近也具有相同的性质。

二、导数与微分的基本原理导数是研究函数变化率的工具,它描述了函数在特定点的瞬时变化情况。

导数具有一些基本的原理,包括导数的定义、导数的四则运算法则、高阶导数等。

导数的定义是导数理论中最基础的概念。

对于一个实数域上的函数,在某一点处的导数定义为函数在该点的极限值,表示函数在该点处的瞬时变化率。

导数的四则运算法则是指,如果两个函数在某一点都存在导数,那么它们的和、差、积和商也都存在导数,并且可以通过已知函数的导数来计算未知函数的导数。

高阶导数指的是函数的导数的导数,它描述了函数变化率的变化率。

高阶导数的概念可以通过迭代运用导数的定义来得到,并且具有类似于导数的四则运算法则。

微分是导数的一种应用形式,它在物理学、经济学等领域有着广泛的应用。

浅谈数列极限与函数极限在解题中的区别和联系

浅谈数列极限与函数极限在解题中的区别和联系摘要在数学分析中,极限的知识体系包括数列极限和函数极限。

在求解数列极限的方法中,我们从极限的定义出发,根据极限的性质以及相关的定理法则,例如单调有界收敛来论证极限;在求解函数极限时,其方法与数列极限有着相同之处,同时又有所区别。

本文重点在于分析数列极限与函数极限在解题中的相似之处与不同之处,同时研究数列极限与函数极限的关系。

关键词:数列极限;函数极限;区别;联系目录1 数列极限与函数极限在解题中的相似之处 (3)1.1 定义法在极限解题中的应用 (3)1.1.1 定义法概述 (3)1.1.2 定义法解题实例分析 (3)1.2 迫敛性在极限解题中的应用 (4)1.2.1 迫敛性概述 (4)1.2.2 迫敛性解题实例分析 (4)1.3 积分中值定理在极限解题中的应用 (5)1.3.1 积分中值定理概述 (5)1.3.2 积分中值定理实例分析 (6)1.4 本章小结 (6)2 数列极限与函数极限在解题中的不同之处 (7)2.1 存在条件不同 (7)2.1.1 数列极限存在条件 (7)2.1.2 函数极限存在条件 (9)2.2 特殊形式的极限 (10)2.2.1 数列极限的特殊解法研究 (10)2.2.3 两个重要形式的函数极限解法研究 (12)3数列极限与函数极限的关系 (13)3.1海涅定理 (13)3.2海涅定理的应用 (14)4 结论 (16)1 数列极限与函数极限在解题中的相似之处数列极限与函数极限在解题过程中,存在着很多的相似之处。

主要表现在数列极限与函数极限的解题过程中,其方法的运用方面存在着很多的共同点。

下面将重点分析进行数列极限与函数极限的解题过程中,定义法以及利用数列迫敛性在数列极限与函数极限中的运用。

1.1 定义法在极限解题中的应用 1.1.1 定义法概述数列极限的N ε-定义:设{}n a 为数列,a 为定数,若对任给的正数ε,总存在正数N ,使得当n N >时,有n a a ε-<,则称数列{}n a 收敛于a 。

化归思想在数学分析中的应用

化归思想在数学分析中的应用化归是数学的灵魂,它是数学中解决问题的一种非常重要的方法。

简单的化归思想就是把不熟悉的问题转化成熟悉的问题的一种数学思想,即把数学中待解决或未解决的问题,通过观察、分析、联想、类比等思维过程,并选择恰当的变换、转化,归结到某个或某些已经解决或比较容易解决的问题上,最终解决原始问题。

由此可见,运用化归的方法可以使要解决的问题简算化、熟悉化、具体化。

这种思想现在已经渗透到数学学习的各个分支中,特别是在数学分析中。

一、极限中的化归思想1.数列问题化归为级数问题数列的敛散性和级数的敛散性实质上是等价的。

事实上,设x1=a1,…,x n=a1+a2+…+a n(n≥1),则数列收敛{x n}级数收敛∞n=1a n,当二者都收敛时有limx→∞x n=∞n=1a n。

因此,判定数列{x n}的敛散性与求limx→∞x n存在与否,可归结为判定∞n=1a n的敛散性与求S=∞n=1a n.例1证明limx→∞(n+1)!(2n)!!=0.证明设a n(n+1)!(2n)!!,则有limn→∞a n+1a n=limn→∞n+22n+2=12<1,因此由比式判别法的极限形式知:∞n=1=∞n=1a n(n+1)!(2n)!!是收敛的,所以limn→∞(n+1)!(2n)!!=0.2.数列极限化归为函数极限海涅定理说明数列极限和函数极限是可以相互转化的,而计算函数极限有“L’Hospital法则”“泰勒公式”这样强有力的方法可以利用,从而在计算数列极限时,应优先考虑将其转化为函数极限。

一般方法是:选取函数f(x)与数列{x n},使a n=f(x n)且x n→a(n→∞),于是有limn→∞a n=limn→∞f(x n)=limn→∞f(x)。

这样计算数列极限就转化为计算函数极限了,这种化归思想在某些时候是特别有效的。

例2计算limn→∞[ne-n(ne-1)].解设x=1n,那么n→∞就相当于x=1n→0,于是有limn→∞n[ne-n(ne-1)]=limx→0x-1[e x-1]=limx→0xe x-e x+1x2,那么原式=limx→∞xe x-e x+1x2(利用了L’Hospital法则)=limx→∞xe x+e x-e x2x=limx→∞12e x=12.3.多元函数极限化归为一元函数极限多元函数极限的计算,有许多技巧,需要灵活掌握和运用。

数学中的数学逻辑学

数学中的数学逻辑学数学逻辑学作为一门独立的数学分支,研究的是数学系统的结构、推理规则和证明方法。

它是数学的基础,为数学的发展和应用提供了理论基础。

本文将介绍数学逻辑学的起源和发展、基本概念和主要原理,并探讨其在数学研究和应用中的重要性。

一、起源与发展数学逻辑学最早起源于古希腊,当时的哲学家们试图通过逻辑推理来证明数学命题的真假。

然而,直到19世纪,随着数学的发展和形式化的需求,数学逻辑学才逐渐成为一门独立的学科。

19世纪末和20世纪初,逻辑学和数学逻辑学取得了突破性的进展。

罗素和怀特海等逻辑学家提出了集合论和数理逻辑的基本原理,形成了现代数学逻辑学的基础。

随后,数学领域中的公理化方法和形式推理得以广泛应用,为数学研究和推理提供了有力工具。

二、基本概念1. 命题逻辑命题逻辑是数学逻辑学的一个重要分支,研究的是命题的真值和推理规则。

在命题逻辑中,命题分为真和假两种情况,通过逻辑连接词(如与、或、非)进行组合形成复合命题。

通过推理规则,可以推导出新的命题。

2. 谓词逻辑谓词逻辑是一种较为复杂的逻辑系统,用于描述关于个体和属性之间的关系。

在谓词逻辑中,使用谓词来描述属性或关系,使用量词来表示命题的范围。

谓词逻辑在数学推理和证明中具有广泛的应用,尤其是在数学分析和代数中。

3. 析取范式与合取范式在命题逻辑中,析取范式和合取范式是两种重要的命题形式。

析取范式指的是将多个命题通过析取连接词组合成一个命题,而合取范式则是将多个命题通过合取连接词组合成一个命题。

通过使用析取范式和合取范式,可以对复杂的命题进行简化和分析。

三、主要原理1. 排中律排中律是命题逻辑中的一个基本原理,指的是对于任意命题,其要么为真,要么为假。

排中律在数学证明中经常用到,可以将证明过程转化为一个二分法,确保最终得出结论。

2. 确定性原理确定性原理是谓词逻辑中的一个重要原理,用于确定命题的真值。

确定性原理要求在逻辑推理中,对于给定的命题集合,要么存在一个模型使得所有的命题都为真,要么存在一个模型使得所有的命题都为假。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

归结原理数学分析
归结(resolution)原理,在数理逻辑和自动定理证明中(GOFAI涉及的主题),是对于命题逻辑和一阶逻辑中的句子的推理规则,它导致了一种反证法的定理证明技术。

将普通形式逻辑中充分条件的假言联锁推理形式符号化,并向一阶谓词逻辑推广的一种推理法则,又称归结法则、分解法则、消解法则。

在命题逻辑归结原理的推理图式中,P、Q和R称为原子公式(简称原子),即不使用逻辑连接词的简单命题形式。

原子和原子的否定式统称句元,例如P与塡P、Q与塡Q、R与塡R即是三对互补句元。

子句就是将不同句元用析取词∨(或)连接而成的析取式。

应用归结法则进行推理时,所有判断都写成子句的形式,这不论对命题逻辑还是对一阶谓词逻辑都不例外。

在命题逻辑中,原子被看成一个内部结构不予分析的逻辑基元,代表简单的命题形式。

单凭普通形式逻辑中充分条件的假言联锁推理的符号化,只能直接演变为命题逻辑的归结原理。

命题逻辑的归结原理或归结法则可归纳如下:对任意两个子句H1和H2,如果H1和H2中各自包含一个互补的句元L1和L2(例如上述图式中的Q和塡Q),则可以删去L1和L2,并将原来的子句H1与H2归结为删去互补句元后两子句余下部分的析取
式C。

C也以子句形式出现,称为原来两子句(常称为亲子句)的一个归结式例如图式中塡P∨R即为塡P∨Q与塡Q∨R两子句的一个归结式。

归结原理或归结法则即因此得名。

相关文档
最新文档